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Abstract—We showcase the practicability of an indoor posi-
tioning system (IPS) solely based on Neural Networks (NNs) and
the channel state information (CSI) of a (Massive) multiple-input
multiple-output (MIMO) communication system, i.e., only build
on the basis of data that is already existent in today’s systems. As
such our IPS system promises both, a good accuracy without the
need of any additional protocol/signaling overhead for the user
localization task. In particular, we propose a tailored NN struc-
ture with an additional phase branch as feature extractor and
(compared to previous results) a significantly reduced amount of
trainable parameters, leading to a minimization of the amount
of required training data. We provide actual measurements for
indoor scenarios with up to 64 antennas covering a large area of
80m2. In the second part, several robustness investigations for
real-measurements are conducted, i.e., once trained, we analyze
the recall accuracy over a time-period of several days. Further,
we analyze the impact of pedestrians walking in-between the
measurements and show that finetuning and pre-training of the
NN helps to mitigate effects of hardware drifts and alterations in
the propagation environment over time. This reduces the amount
of required training samples at equal precision and, thereby,
decreases the effort of the costly training data acquisition.

I. INTRODUCTION

Mobile communication devices such as smartwatches and
smartphones have become companions of everyday’s life,
resulting in a rich variety of new possible use-cases and
applications in almost any area of modern life. While constant
connectivity and endless computational resources have become
omnipresent, the seemingly simple problem of estimating
one’s position inside buildings has not yet been finally resolved
[1]. Therefore, a need for indoor positioning systems (IPSs)
is created, as IPSs can be seen as a key enabler for a wide
range of applications such as indoor navigation, smart facto-
ries, or could even provide a basic security functionality in
distributed internet of things (IoT) sensor networks. Contrary
to the outdoor scenario where global positioning system (GPS)
provides a single universal solution for almost any possible
location (assuming Line-of-Sight (LoS) to the satellite), IPSs
are characterized by a heterogeneous problem formulation and,
thus, also many different solutions have been proposed in
the literature. Moreover, also for the outdoor scenario, such
a positioning system can be of practical interest as it may
enhance precoding of Massive multiple-input multiple-output
(MIMO) systems through predicting the users’ movements
directly in the base station (BS). While the LoS scenario is
well-understood and multiple technologies are reported in the
literature [2]–[4] (e.g., angle- and time-of-arrival based predic-

tions and triangulation methods) suitable solutions for more
general channels (e.g., the much more complex Non-Line-of-
Sight (NLoS) scenario) with all its practical impairments are
still open for research. Note that in the following we only
focus on radio frequency (RF)-based technologies as it can be
embedded into current systems without the need of additional
sensors.

Obviously, there exists a trade-off between achievable accu-
racy and required overhead in terms of spectrum and computa-
tional complexity. In this work, we focus on rather inaccurate
(targeting sub-m precision) but low-overhead systems based
on channel state information (CSI) that can be implemented
on top of existing communication standards. This seems to be
sufficient for many applications such as indoor navigation in
public buildings or movement prediction of the user equipment
(UE) within a BS. Thus, different approaches have been
proposed (compare to [5]–[7]) and investigated in the past,
each optimized for different applications and system models.
Overall, these approaches can be split into two categories,
where obviously mixtures between both categories exist:

1) Model-based: define how the channel is expected to
behave and estimate the position accordingly (e.g. ray-
tracing)

2) Data-driven: collect a database with appropriate features
(often called fingerprints) and corresponding positions
(e.g., CSI [8], [9], received signal strength indicator
(RSSI) [10], [11] and recently time-reversal IPS (TRIPS)
[12]), i.e., somehow interpolate in-between.

It was proposed to combine IPS with Massive MIMO [13]–
[17], as it uses an over-provisioning of antennas to separate
users in space and thereby creates an NAnt antenna times Nsub
subcarrier fingerprint per spatial position as a side product.
Thus, Massive MIMO appears to be an attractive candidate
for enabling robust IPSs.

