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Abstract—In this paper, we present a novel random access
method for future mobile cellular networks that support machine
type communications. Traditionally, such networks establish
connections with the devices using a random access procedure,
however massive machine type communication poses several
challenges to the design of random access for current systems.
State-of-the-art random access techniques rely on predicting
the traffic load to adjust the number of users allowed to
attempt the random access preamble phase, however this delays
network access and is highly dependent on the accuracy of
traffic prediction and fast signalling. We change this paradigm by
using the preamble phase to estimate traffic and then adapt the
network resources to the estimated load. We introduce Preamble
Barring that uses a probabilistic resource separation to allow
load estimation in a wide range of load conditions and combine
it with multiple random access responses. This results in a
load adaptive method that can deliver near-optimal performance
under any load condition without the need for traffic prediction
or signalling, making it a promising solution to avoid network
congestion and achieve fast uplink access for massive MTC.

Index Terms—Random Access, massive MTC, IoT, Traffic
bursts, Load estimation

I. INTRODUCTION

UPCOMING 5G and beyond networks are expected to
accommodate millions of user devices with a sporadic

traffic pattern generated by Machine Type Communications
(MTC), a major feature of the Internet of Things (IoT)
paradigm. This represents a radical shift in the network load,
and Random Access (RA), i.e. initial access to the system, has
been identified as the main bottleneck [1]–[3].

3GPP Long Term Evolution (LTE) RA procedure typically
consists of 4 steps described in Fig. 1: 1) users randomly
choose a signature, referred to as simply preamble in the
remainder on this paper, among N available (N = 54 in LTE
[4]) and send the corresponding preamble; 2) the Base Station
(BS) sends a RA Response (RAR) message for each detected
preamble with an uplink grant; 3) users respond to RAR
message and initiate a connection phase with the BS. If two or
more users have chosen the same preamble at step 1, a colli-
sion occurs, otherwise the preamble is considered successful;
4) the BS confirms the connection or notifies a collision. In this
paper, step 1 is referred to as the Slotted-ALOHA (S-ALOHA)

Fig. 1. RA 4-step procedure in LTE [4].

preamble phase where users randomly choose a preamble. The
maximum throughput of preamble phase follows that of S-
ALOHA throughput which is e−1 ' 0.37 when the offered
load is k/N = 1, where k is the number of users attempting
RA. The other steps are referred to as the connection phase
and are not random in legacy systems such as Long-Term
Evolution. When the offered load is below 1, the system is
under-utilized. Likewise, when the offered load is above 1,
the system is over-utilized and may cause RA congestion and
high access latency due to excessive collisions.

Massive MTC and event-driven communication (e.g. sen-
sors during an earthquake) may cause most of these devices
to try to establish connection at the same time, resulting in
massive bursts of traffic [4]. Traffic bursts cause more devices
to request RA, which leads to RA congestion and longer
access latency. While LTE was designed with enough RA
opportunities to achieve a 99% RA success probability at the
preamble phase, a higher collision probability is expected for
the massive MTC (mMTC) scenario [5].

In general, there are two approaches to address the RA
congestion problem where both aim to bring the system to
operate at its peak performance of 37% by reducing the offered
load back to 1. The first approach is to allocate more RA such
that the resources can cope with the high traffic load. The
second approach is to regulate the number of incoming users
so that the regulated load matches the available resources.

The first approach attempts to increase the RA success



probability by allocating more resources for RA to ideally
reach N = k. LTE has multiple Physical RA Channel
(PRACH) configurations [6] and it is proposed in [7] to use
it dynamically depending on the current system load. Other
techniques in this category include the use of virtual preambles
[8], [9] or multiple RAR messages [10], [11]. These methods
virtually multiply the number of preambles by allocating more
resources than received preambles to serve users that may
have collided at the preamble stage. However, these methods
also introduce ambiguity overhead [8], which can lead to a
significant waste of resources.

