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Abstract—Massive machine-type communication (MTC) with
sporadically transmitted small packets and low data rate requires
new designs on the PHY and MAC layer with light transmission
overhead. Compressive sensing based multiuser detection (CS-
MUD) is designed to detect active users through random access
with low overhead by exploiting sparsity, i.e., the nature of
sporadic transmissions in MTC. However, the high computational
complexity of conventional sparse reconstruction algorithms
prohibits the implementation of CS-MUD in real communication
systems. To overcome this drawback, in this paper, we propose
a fast Deep learning based approach for CS-MUD in massive
MTC systems. In particular, a novel block restrictive activation
nonlinear unit, is proposed to capture the block sparse structure
in wide-band wireless communication systems (or multi-antenna
systems). Our simulation results show that the proposed approach
outperforms various existing algorithms for CS-MUD and allows
for ten-fold decrease of the computing time.

Index Terms—Massive machine-type communication, random
access, deep learning.

I. INTRODUCTION

RECENT years observe a growing interest in massive

machine-type communication (MTC) owing to the rapid

development of Internet of Things and 5G [1]. In a typical

MTC communication scene, a massive number of nodes spo-

radically transmit small packets with a low data rate, which

is quite different to current cellular systems that are designed

to support high data rates and reliable connections of a small

number of users per cell. Communication overhead takes up a

larger portion of resources in the MTC scene, and thus more

efficient access methods are needed. One potential approach

to reduce the communication overhead is to avoid or reduce

control signaling overhead regarding the activity of devices

before transmission.

An important issue in massive MTC is access congestion

owing to the large number of MTC devices. In [2], four

approaches, i.e., backoff-based scheme, access class barring

based scheme, separating random access channel (RACH)

resources and dyanamic allocation of RACH resources, are

introduced to deal with access congestion. However, those

approaches does not effectively reduce signaling overhead. In

massive MTC with sporadic communication, a compressive

sensing (CS) based multiuser detection (MUD) [3], [4] is

proposed to joint detect user activity and data with a known

channel state information (CSI), which reduces communica-

tion overhead by eliminating control signaling. In practical

systems where CSI is unknown, a CS based joint activity and
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channel detection method is proposed in [5], where each node

is assigned a unique pilot sequence for channel estimation.

The cost brought by the CS-MUD approach is the effort in

solving a sparse estimation problem, which requires iterative

algorithms, e.g., orthogonal matching pursuit (OMP) [6]. How-

ever, these iterative algorithms are designed and optimized for

achieving a higher accuracy and/or theoretically guaranteed

convergence and fail to consider time constraints. Apply-

ing iterative steps in traditional sparse estimation algorithms

until achieving convergence would increases communication

latency (especially when the number of nodes is large), which

is critical in some applications. It then naturally begs the

question: can we reduce the signaling overhead for MTC

without significantly sacrifice on the latency.

In this paper, we propose a fast Deep Learning (DL) based

approach for MUD in massive MTC systems. As one of the

most highly sought-after skills in technology, DL [7] has

been applied to various fields including computer vision [8],

speech recognition [9], and language translation [10] and got

great success. As a branch of machine learning, DL, which

usually refers to deep neural networks (DNNs), consumes a

large amount of training data to learn parameters in a neural

network. When the neural network has a sufficient number of

hidden units, it can approximate a large class of piecewise

smooth functions [11]. Although the training process of the

proposed DL based approach is time consuming, it can be

conducted off-line with synthetically generated data. For the

inference task, i.e., MUD, the computing complexity of the

trained DNN is low, as it only involves a number of vector-

matrix multiplications/summations and element-wise nonlinear

operations.

In addition, for wide-band wireless communication systems

or multi-antenna systems, the transmitted signal arrives at

the receiver with multiple paths or multiple links, which

leads to a block sparse CSI vector. Capitalizing on the block

sparse structure, we further propose a novel block restrictive

activation nonlinear unit, which is distinct to existing activation

functions in DNNs [12], [13]. Experiments demonstrate the

efficiency and effectiveness of the proposed block-restrict

neural network (BRNN) in compared with existing methods.

