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Abstract—Multi-Mobile Network Operator (MNO) network-
ing is a promising method to exploit the joint force of multiple
available cellular data connections within vehicular networks.
By applying anticipatory communication principles, data trans-
missions can dynamically utilize the mobile network with the
highest estimated network performance in order to achieve
improvements in data rate, resource efficiency, and reliability.

In this paper, we present the results of a comprehensive
real-world measurement campaign in public cellular networks
in different scenarios and analyze the performance of online
data rate prediction based on multiple machine learning models
and data aggregation strategies. It is shown that multi-MNO
approaches are able to achieve significant benefits for all con-
sidered network quality and end-to-end indicators even in the
presence of a single dominant MNO. However, the analysis points
out that anticipatory multi-MNO communication requires the
consideration of MNO-specific machine learning models since
the impact of the different features is highly depending on the
configuration of the network infrastructure.

I. INTRODUCTION

Anticipatory communication [1] has been proposed as a
method to face the various challenges of next-generation net-
works, which are related to higher requirements (e.g., latency
and data rate as enablers for autonomous driving) as well as
massive increases in the overall data usage [2]. This novel
communication paradigm aims to optimize decision processes
within communication networks by proactively integrating
context information such as mobility predictions and network
quality parameters. Applications range from opportunistic sen-
sor data transfer for optimizing the coexistence of different cell
users [3] to reliable and mobility-aware multi-hop routing [4].
Since anticipatory communications is a data-driven approach,
it relies on knowledge and prediction models. In recent work
[5], [6], we have demonstrated the potentials of using machine
learning-based data rate prediction and multi-layer connectiv-
ity maps for improving the resource-efficiency of vehicular
sensor data transmissions. Furthermore, we have shown that
the prediction models can be exploited for analyzing novel
communication methods in close to reality scenarios [7]. In
this paper, we provide an empirical analysis of the potentials
of using data rate prediction within multi-connectivity cellular
vehicular networks. The real world evaluation is carried out in
the public cellular networks of the three MNOs in Germany
and paves the way for future development of context-aware
multi-connectivity optimizations. It furthermore shows how
upcoming 5G-based vehicular communication systems can
exploit multi-connectivity for compensating coverage gaps.

Fig. 1 shows an example trace of the Long Term Evolution
(LTE) Reference Signal Received Power (RSRP) for three
different MNOs during a drive test in a suburban environment.
It can be seen that although not all carriers are able to

guarantee seamless connectivity for the whole experiment
duration, a multi-carrier approach is able to do so. The
contributions provided by this paper are as follows:

• Comprehensive real world performance evaluation of
vehicular multi-MNO communication in the public
cellular LTE networks of German MNOs.

• Statistical analysis of the potential benefits by combin-
ing networks of multiple MNOs and data management
techniques using multi-MNO Connectivity Maps (CMs)

• Performance evaluation of client-based online data rate
prediction with different data aggregation methods and
machine learning models.

• For achieving a high grade of transparency and repro-
ducibility, all raw results of the measurements and the
measurement application itself are provided in an Open
Access way.

The remainder of the paper is structured as follows. After
discussing relevant approaches for machine learning-based
data rate prediction and evaluations of multi-connectivity
approaches in Sec. II, we present the methodological model
for the empirical performance evaluation in Sec. III. The
result analysis is divided into two parts. At first, the statistical
properties of the network quality indicators, potential benefits
of using multi-MNO connectivity as well as methods for main-
taining multi-MNO data are discussed in Sec. IV. Afterwards,
machine learning-based data rate prediction is discussed in
Sec. V. The analysis includes the application of different
prediction models in uplink and downlink direction as well
as data aggregation and feature importance evaluations.

II. RELATED WORK

Since anticipatory communication highly relies on predict-
ing unobserved values from measurable information, it is
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Fig. 1. Example RSRP trace for three different network carriers in suburban
environment. Although individual networks fail to provide connectivity at
certain locations, the combined approach is able to provide full coverage.
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closely related to machine learning [8]. A comprehensive
overview about different machine learning models and their
application fields in wireless communication networks is pro-
vided by [9].