Although there exists an underlying channel transfer func-
tion which describes the behavior of the channel for any given
position, this function is typically not known or can only be
approximated, as it is infeasible to fully capture the geometries
of the environment and its surrounding area. This results in
the emerging of classical machine learning techniques [18]
to exploit the typical channel behavior for predicting a user’s
spatial position. Moreover, it was proposed in [15], [16], [19]
to neglect any pre-processing which extracts channel features
based on expert-knowledge, and rather directly work with raw
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CSI. The intuition behind is that an Neural Network (NN)
should be able to approximate such functions, without the need
of any a priori knowledge other than the observed measured
data. This ease in modeling and flexibility in application comes
at the cost of acquiring a (typically) larger quantity of channel
estimates.

It was shown in [16] that the data-driven approach can, in
principle, achieve sub-cm precision, but entails an overhead
of sampling large datasets per environment, and it is unclear
how many samples are required to achieve a target precision.
Therefore, we investigate the influence of the amount of data
samples on the prediction accuracy for standard LoS and NLoS
indoor channels. To improve these state-of-the-art systems,
tracking over recurrent neural network (RNN) was proposed
in [20], [21], resulting in a more robust system. Although
Massive MIMO in combination with IPS was extensively stud-
ied in [13]–[17], the influence of the number of antennas and
different practical implementation challenges (e.g., hardware
impairments and time varying drifts) influencing the precision
and robustness of the system have yet to be studied in detail.

In addition, measurements tend to be captured over a short
period of time and, thereby, often there is a lack of verifiable
reproducibility of results over a longer period of time. Thus,
we also investigated time dynamic effects by conducting a
measurement campaign over several week days. For this, we
train an NN based on data captured at a specific day of the
week, e.g. Monday, and then predicted positions based on data
from another day, showing a slight performance degradation.
To counter this degradation, we show that finetuning and pre-
training help to mitigate those time drifting effects and also to
reduce the amount of data points needed for training. Finally,
we also address another major practical burden, namely the
fact that most of the time a static environment is investi-
gated without considering any time-dependent disturbances
in-between BS and UE, e.g., caused by pedestrians walking
around as obstacles.

II. BACKGROUND

It is widely accepted that Massive MIMO unleashes its full
potential only in combination with time division duplexing
(TDD) as the piloting overhead is independent of the number
of BS antennas NAnt [22]. For simplicity, we assume that a
UE is only equipped with a single antenna, but extensions are
straightforward. Further, we use orthogonal frequency division
multiplex (OFDM), i.e., Nsub subcarriers exist.

For standard communication in TDD Massive MIMO the
UEs transmit orthogonal pilots to the BS and the BS uses
these pilots to estimate the channel at antenna m ĥm,k ∈
CNAnt×Nsub per subcarrier k as shown in Fig. 1. This estimate
of the channel (CSI) is then used to orthogonalize the users in
space. In the following, we reuse this CSI to create a robust
fingerprint for each spatial position x, y, z of the UE.

To compare the prediction performance we use two different
metrics:

Base Station

UserNN

h1,k
h2,k

hNAnt−1,k

hNAnt,k

UL CSI

User Position

...

Fig. 1: System schematic for predicting a user’s position with
an NN based on UL CSI.

1) The mean distance error (MDE)

MDE =
1

Ntest

Ntest∑
n=1

‖dn − d̂n‖2 (1)

is used for simulated data, where the average distance
error (DE) is calculated over the whole test size Ntest.

2) Since this metric punishes outliers, we use the mean
distance accuracy (MDA) for measured data (compare
[19]). MDA is defined as the DE that 50% of the users
are achieving at least, which thereby removes the influ-
ence of heavy outliers that often occur in measurements.

A. Simulated Channels
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Fig. 2: Simulation setup for the 3GPP channel model.

To show the viability of the proposed NN, we begin with
an investigation on simulated standardized channel models for
LoS and NLoS indoor scenarios. For this, we use the Quadriga
Framework [23]. Fig. 2 illustrates the simulation setup, where
a BS with the antenna geometry of an 8 × 8 patch array is
placed in the origin of the coordinates and an area of 100m2

is simulated. The sampling resolution is 10 cm < λ/2 in
both x and y direction. Further, an OFDM channel estimation
with 1024 subcarriers and a bandwidth of 20MHz around the
carrier frequency of 1.25GHz is used. These parameters are
chosen to equal those of the actual measurement campaigns
as presented in the later sections.