II. BACKGROUND

A. System Description

In this paper, we consider a massive MTC scenario where

multiple devices communicate with a base station (BS), as

shown in Fig. 1. Without loss of generality, only n devices

out of K devices have data to be transmitted to the BS in one

frame. For simplicity, we assume that all frames are received
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Fig. 1. A star-topology for the massive MTC scenario.

synchronous at the BS. Each user is assigned a unique pilot

sequence sk (k = 1, . . . ,K) with the length Ns for channel

estimation. Each symbol of the pilot sequence is chosen from

the modulation alphabet A. The channel vector hk of user k

is denoted by hk ∈ C
L, where C denotes the set of complex

numbers. The convolution of the channel vector and the pilot

sequence sk can be expressed as the matrix multiplication

by rewriting the convolution matrix of the transmitted pilot

sequence of user k as

Ŝk =


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N ,

where N = (Ns+L− 1)×L. Then the signal received at the

BS is given by

y =
K
∑

k=1

akŜkhk + n, (1)

where n denotes additive white Gaussian noise, and ak ∈
{0, 1} denotes the activity of user k. ak = 1 and ak = 0
indicate active user and silent user, respectively.

Now we construct the pilot matrix of all user as Ŝ =
[Ŝ1, . . . , ŜK ] ∈ C(Ns+L−1)×KL, the channel vector of all user

as h = [hT
1 , . . . ,h

T
K ]T ∈ CKL, and the user activity matrix as

A = diag(a1I, . . . , aKI) ∈ R
KL×KL, where diag(·) denotes

the transformation of a vector into a diagonal matrix. Then

the equation (1) can be reexpressed as

y = ŜAh+ n = Ŝx+ n, (2)

where x = Ah is a block sparse vector with n nonzero blocks

corresponding to active users. By reconstructing x from y, we

simultaneously detect active users and estimate their channel.

Therefore, the problem boils down to solve the following

optimization problem

min
x

∥

∥

∥
y − Ŝx

∥

∥

∥

2

2
, s.t. ‖x‖0 ≤ nL, (3)

where ‖ · ‖0 denotes the ℓ0 norm that counts the number

of nonzero elements. Note that the optimization problem in

(3) is NP-hard, and popular approximations with varying

degrees of computational overhead include convex relaxation

methods [14] and iterative algorithms [15].

B. Deep Neural Network

From the perspective of DL, the process that solves the

optimization problem in (3) could be seen as a black box,

which is expressed as a function

g(y, Ŝ, θ) = arg min
‖x‖

0
≤nL

∥

∥

∥
y − Ŝx

∥

∥

∥

2

2
, (4)

where θ denotes a set of parameters. Given a set of training

examples D = {x(i),y(i)}i, a DNN is learned to map each

input y(i) to a desired outcome by several successive layers

of linear transformation interleaved with element-wise non-

linear transforms. For an ordinary feedforward neural network

(FNN), the tth layer can be expressed as

xt+1 = f(Wtxt + bt), (5)

where the weight matrix Wt and the bias vector bt are

parameters to be learned, and f(·) denotes some non-linear

operator, e.g., rectilinear units (RELU).

Various DNN designs for the sparsity enforcing problem

as (3) have been proposed in literature. For example, in

comparison to the ordinary FNN layers as defined in (5), a

learned iterative shrinkage and thresholding algorithm (LISTA)

is proposed in [16], where different layers share same pa-

rameters, i.e., W and b. Furthermore, the nonlinear unit f [·]
adopted in LISTA is the element-wise soft-thresholding func-

tion f [x] = sign(x)max{0, |x|− δ}, where δ is the shrinkage

parameter. An IHT-net is proposed in [12], which is the same

as LISTA except for using a hard thresholding function f [x] =
sign{x}max{0, |x|} as the nonlinear unit. While both LISTA

and IHT-net use shared weights among layers, authors in [13]

propose to use ordinary FNN where layers do not have shared

weights, and incorporate batch normalization [17] and residual

connection [8] to reasonably initialize the neural network and

to prevent vanishing/exploding gradients, respectively.