Within vehicular networks, the performance of end-to-end
indicators such as throughput and latency is highly impacted
by the encountered network quality [10], [11]. Therefore,
many research works investigate passive data rate prediction
based on measured network quality indicators, e.g. for in-
terface selection [12]. A survey about different bandwidth
estimation techniques is provided by [13].

The authors of [14] evaluate different machine learning
models (Artificial Neural Networks (ANNs), Linear Regres-
sion (LR) and Random Forests (RF)) for predicting the down-
link data rate on a large data set using signal quality mea-
surements only. They conclude that classical machine learning
methods yield excellent prediction results – with the RF model
achieving the lowest error probability – for providing the MNO
with additional information. However since no information
about the payload size about the transmitted packets is pro-
vided, it can be assumed that a fixed size was used for the
experiments. As other work has shown [3], [5], [6] the payload
size is an important feature that needs to be considered in
order to derive models, which generalize well on other data
sets. A simple linear regression approach based on OpenSignal
data is proposed in [15]. While the authors point out that
the RSRP seems to have the dominant effect on prediction
accuracy, they argue that a better compensation of multipath-
effects could be achieved by integrating additional indicators
(e.g., Reference Signal Received Quality (RSRQ), Signal-to-
interference-plus-noise Ratio (SINR)) into the prediction. The
authors of [16] present a real world measurement campaign for
cellular bandwidth estimation in vehicular environments for
two different MNOs. While the achieved prediction accuracy is
relatively low due to the focus on solely radio-related features,
it is shown that the observed behavior differs depending on the
MNO. Similar to the work discussed in [17], the RF model
achieves the best prediction accuracy. This fact is confirmed
by [18] Kousias et al., who point out that the relevance of
the individual features is highly depending on the MNO. Fur-

thermore, daytime-specific aspects are evaluated. In [19], the
authors analyze passive LTE data rate prediction as a metric
for interface selection within highly mobile networks. While
the considered ANN approach achieves the highest accuracy,
the authors present a LR-based approach as a lightweight
alternative for online application. However, the size of the
training set is low and the authors do not consider the packet
size within their prediction mechanism.

Although vehicles are able to measure the current channel
context and can apply methods to estimate their trajectories,
they are not able to directly measure the network quality
at future locations. Connectivity maps [20] provide a way
to map location data to network quality information. They
are often created using a crowdsensing approach and are
utilized as a priori information [21], allowing to make network
quality forecasts based on previous measurement in the same
geospatial area [5].

III. METHODOLOGY OF THE EMPIRICAL EVALUATION

In this section, the methodological aspects of the measure-
ment campaign are explained. For the empirical performance
evaluation, drive tests are performed in four scenarios with dif-
ferent velocity profiles and building densities: campus (3 km),
urban (3 km), suburban (9 km), highway (14 km), whereas
each track is evaluated ten times.

During the drive tests, three Android-based User Equip-
ments (UEs) (Samsung Galaxy S5 Neo, Model SM-G903F),
which use the cellular link of one of the considered MNOs,
are used to capture the network quality indicators and perform
the transmissions for data rate and Round Trip Time (RTT)
evaluations. Each 10 s, the measurement application1 performs
Transmission Control Protocol (TCP) transmissions in uplink
and downlink direction with variable payload sizes in the
range of 0.1 MB to 10 MB. The data transfer is performed in
the public cellular network and the throughput is calculated
on the server side. RTT is measured on the transport layer.
Transmissions are only performed if a valid LTE connection
is present. In total, 12938 transmissions (58.45 GB) are

1Measurement software available at https://github.com/BenSliwa/MTCApp
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Fig. 2. Urban scenario: Empirical Cumulative Distribution Functions (ECDFs) of different indicators for the considered MNOs.
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Fig. 3. Highway scenario: ECDFs of different indicators for the considered MNOs.
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Fig. 4. Excerpt of the connectivity maps of the highway track for all considered MNOs. The average SINR per cell is shown as an example network quality
indicator. The operator map visualizes the MNO with the highest SINR per cell.

performed on a total driven distance of 287 km. The raw real
world measurements, which consist of time series data for
trajectories and network quality indicators, can be accessed
via [22].