B. Measured Channels

We provide a short introduction to the actual measurements
that were conducted at our institute, as can be seen in
Fig. 3. For the exact measurement procedure which inherently
provides ground truth (i.e., 3D position labels) at centimeter
precision, we refer the interested reader to [24].
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Fig. 3: Indoor measurement positions.

The transmitter (UE) consists of an amplified universal
software radio peripheral (USRP) with a dipole antenna which
transmits OFDM pilot symbols with 1024 subcarriers and a
bandwidth of 20MHz at 1.25GHz. For subcarrier modulation,
a simple binary phase shift keying (BPSK) constellation was
chosen. Note that 10% of the subcarriers are used as guard
band and the cyclic prefix was 1/8 of the OFDM symbol
duration. To be able to reuse the same NN structure for
simulated and measured samples, the missing guard band
subcarriers in measured samples were replaced by zeros to
maintain the NN’s input size of 1024 subcarriers.

TABLE I: Description of datasets.

Dataset # Samples Covered Area
Indoor Simulations 10000 10m × 10m=100m2

LoS Weekdays Measurements 6000 40m × 2m=80m2

Disturbed Indoor Measurement 5800 40m × 2m=80m2

NLoS Indoor Measurement 2700 2m × 18m=36m2

Tab. I gives an overview of the used datasets and their
corresponding coverage areas, where the area dimensions
match those in [19]. In the “LoS Weekdays Measurements”
each day was measured with the same meander-like path
structure, resulting in a sample distance of around 1 cm. For
the “Disturbed Indoor Measurement”, two colleagues were
shadowing the antenna array by randomly walking in-between
BS and UE.

III. PROPOSED NEURAL NETWORK ARCHITECTURE

Fig. 4 depicts the layout of the proposed NN. As we treat
complex values as two independent real numbers, the input of
the NN has the shape

Nbatch ×Nsub ×NAnt × 2.

where Nsub is the number of subcarriers, NAnt is the number
of antennas, and the fourth dimension is composed of the real
and imaginary parts. A noise and a dropout layer is directly
added to this input to prevent the NN from overfitting and
to reinforce the NN not to rely on strong antennas only.
Afterward, the graph is split in two branches, a “Convolutional
Branch” and a “Phase Branch”. The “Convolutional Branch”
is built of 5 convolutional cells for evaluating the fingerprint
in the amplitude of the real and imaginary part. Therefore,
a 3-dimensional kernel of shape X × Y × 2 is used in
the first convolutional layer, to combine real and imaginary
parts, while subsequent layers use 2-dimensional kernels to
further convolve over the subcarrier and antenna dimensions.
The second branch, referred to as “Phase Branch”, further
improves the MDE (simulated data)/ MDA (measured data),

Input H ∈ RNbatch×Nsub×NAnt×2×1

AWGN

Dropout

Convolution Cell 1

Mean Pool 1

Convolution Cell 5

Max Pool 5

Flatten

Dense

Mean Phase Cal

Conv. Layer

Dense

Dense

Dense

Concatenate

Dense

Dense

Dense

Output x, y, z ∈ RNbatch×3
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B

ranch
(feature

extraction)

C
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B
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Fig. 4: Basic structure of the proposed NN.

by focusing on the phase difference between antennas, which
helps especially when measured data is used. Within this
branch we explicitly calculate the mean phase per antenna over
all subcarriers and then forward this refined information to the
NN. Inserting such expert knowledge operations drastically
reduces complexity that otherwise must be learned through
exhaustive training. This is similar to the idea of transformer
networks [25]. By doing so, the NN experiences a faster
convergence and a higher final prediction accuracy. Finally,
the two branches are concatenated and four fully connected
dense layers are used to combine both outputs to arrive at a
prediction of the user’s x−, y−, z-position.