The second approach attempts to bring the system to its
peak performance operating point by regulating the incoming
traffic load to ideally reach k = N . Back-off mechanisms
[7] make users wait a random amount of time to attempt
RA after a collision; following a traffic burst, this spreads
traffic over time and reduces instantaneous traffic. Apart from
back-off mechanisms, access barring can limit the access and
reduces the load. Class barring separates users between high
priority and each class has different RA parameters. A typical
application of this scheme would be to separate Human to
Human (H2H), mission critical and mMTC users in different
classes. LTE implements Access Class Barring (ACB), where
low priority users have a longer backoff timer than high-
priority users as well as a barring factor p; each user draws a
random number 0 ≤ q ≤ 1 and if q > p they may attempt RA.
Enhanced Access Barring (EAB) further enhances this scheme
by completely barring low-priority users from attempting RA
in case of high traffic. These methods essentially sacrifice
some throughput to ensure a better quality of service to
high-priority users. First introduced in [12], adaptive traffic
load (ATL) S-ALOHA uses traffic prediction to optimize the
throughput by dynamically adapting the barring factor p to the
current load. By setting p such that (1 − p) · k = N , it can
achieve the maximal theoretical throughput.

All these methods are optimal for a given traffic load and
need to adapt over time to the varying number of users to
continue to perform well, either by passively smoothing traffic
peaks (e.g. back-off schemes), which is slow and requires
users to fail until the system is at peak performance, or by
actively changing system parameters (e.g ATL S-ALOHA),
which relies on accurate traffic prediction and fast network
adaptation to broadcast updated parameters. Indeed, in a typ-
ical PRACH configuration [7], there are 16 RA slots between
each parameter update. This can severely damage the RA
performance and access delay.

Our research effort in this paper falls under the scope of
the first approach, more specifically the multiple RARs (M-
RAR) scheme, and expands it by modifying the preamble
phase to use it not only to admit users but for load estimation.
Authors in [10] provide an analysis of the success rate of this
scheme for fixed numbers M ≥ 1 of RARs, which shows
improvement in RA success probability. In this paper, we
propose to dynamically and instantaneously adapt the number
M of multiple RARs following a traffic load estimation at the
preamble phase. However, our analysis shows that the existing

preamble phase can be used for load estimation only for a
limited range of loads (see Fig. 6), and the load estimation fails
beyond this range of 235 users for N = 54 as shown later in
Section III. Supporting a wide range of traffic load is essential
for massive MTC. Therefore, instead of aiming to maximize
the throughput in preamble phase as in the state-of-the-art,
we challenge this paradigm by designing a preamble phase
that aims to perform load estimation even when the system
would normally be congested and use this information to later
serve users. We call our RA method Preamble Barring (PB),
which uses a probabilistic resource separation at the preamble
stage to achieve accurate load estimation in a wide range
of load conditions. We then use this estimation to achieve
optimal throughput at the connection phase with M-RAR. In
this paper, we focus on the robustness of the scheme to sudden
unpredictable traffic bursts that happen over the course of
one RA slot of up to 1000 users [10], rather than a steadily
increasing long traffic burst [7], although our scheme is also
perfectly suited for such events. The throughput analysis shows
that this scheme can serve 1000 users with only 54 preambles
while having a near-optimal throughput performance, which
indicates that it is a promising solution to avoid congestion and
achieve fast uplink access for mMTC devices. In Section II, we
provide an analysis of M-RAR throughput performance and
determine the best choice of parameter M for a given load, the
difficulty of estimating and predicting load for traditional RA
schemes is also studied. In Section III, we introduce a novel
RA scheme, Preamble Barring, and show how it solves the
load estimation problem under high load and achieves optimal
performance both for high and low load conditions without
relying on traffic prediction. The performance advantages of
our proposed scheme are presented and discussed. We finally
draw important conclusions and discuss future work in Section
IV.

II. MULTIPLE RAR

In this section we analyze M-RAR performance and re-
source overhead for different traffic loads and derive an
optimal M for a given load; we also show limits of traffic
estimation and its impact on RA performance for high load
conditions.