For performing the machine learning-related evaluation,
Waikato Environment for Knowledge Analysis (WEKA) [23]
and LIBSVM [24] are used.

IV. STATISTICAL ANALYSIS OF MULTI-MNO VEHICULAR
NETWORKING

In this section, the results and network quality characteris-
tics are analyzed from a statistical perspective. In addition,
potential benefits of using multi-MNO communication in
vehicular networks are discussed.

A. Statistical Properties
Due to spacial constraints, we focus on comparing two

example scenarios campus (see Fig. 2) and highway (see
Fig. 3). The figures show the ECDFs for data rates in uplink
and downlink direction, RTT and applied transmission power
PTX. While MNO A provides a similar network performance
in both scenarios, the results for MNO B and MNO C are
highly scenario-dependent and directly related to the LTE
coverage (cf. Tab. I). In the highway scenario, the overall
LTE coverage of MNO C is only 92 %. Therefore, multiple
handovers to 3G occured during active transmissions, which
is the reason for the high RTT and the low throughput of
MNO B. Note that RTT is measured on the transport layer and
is therefore impacted by the network quality and TCP-related
features such as retransmissions. Due to the low coverage,
the average distance to the serving evolved Node B (eNB) is
high. Therefore, the UE aims to compensate the path loss by
increasing the transmission power PTX, which is much higher
for MNO B than for the other considered MNOs. As discussed
in [25], PTX has a dominant impact on the overall power
consumption of the UE. In the highway scenario, it can be
expected that using MNO B leads to a significantly shorter
battery lifetime, which also fits our qualitative observations
during the measurements.

B. Multilayer Multi-MNO Connectivity Maps
The acquired data is utilized to create a multilayer multi-

MNO connectivity map. Each layer contains the measurements
of one specific Key Performance Indicator (KPI), which are
aggregated geospatially based on a defined cell size c. Fig. 4
shows an excerpt of the SINR layer of the CMs for the

different MNOs. The cell-wise determination of the best MNO
finally leads to the multi-MNO map.

A straightforward estimation of achievable benefits by us-
ing the derived multi-MNO CM for context-aware network
selection is provided by Tab. I, which shows the behavior of
the network quality metrics RSRP, RSRQ, SINR and Channel
Quality Indicator (CQI) as well as of multiple end-to-end
indicators. For each vehicle position within the real world
traces, the statistical approach selects the MNO with the best
network performance for the considered indicator.

TABLE I
NETWORK QUALITY INDICATORS AND ACTIVE MEASUREMENTS FOR

DIFFERENT INDIVIDUAL AND COMBINED MNOS.

MNO A MNO B MNO C Multi
Indicator Mean Best Mean Best Mean Best MNO
Coverage 1.0 - 0.96 - 0.91 - 1.0
RSRP [dBm] -87.6 0.525 -97.1 0.19 -91.4 0.285 -82.6
RSRQ [dB] -7.5 0.684 -9.85 0.2 -10.7 0.116 -6.69
SINR [dB] 14 0.556 7.23 0.229 7.43 0.216 18.2
CQI 10.1 0.491 9.25 0.317 8.32 0.191 12.2
RTT [ms] 57.4 0.652 380 0.159 459 0.189 43.6
PTX [dBm] 12.4 0.434 16.5 0.201 13.8 0.365 8.91

Best: Proportion of the MNO providing the best metric value of all MNOs.

Although the mean RTT of MNO B and MNO C is much
higher than the one of MNO A, the multi-MNO is still able to
improve the average behavior of all considered indicators. In
addition, the mean RTT is reduced by 24 % and the average
transmission power PTX is reduced by 28 %.