III. PROPOSED APPROACH

A. Network Structure

The most straightforward DNN design for tackling a regres-

sion problem as in (3) is to map the received signal y to some

outcome x. In view of the fact that a sparse x can be obtained

by the least square estimator given its support, it is would

be more capacity-efficient to use a DNN to approximate the

mapping from y to the support of x. Therefore, we consider

to use DNN for detecting active users, which leads to a multi-

label classification problem.

Furthermore, in wideband wireless communication systems,

x becomes a block sparse vector1 with the block size L. It

would be beneficial to incorporate this prior information into

the structure of the designed DNN. Here, we propose to use

a new block activation unit

f(x1, . . . , xL) = sign(max{0, x1, . . . , xL}) · [x1, . . . , xL],
(6)

1For narrowband systems (L = 1) with multiple antennas at the BS, x is
also a block sparse vector, where the block length is the number of antennas.
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Fig. 2. The structure of the proposed BRNN.

where a block of elements are jointly activated if one element

is greater than zero. Here sign(·) denotes the sign function.

Batch normalization is added for reasonable initialization and

residual connection is used to prevent vanishing/exploding

gradients. Furthermore, we adopt a pooling layer before the

last softmax layer to force the output of the network to indicate

the active users. RELU is employed in the first a few layers,

while the block activation unit is used in the remaining layers.

The last layer of BRNN employs the softmax cross entropy

loss function. This proposed network is named as BRNN, and

its structure is illustrated in Fig. 2.

B. Training Data Generation

A common issue in applying DL to wireless communication

is the difficulty of collecting massive real data. Fortunately, for

solving the optimization problem in (3) by a DNN, we could

use synthetically generated data for training. In specific, to

obtain each training data, we first generate a random noise

vector n and a random block sparse vector x whose support

is used as the label, and then generate y by simply applying

(1). Massive training data can be generated in this way, and

the training process can be done in an off-line manner. Once

parameters of BRNN is learned, using this neural network

for inference, i.e., detecting active users in new dataset,

is computational inexpensive, as it only involves a number

of vector-matrix multiplications/summations and element-wise

nonlinear operations.

We would also like to emphasize that the required amount of

training data depends on the number of nodes and the number

of active nodes. With K nodes in total, there are
(

K

n

)

different

labels for n active nodes. This number increases quickly with

the grow of n. Therefore, instead of generating the training

data with a random active user number, we fix the number of

active node close to the limit of traditional iterative algorithms

for solving (3).

IV. EXPERIMENTS

In this section, we investigate the performance of the

proposed BRNN for MUD in MTC. In the experiments,

we consider K = 100 users in total, and the active users

transmit Ns pilot symbols with binary phase shift keying

(BPSK) modulation. The channel is modeled by L = 6
independent identically Rayleigh distributed taps. The receiver

noise n is generated by a zero mean Gaussian vector with

variance adjusted to have a desired value of the signal to

noise ratio (SNR). As K > Ns+L−1
L

, the MUD problem is

underdetermined.

The proposed BRNN is compared with several iterative

sparse estimation algorithms, including orthogonal matching

pursuit (OMP) [6], iterative hard thresholding (IHT) [15] and

their extensions for block structure, i.e., BOMP [18] and

BIHT [19]. The DNN proposed in [13] is also compared

to emphasize the gain brought by BRNN. The detection of

multiuser is considered to be successful if error occurs.

In our experiments, we generate 8 × 106 different samples

for training, 105 samples for verification and 105 samples for

testing. For all the generated data samples, we add additive

white Gaussian noise with a signal-to-noise ratio (SNR) of 10

dB. In the training data and verification data, we randomly

activate 6 nodes, while in the test data, n ≤ 6 active users are

randomly selected. The optimizer adopted for training neural

networks is stochastic gradient descent with a momentum 0.9

and a learning rate 0.01. The batch size is fixed to 250.

A. Convergence Performance and Computation Efficiency

We first investigate the convergence performance of DNN

and the proposed BRNN in the training process. The pilot

length of each user is fixed as Ns = 40. We use the same

initialization for DNN and BRNN as suggested in [20] and

train the two neural networks with the same learning rate.