During training, we use Ntrain samples (i.e., data v and
position labels w) and apply multiple stochastic gradient
descent iterations, where one iteration over the whole dataset
is denoted asepochs Nep. Thus, the same Ntrain samples are
considered Nep times, to find the best weights θ. We chose the
Huber-loss [26] as loss metric during training and the absolute
distance deviation to measure the accuracy. Intuitively, the
optimal training signal-to-noise-ratio (SNR) is a trade-off
between high noise power, i.e,. learning robustness to noisy
data and noiseless samples, i.e., learning the underlying (de-
terministic) channel transfer function [27]. To further prevent
overfitting, we used the previously mentioned dropout layer
where we reached best performance and accuracy with a
dropout rate of 10%. Additionally, the generalization effect
of the dropout layer comes along with an improved prediction
with respect to reproducibility in time for changing datasets,
as will be shown later. We start the training procedure with



mini-batch sizes of 16 samples. After retraining for multiple
epochs until an early stopping mechanism detects no further
improvements, we then continue training with a stepwise
increased batch size up to 512 samples per batch. To achieve
a higher final prediction accuracy, the learning rate is also
reduced stepwise from 0.001 to 0.00005 before advancing to
the next batch size.

TABLE II: Improvement by using a phase branch

Dataset without Phasebranch Rel. Impr.
3GPP LoS 0.1621m 0.0863m 46.1%

3GPP NLoS 0.1275m 0.1183m 7.2%
Monday Mes. 0.3467m 0.2460m 29.0%

Tab. II shows the gain of the proposed “Phase Branch” over
traditional fingerprinting approaches, resulting in an improve-
ment in measurements of 29% by only adding 22000 weights.
It can be seen that for the simulated data and measured data
the NN achieves (with a total of only 440.000 weights) the
same accuracy as in [19] for a similar area and propagation
environment (cf. Fig. in [19]).

A. Required Training Data

In a practical use-case, training data is valuable as each
sample has to be captured manually and also the ground
truth position is required. Therefore, we investigate how the
NN approach can deal with a larger grid resolution than the
original one (10 cm) with 10.000 samples. To make a fair
comparison we take every second/third/.. sample, in the mesh
grid, i.e., create a larger sample distance. Note that the sample
size is reduced quadratically (both dimensions x and y).
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M
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Fig. 5: Simulated: 3GPP LoS and NLoS outdoor MDE for
different sample distances.

Fig. 5 shows the MDE for the different sample distances. In
the LoS case the NN is able to resolve the positions even with a
low grid resolution. The NLoS is far more dependent on a finer
grid resolution, as it has less spatial correlation and inhibits
more random components than the LoS case. Therefore the
NN is less capable of interpolating in between the trained
samples. From this it can be seen, that in the LoS case the
NN learns a more robust representation of the LoS fingerprints
than in the NLoS case.

B. Influence of the Number of Antennas

In typical Massive MIMO scenarios the antenna gain and
the ability to separate users increases with the number of
antennas, therefore can be expected that by increasing the
number of antennas the fingerprint and the overall system is

more robust against different impairments. However, also the
training complexity increases.
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Fig. 6: Simulated: MDE for the 3GPP LoS indoor channel
models with different number of antennas, trained at a target
SNR = 20dB.

Fig. 6 illustrates the robustness of the proposed system for
different number of antennas in the LoS case (left) and in the
NLoS case (right). It can be seen that roughly a 3 dB gain
per doubling the antenna occurs. But even with a low number
of antennas the system still achieves reasonably good results
in the case of LoS. For the NLoS case, more antennas are
needed for achieving a robustness against measurement noise
(curves are shifted to the right) and more antennas are needed
to achieve similar accuracy as in the LoS case. This shows
that the number of antennas enhances the robustness in all
cases for IPS and that Massive MIMO is a good match for
this system.
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Fig. 7: Measured: MDA with different numbers of antennas
for measured NLoS, LoS and disturbed LoS datasets.

Fig. 7 depicts for the dependency of the MDA on the
different amount of antennas. It can be seen that here the
LoS case shows only a small improvement by using 64
antennas instead of 8. In contrast, the robustness of the whole
system for the NLoS and “Disturbed Indoor Measurement”
case can be significantly improved (over 50% performance
gain). Therefore, the same behavior as the simulated case is
exhibited. Although in simulations this system could be used
with a smaller number of antennas, the effect of hardware
impairments and disturbance through the movements/obstacles
in the measurement area is reduced by increasing the number



of antennas. As those measurements were conducted only
within a fixed time interval, an important question remains
regarding the overhead to achieve the same performance if
the environment changes (e.g. movement) and/or when the
hardware impairments become significant.