V. CLIENT-BASED ONLINE DATA RATE PREDICTION

In this section, the results and insights of Sec. IV are
exploited for predicting the end-to-end data rate. Furthermore,
the importance of the individual features is analyzed and multi-
MNO CMs are exploited to optimize the prediction accuracy.

Machine learning-based throughput prediction is a regres-
sion task. In the following, we analyze the performance of
the ANN [26], M5 Regression Tree (M5) [27], RF [28], and
Support Vector Machine (SVM) [29] models. The prediction
process is shown in Fig.6. During the training phase, active
data transmissions are performed and the resulting throughput
and RTT are captured and used as the labels for the prediction.
The actual training of the learning models is performed offline.
The trained models are applied online during the application
phase. The parameters of all considered models are optimized
in a preprocessing step. For the ANN, a deep neural network
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Fig. 5. Impact of the different indicators on the average resulting data rate for three network operators in uplink and downlink duration. The error bars
illustrate the 0.95-confidence interval of the mean value.
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with two hidden layers (10 and 5 neurons) resulted in the best
performance. Additional parameters (learning rate η = 0.1 ,
momentum α = 0.001) were tuned based on an evolutionary
algorithm. The applied RF consists of with 100 random trees
and the SVM is parameterized as a linear L2/L2 SVM with
squared hinge loss. If not stated otherwise, all prediction
results are obtained from 10-fold cross validation.

The applied feature vector consists of nine different features:
• As application context features, the payload size of the

data packet
• Channel context features contain RSRP, RSRQ, SINR,

CQI, Timing Advance (TA) and the carrier frequency f
• As mobility context features, the current velocity of the

vehicle and the cell id
The coefficient of determinantion (R2) is a statistical metric

for analyzing the prediction performance of a regression
model, which describes the amount of the response variable
variation that can be explained by derived model. It is widely
used for data rate prediction (e.g., [16], [17]) and computed
as

R2 = 1−
∑N

i=1 (ỹi − yi)2∑N
i=1 (ȳ − yi)2

(1)

with ȳi being the mean measurement value, yi being the
current measurement and ỹi being the current prediction.

Before the actual prediction results are discussed, the corre-
lation between different indicators and the resulting data rate
is analyzed in Fig. 5. As it is also shown in Fig. 3, MNO B
provides the highest data rates in the downlink direction.

The payload size has a significant impact on the achievable
data rate for all MNOs and transmission directions. It is
directly related to the slow start mechanism of TCP and the
channel coherence time. However, the upper bound of the
mean data rate is lower than the one of the network quality
indicators. Although this fact shows that the channel quality
is an important indicator for the achievable data rate, the
consideration of a single network quality indicator does not
allow to derive meaningful conclusions for the resulting end-
to-end data rate. Therefore, it can be expected that the machine
learning-based joint consideration of multiple indicators is able
to better describe the contained cross-dependencies.

Apart from MNO B, the velocity does not have a severe
impact on the data rate. As discussed earlier (see Sec. IV), the
average RSRP for MNO B is lower than for the other MNOs.
With higher speeds, the probability for cellular handovers is
increased, which severely disturb active data transmissions.

A. Comparison of Different Data Aggregation Approaches
In order to determine the optimal properties of the training

sets, different data aggregation methods are analyzed. There
is a trade-off between using a higher amount of training data
(a single global data set) and a deeper consideration of the
infrastructure-specific configurations (many local data sets).
Therefore, the following measurement subsets are evaluated
for all of the considered prediction models:

• MNO uses the whole data per MNO (3 sets).
• Scenario divides the data for the different scenarios

campus, urban, suburban and highway (12 sets).