The cross-entropy loss in the training process is calculated for

every 100 batches, and the results are shown in Fig. 3(a). In

addition to the cross-entropy loss, Fig. 3(b) shows the ratio of

successfully detected users in the training process. As shown

in Fig. 3, benefited from the block activation unit (6), BRNN

converges much faster and achieves a lower training loss than

DNN, which fails to incorporate the prior knowledge on the

structure of the signal support.

Then we investigate the computation efficiency of inference

using testing data. The averaged computing time for testing

one data sample is given in Table I. Note that although we use

GPU to speed up the training process for BRNN and DNN, for

a fair comparison of computational complexity we use CPU

for the testing data for all the compared approaches including

OMP, BOMP, IHT, BIHT, DNN and BRNN. These simulations

are performed on a computer with a quad-core 4.2GHz CPU
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Fig. 3. The convergence performance of DNN and BRNN.

TABLE I
AVERAGED COMPUTING TIME FOR MULTIUSER DETECTION (IN SECONDS).

(Ns, n) DNN/BRNN IHT BIHT OMP BOMP

(30, 3) 2.57× 10−4 0.162 0.173 0.007 0.007
(30, 6) 2.57× 10−4 0.009 0.163 0.007 0.009
(40, 3) 2.56× 10−4 0.183 0.159 0.009 0.006
(40, 6) 2.56× 10−4 0.021 0.177 0.010 0.010
(50, 3) 2.58× 10−4 0.193 0.141 0.011 0.006
(50, 6) 2.58× 10−4 0.085 0.183 0.0136 0.012
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Fig. 4. Performance of active users detection.

and 16 GB RAM, running under the Microsoft Windows 10

operating system. As shown in Table I, for various settings

of pilot length and user activation probability, deep learning

approaches, i.e., DNN and BRNN, allow for more than 10-fold

decrease of the computing time. This significant improvement

regarding to the computing complexity is owing to the fact that

DNN and BRNN use a fixed number of matrix productions and

nonlinear thresholding, while both OMP and BOMP involve

computational complex matrix inverse operation, and both IHT

and BIHT require a relatively large number of iterations to

converge.

B. Active User Detection Accuracy

In this experiment we study how the proposed approach

performs with different numbers of active user and different

lengths of pilot. In Fig. 4(a), the pilot length of each user is

fixed as Ns = 40. It is observed that the proposed BRNN

achieves the highest active user detection success rate among

the compared methods including OMP, BOMP, IHT, BIHT

and DNN. Fig. 4(b) shows the active user detection success

rate with different pilot lengths, where the number of active

users is set to be 4. It is also observed that BRNN outperforms

other approaches in most of the cases. Here, we would like

to emphasize that there are various way to further improve
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Fig. 5. Performance of channel estimate.

performance of BRNN and DNN, e.g., using a larger size of

training data and/or increasing the number of layers in the

neural network, while the performance of OMP, BOMP, IHT

and BIHT would not improve with more iterations.

C. Channel Estimation Accuracy

In this experiment we show how does the proposed approach

affect the channel estimation performance under different

numbers of active user and different lengths of pilot. The

channel is estimated by minimum mean square error estimator

with the result of active user detect. In Fig. 5(a), the pilot

length of each user is fixed as Ns = 40. It is observed

that the proposed BRNN achieves the smallest mean square

error (MSE) among the compared methods including OMP,

BOMP, IHT, BIHT and DNN. Fig. 5(b) shows the MSE

of channel estimation with different pilot lengths, where the

number of active users is set to be 4. It is observed that BRNN

outperforms all the other approaches.

V. CONCLUSION

In this paper, we propose a novel deep neural network,

called BRNN, for multiuser detection in massive MTC com-

munication with with sporadically transmitted small packets

and a low data rate. A new block activation layer is proposed

in BRNN to capture the block sparse structure in the multiuser

detection problem. In comparison with existing approaches,

significant reduction of computing time and improvement of

multiuser detection accuracy are achieved by the proposed

approach.
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