A. Concept of multiple RAR (M-RAR)

The key idea of M-RAR is the use of multiple RAR
messages for each received preamble at step 2 to avoid
potential collisions. If there are two or more users choosing
the same preamble at step 1, with multiple RAR messages,
the users may choose to respond to a different RAR message.
While the collision probability at the preamble phase remains
unchanged, M-RAR reduces the collision probability at the
connection phase. The drawback of this method is that some
RAR messages may be sent unnecessarily resulting in resource
wastage for step 2 and 3. This can be avoided by adjusting M
based on the number of users choosing the same preamble.
An appropriate choice of M depends on 1) the knowledge of
the current load, 2) the targeted trade-off between collision



probability and resource wastage and 3) the amount of RAR
resources available. In this paper, we assume that 1) the bursty
nature of MTC traffic makes load prediction very difficult
but it can be estimated by looking at the number of chosen
preambles after the preamble phase, 2) the metric we want
to optimize is the overall resource efficiency (also referred to
as channel throughput in S-ALOHA), and 3) we do not have
restrictions on the number of RARs; indeed, the maximum
throughput being 37%, RA resources will still need to be used
at a later time, therefore we consider that efficiently connecting
users on the first attempt saves time and energy for both the
users and the BS.

B. Throughput analysis

To be able to accurately estimate the performance of the
M-RAR scheme, we need to estimate 1) the number of users
that attempted RA at the preamble phase, 2) their distribution
among the chosen preambles and 3) their success probability
at the connection phase with M RARs.

Incoming traffic can be separated in two components: pre-
vious users who could not be served in previous attempts
and new users. The change of load largely depend on new
arrivals and the prediction can be very challenging with a
sporadic and bursty traffic, as can be expected from a massive
MTC scenario with event-driven communication. In this paper
however, contrary to traditional RA schemes, we do not rely
on the preamble phase where traffic prediction is required but
rather on the connection phase where load estimation can be
inferred from the preamble phase. Hence, we will only focus
on load estimation following the preamble phase, although
additional knowledge of the incoming load may still be used,
in (2) for instance.

In this paper, we assume that every selected preamble is
perfectly detected by the BS. Although a closed form formula
for the number of selected preambles for a given number of
users is provided in [13], we also need the exact probability
of the number of successful preambles. In this paper, we
propose a state transition analysis to compute both of these
probabilities at the same time.

For N available preambles, we consider the probability of
having nc chosen preambles and ns successful preambles.
There are (N + 1)(N + 2)/2 possible states (nc, ns), with
0 ≤ ns ≤ nc ≤ N , as shown in Fig. 2a. The state transition
probabilities for any given state (nc, ns) are described in Fig.
2b. Indeed, the arrival of a new user results in a probability
(N − nc)/N to choose a new preamble which results in state
(nc + 1, ns + 1), a probability (nc − ns)/N to choose a
previously collided preamble which results in state (nc, ns)
and a probability ns/N to choose a previously successful
preamble and collide which results in state (nc, ns−1). We can
then derive the transition matrix P and by initializing at (0, 0)
with v0 = (1, 0, ..., 0)T , we can then compute the probability
of being in a state (nc, ns) for k users with vk = P k · v0.

This approach is similar to Markov chain analysis, however
we do not look for steady state as there is only one absorbing
state (N, 0) as shown in Fig. 2a. Here we are looking at
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(a) State transitions diagram.
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(b) Transition probabilities of a particular state (nc, ns).

Fig. 2. System model for the analysis of preamble outcomes.

transient states that give us state probabilities after a certain
number of steps corresponding to the number of users k.

We now need to determine the distribution of the k users
among the n selected preambles. While we could use the
same approach to determine all the possible states and their
corresponding probabilities but this would be very complex.
We choose here to use an independent Poisson distribution
approximation, which is particularly accurate since k and
n are known so this does not affect the overall throughput
predictions as shown in Fig. 3. Let l be the number of
users who selected a given preamble. We model l as a
conditional Poisson distribution (l ≥ 1) of parameter λ = k/n:
P (l = q|l ≥ 1) = λq

q! e
−λ 1

1−e−λ = λq

q!
1

eλ−1
.

Finally, we need to compute the probability of success of
l users for M RARs. There is no closed-form expression for
this probability and in the literature, we normally consider a
high number of users and preambles and the approximation
PSuccess = e−l/M is usually used [4]. This approximation
does not hold for lower values of l and M , as is the case in
this paper. Using our proposed method described in Fig. 2a and
Fig. 2b, we can accurately derive this probability. We verify
the accuracy of our analysis for k = 250 users and varying
values of M using Monte Carlo simulations (with T = 104

steps), as displayed in Fig. 3.