IV. ROBUSTNESS AND TIME REPRODUCIBILITY

At first we investigate the performance loss due to chang-
ing propagation environments as can be caused by moving
obstacles, such as pedestrians or cars. As the main focus
of this work is the indoor scenario, we consider “indoor
pedestrians” randomly walking through the measurement area.
It is important to realize that such obstacles do not only cause a
simple signal attenuation, but also may change the propagation
scenario from LoS characteristics to NLoS behavior or even
shadow several antennas.
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]
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Fig. 8: Measured: DE CDF for pure LoS and disturbed LoS
measurements on the same area.

Fig. 8 shows the DE cumulative distribution function (CDF)
of different investigations into time reproducibility. For the
perfect LoS case, the system achieves a quite reasonable
precision in the range of 23 cm on an 80m2 area. In contrast
to the static scenario, in the “Disturbed Indoor Measurement”
scenario the performance decreases to around 70 cm, which is
still sufficiently accurate for many practical applications.

A. Reproducibility Over Time

Another important property of a practical IPS is the repro-
ducibility over time, i.e., once trained it needs to provide a
stable accuracy over time. Fig. 9 shows the effect of retraining
the NN (that was initially trained on Monday) each day with
a different number of points. Although the hardware was
turned off and on between the measurement days and the
propagation environment may have slightly changed (e.g., due
to open doors and windows), it can be seen that even without
finetuning the system is still able to achieve a relatively good
accuracy of 55 cm when inferred on other days. This shows
the reproducibility over several time incoherent measurements.
To further improve the performance, we propose to measure
a small amount of “calibration” points and perform finetuning
only on these few points. It can be seen that with 125
samples per day, the loss can be significantly reduced and
an accuracy of 40 cm is reached. In conclusion, this shows
that the proposed NN-based user positioning system is robust
to obstacles and, once trained, remains stable over time.
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Fig. 9: Measured: Enhancing time reproducibility via finetun-
ing with different amounts of samples.
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Fig. 10: Measured: Achieved MDA on Monday dataset for
different initialization methods and sample distances.

B. Pre-training with Simulated Data

We now aim at lowering the amount of required training
data and investigate the effects of pre-training. In particular,
we compare three different methods:

1) Random initialization of weigths (e.g. Xavier initaliza-
tion [28]).

2) Pre-training based on the simulated 3GPP model.
3) Pre-training based on a subset of subcarriers, resulting

in data augmentation
The intuition behind using only a subset of subcarriers for
the initial training is the same as in [29] (data augmentation),
where a cropped or rotated image is used to virtually extend
the training dataset with similar data in just another presen-
tation. This approach also resembles dropout and results in
requiring less samples for achieving an even better overall
performance [29]. Fig. 10 shows the MDA of the pre-trained
model trained on a new propagation environment for different
numbers of sample sizes. As expected, the MDA decreases
with increasing sample size for all investigated methods.
However, even at a high number of samples, there is still
a gain of about 10 cm for the proposed methods over a
randomly initialized NN. We want to emphasize that all data
samples obtained by the simulated model or through data
augmentation can be considered as free of cost, in contrary
to actual measurement data. The NN is able to learn the new
scenario with fewer training samples in these pre-trained cases,
as the NN can refine its weights according to the propagation



environment.

V. CONCLUSIONS AND OUTLOOK

We have shown the practical viability of IPS based on
CSI of a Massive MIMO systems even in measured NLoS
scenarios with complex propagation environments where most
existing solutions would fail. Therefore, a novel NN structure
has been proposed based on the idea of an additional feature
extraction branch (phase branch), which turned out to improve
the performance by a great margin. We showed the robustness
of the system for both, moving obstacles in the measurement
area as well as in terms of reproducibility over time, i.e., we
showcased that, once trained, the system maintains reasonable
accuracy over many days. Further, we proposed finetuning and
pre-training of the NN to mitigate the effects of varying hard-
ware impairments and changes in the propagation environment
which turns out to reduce the number of data points needed for
training, resulting in a reduction of the high cost of capturing
precise training points.
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