C. Optimal choice of M and load estimation accuracy

We derived the exact performance of the M-RAR scheme.
To determine the optimal choice of M , we now seek to
optimize the channel throughput for a given number of users
k, i.e. the ratio of successfully used RARs with respect to
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Fig. 3. M-RAR performance for k = 250 users.

the amount of allocated RARs M · N . We can achieve this
by exhaustive search of the previously computed success
probabilities, which can later be stored in a table. We draw
the throughput curves for different fixed values of M for traffic
loads varying from 1 to 1000 users in Fig. 4. We can see that
by always selecting the best M , we are practically always
achieving optimal throughput. It must be noted that, similarly
to ACB, we choose M = 1 for low loads and then achieve
optimal throughput for each M at k = M · N ; where ACB
reduces the number of users to (1 − p) · k = N , our scheme
increases the number of resources to M · N ' k. Given
that M is an integer, this value is not always reached but
Fig. 4 shows that, in practice, we have over 35% throughput
from k = 35 users and it converges to the ideal 37% value.
However, the advantage of this scheme over ACB is that it
does not require load prediction or fast parameter update, so
the system can work at its optimum in any situation. Indeed,
the aim of this scheme is to be able to provide users with an
optimal connection phase throughput on the first try with a
scalable number of RARs. On the contrary, legacy schemes
need to adjust a barring parameter or have users back off on
a trial-and-error basis but with a bounded number of RARs.

In practice, we estimate the load using the most likely
number of users k for n received preambles as described
previously. We then choose the optimal M for this estimated
load. Performance results are shown in Fig. 7. As we can
observe, the performance is very close to the ideal case up
to 250 users and then suddenly drops as the preamble set is
saturated (all preambles are used) and the BS is not able to
infer whether there are 250 or 1000 users. This load estimation
error could prove particularly harmful in case of a sudden
unpredictable traffic burst, which is expected in event-driven
communication.

Thus, we change the paradigm of trying to predict the load
to optimize the preamble phase throughput, and instead use the
preamble phase to optimize the throughput at the connection
phase (which is what the ultimate goal is), we can achieve near
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Fig. 4. M-RAR performance for fixed M and varying load.

optimal S-ALOHA throughput all of the time, even when all
or most of the users actually collided at the preamble phase.
However, this method shows its limits when the number of
users is so high that the system is unable to give an estimation
of this number, which defeats its purpose.

III. EXPLOITING PREAMBLE BARRING TO OPTIMIZE
MULTIPLE RAR

We saw in the previous section that Multiple RAR can the-
oretically always achieve near-optimal throughput but it relies
on a good load estimation to achieve its full potential. Hence,
a preamble phase that could help the BS more accurately
estimate the load for a wider range of incoming number of
users would solve this problem. In this section, we introduce
such a method.

A. Preamble Barring

In regular S-ALOHA, all users randomly choose any of
the N signatures with uniform distribution; this optimizes the
throughput S = k/N · e−k/N (as shown in Fig. 5) with a
maximum of 1/e ' 0.37 when k = N .

In the PB scheme, the preambles are divided in different
sets and users are given a probability pi to access the ith set,
which consists of ni preambles. The choice of preamble is
therefore not uniform, it consists in a probabilistic separation
of resources, where some preambles are more likely to be
selected than others. In case of a sudden traffic burst, a set that
targets to serve low load (dense set) will be saturated but not
a set that targets to serve high load (sparse set). Thus, sparse
sets will reach saturation for higher loads and can therefore
provide an accurate load estimation where legacy S-ALOHA
would be saturated. We can then extrapolate the load on all
the other sets with good precision.

Following the description of the PB procedure, we can deter-
mine that each preamble set receives an offered load k ·pi/ni,
leading to a normalized throughput of k · pi/ni · e−k·pi/ni . As
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Fig. 5. Preamble phase throughput for S-ALOHA and PB.

a result, we can derive the overall normalized throughput as a
weighted sum of the throughput of each group as follows

S =
k

N
·
∑
i≥1

pi · e−k·pi/ni . (1)

Fig. 5 shows examples for two sets with p1 = 0.95, n1 =
39, p2 = 0.05 and n2 = 15 (PB Example 1) and p1 = 0.2,
n1 = 20 and p2 = 0.8, n2 = 34 (PB Example 2). These
configurations have near-optimal throughput at low loads since
no user is barred from attempting RA. We also achieve a flatter
curve, allowing a near-constant throughput at very high loads.
A drawback is that the flatter the curve, the lower its maximum
throughput, as we can see with examples 1 and 2.

However, this sub-optimal throughput only concerns the
preamble phase (so the preambles that are only chosen by
a unique user) and as we showed in Section II, achieving a
high throughput at the preamble phase is not as important as
being able to estimate the load and this can only be done by
having non saturated sets, which the PB scheme allows.

B. Load estimation precision

The load estimation accuracy depends on the offered load
(i.e. k/N ) on a given set and the number of preambles it
contains. The more preambles a set contains, the better it
can accurately estimate a load at low offered loads. However,
preamble sets become saturated when the load is too high,
the BS then has to make an arbitrary decision as to what
load to estimate when all the preambles are used. In this
paper, we define the saturation point as the smallest load for
which the probability of having all preambles used is greater
than 0.5. Using the state probabilities derived in Section II,
we can show the a 54 preambles set reaches saturation for
235 users; this means that if there are 235 users or more
attempting RA with 54 available preambles, there is more
than 50% probability that all preambles will be chosen. Once
the saturation load is reached, the load estimation error will
increase linearly. Preamble barring allows different offered

loads on the various preamble sets. While the lower number of
available preambles makes low load estimations less accurate,
this methods allows arbitrarily high saturation points according
to the PB parameters. For example, using the aforementioned
Preamble Barring 1 parameters, the sparse set of 15 preambles
has a saturation point of 47 users, which means a maximum
accurate estimate of 47/p1 = 940 users overall.

On top of being able to push the saturation point further,
we can also infer information from the other sets’ observation.
Indeed, for J sets with parameters (ni, pi)1≤i≤J , we can derive
the probability of observing (nc,i)1≤i≤J chosen preambles for
any given k. Thus the probability of having (ki)1≤i≤J users
for each set is

P [(k1, .., kJ)|(ni, pi, nc,i)1≤i≤J ]

= P (X = k) · P [(k1, .., kJ)|(ni, pi)1≤i≤J ] ·
∏

1≤i≤J

P (ki|nc,i),

(2)
where k =

∑
1≤i≤J

ki. As mentioned in the Section II.B,

knowledge about the expected load can always be added to
further enhance the accuracy for the estimation of (ki)1≤i≤J ,
hence the term P (X = k) in (2). However, in this paper we do
not consider any knowledge about k so P (X = k) is not taken
into account. Thus, to derive the optimal Maximum Likelihood
(ML) (k1, k2)

∗ given (nc,1, nc,2) for examples 1 and 2 with
two sets, we need to solve:

(k1, k2)
∗ = max

(k1,k2)
P (k1, k2) · P (k1|nc,1) · P (k2|nc,2), (3)

where P (k1, k2) = fBinomial(k1, k = k1 + k2, n1) =(
k1+k2
k1

)
· pk11 · (1 − p1)

k2 and P (ki|nc,i) are determined
using the state transitions in Section II. We find the ML
solution using an exhaustive search for 0 ≤ k ≤ kmax for
a complexity of O(k2max). The value kmax is determined
as the saturation load. When both sets are saturated, we
calculate the saturation point of both sets and choose the
highest kmax = max(k1,max/p1, k2,max/p2), ki,max being
the regular S-ALOHA saturation point for ni available pream-
bles. Using (3) for example 1, Fig.6 compares the average
relative errors (defined as E[|k−k̂k |]) for load estimations for
k1, k2, k for PB and kS−ALOHA for S-ALOHA for traffic
loads between 1 and 1000 users. As we can see, S-ALOHA
maintains an average relative load estimation error below 10%
until it becomes saturated and the error steadily converges to
100% since its saturation point is at 235 users. PB on the
other hand has a saturation point of 940 users and we observe
a much more contained relative error for every load between
1 and 1000 users.

C. Results and Discussion

Similarly to what was done in the previous section, having
estimated the number of users in each set using (3) we can
select the optimal Mi corresponding to each set. Indeed,
sparse sets will require lower Mi than dense sets. Thus, if
the combination of sets is able to accurately estimate the
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load, each set can theoretically achieve optimal throughput,
hence achieving optimal throughput for all N preambles.
Fig. 7 shows the performance of the PB scheme for the
two examples mentioned earlier in section II (see Fig. 5).
As we can see, both manage to perform remarkably well at
very high loads while still offering very good throughput at
low loads as well. We can clearly see the peak performance
points for example 1 and example 2 at their saturation point
(kmax = 940 and kmax = 340 users respectively) and
how example 2 starts to lose performance as it goes past its
saturation point. Comparing S-ALOHA with examples 1 and
2 from the preamble phase (see Fig. 5) and the connection
phase (see Fig. 7) shows that a higher maximum throughput
at the preamble phase results in a higher throughput at low
loads (k < N ) at the connection phase and that a flatter curve
at the preamble phase results in a higher saturation point at the
connection phase. Indeed, at low loads, both sparse sets and
dense sets will use Mi = 1. The M-RAR PB is then equivalent
to a standard PB, which as we saw in Section II cannot
achieve 37% like S-ALOHA. At higher loads however, a PB
solution will not be saturated and will still be able to provide
an accurate load estimation. By tuning the PB parameters to
choose a saturation point, the proposed scheme can effectively
adapt to any traffic type. Moreover, it is robust to sudden traffic
changes and does not require constant or fast update. Indeed,
the saturation point will only depend on the maximum number
of simultaneous users that the BS has experienced in a given
burst and should not change quickly in time.

To compare this scheme with adaptive schemes such as
dynamic barring schemes, we need to consider a system with
varying load where the BS tries to predict the incoming
load. Our scheme has access to as much information as
these schemes, although the overall load estimation can be
slightly less accurate for low loads (see Fig. 6). However, by
instantaneously allocating as many RA resources as necessary,
PB can prevent any congestion and quickly and efficiently
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serve users without having to use more PRACH resources.
Short intense traffic bursts, such as those studied in this
paper, can be served in a number of RA slots that grows
logarithmically with the number of users (10 steps for 1000
users) because 35-37% of users will be served at each step.
On the other hand, longer less intense bursts such as those
described in [4], [7] will be instantly resolved without needing
to spread users over time, provided that there are sufficient
uplink data resources.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we challenged the common practice that relies
on predicting the load to optimize the RA preamble phase and
instead use this phase to provide information regarding the
load before sending an appropriate number of RARs at step 2.
In section II, we introduced a markovian state transition model
that allowed us to derive the exact success probability in a S-
ALOHA system. With this, we could estimate accurately the
system throughput and determined the optimal Multiple RAR
parameter M . In Section III, we enhanced the Multiple RAR
technique by proposing a novel probabilistic Random Access
scheme, namely preamble barring, which allows instantaneous
traffic load estimation under a wide range of traffic conditions.

We showed that the proposed scheme can instantaneously
use near optimal resources for an unexpected burst of 1000
users with only 54 preambles, while also having a near
optimal throughput at low loads. In state-of-the-art solutions,
this extreme scenario would result in an immediate traffic
congestion that would take time resolve and result in lesser
throughput and greatly increased uplink access delay. Since
the BS already sends individualized RARs for each received
preamble and this scheme does not require any parameter
update, the implementation costs are minimal and we believe
that this is a promising solution to avoid congestion and access
delay for fast random access in massive MTC.



Future work should investigate the use of more than two
preamble sets and the optimization of the PB parameters in a
dynamic environment with a given traffic pattern. In addition,
we assumed in this paper that all users were using the same
PB parameters, investigating different access probabilities for
different classes of users in future work would help tackle the
problem of the coexistence of H2H and MTC traffics.
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