TABLE II
COEFFICIENT OF DETERMINATION (R2) FOR DIFFERENT MACHINE LEARNING MODELS AND DATA AGGREGATION LEVELS

MNO A MNO B MNO C
Data ANN M5 RF SVM ANN M5 RF SVM ANN M5 RF SVM

U
pl

in
k MNO 0.685 0.754 0.8 0.71 0.46 0.658 0.707 0.594 0.69 0.779 0.82 0.728

Scenario 0.729 0.779 0.806 0.683 0.49 0.572 0.633 0.555 0.489 0.64 0.686 0.572
eNB 0.578 0.724 0.731 0.592 0.285 0.432 0.456 0.44 0.384 0.57 0.604 0.512
Cell 0.532 0.687 0.715 0.58 0.275 0.412 0.444 0.397 0.355 0.505 0.505 0.424

D
ow

nl
in

k MNO 0.499 0.603 0.591 0.612 0.524 0.584 0.648 0.578 0.41 0.504 0.552 0.531
Scenario 0.551 0.62 0.615 0.627 0.321 0.491 0.541 0.496 0.265 0.386 0.422 0.41
eNB 0.34 0.551 0.552 0.58 0.263 0.317 0.357 0.362 0.151 0.323 0.334 0.361
Cell 0.3 0.564 0.503 0.555 0.258 0.325 0.379 0.372 0.19 0.296 0.306 0.294

ANN: Artificial Neural Network, M5: M5 Regression Tree, RF: Random Forest, SVM: Support Vector Machine
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Fig. 7. Comparison of predictions and measurements for RF-based uplink data rate prediction for the considered MNOs in different scenarios. The black
diagonal line illustrates perfect prediction. Data points in the upper left triangle represent underestimations of the data rate, elements in the lower right triangle
overestimate the data rate.

• eNB groups the data based on the eNB id (105 sets).
• Cell performs cell id-specific data aggregation (220 sets).
Tab. II summarizes the results of the data rate prediction

in uplink and downlink direction. For all considered MNOs, it
can be seen that the R2 is reduced when the grade of locality is
increased. The highest value is achieved by the global data set,
which contains all measurements per MNO. The prediction
models benefit more from the additional data than from more
context-specific data sets.

In most cases, the best prediction performance is achieved
with the RF model. A possible explanation for this behavior is
that in many situations, one of the considered network quality
indicators has a dominant impact on the behavior of the data
rate under defined conditions. The analysis in [3] points out
that at the cell edge – which can be identified by the RSRP
– the interference level, which is partly identifiable by the
RSRQ, has a strong impact on the data rate. In contrast to
that, the SINR is of higher importance within the cell center.
These interval-wise scope regions match well with the general
tree-like structure of RF and M5. Since Classification And
Regression Tree (CART)-based models can be implemented
in a very resource-efficient way as a sequence of if/else
statements, this fact has positive implications on the resource
efficiency for the online data rate prediction in the application
phase of the models. In many cases, the M5 approach
achieves the second highest R2 value. This is remarkable, as
the resulting trained model is significantly smaller than the
RF. As an example for the full uplink data set of MNO A, the
RF consists of 120533 leafs (numerical values) but the M5 has
only 11 leafs (linear regression models). As a consequence,
the M5 could be applied as a lightweight alternative to the
RF for memory-constrained systems (e.g., microcontrollers).

It can be seen that the highest R2 values are achieved for
MNO A and MNO C. As the average RSRP of MNO B is
low (see Tab. I), the probability for cellular handovers, which
decrease the prediction accuracy, is higher than for the other
MNOs, especially in the campus and highway scenarios.

The prediction works more precise in the uplink direction.
As the traffic load in the uplink is usually much lower than
in the downlink direction [1], the UE less likely encounters
a loaded cell. Therefore, it can be concluded that the data
rate is more impacted by the channel quality-related effects –
which are covered to a high grade by the applied feature set –
than by resource competition and scheduling-related aspects.
While the consideration of the latter could likely improve the
download prediction accuracy, this approach would require
infrastructure side knowledge, which cannot be accessed using
the proposed client-based approach. Based on the obtained
insights, the following evaluations focus on RF-based uplink
data rate prediction using the global MNO data sets.

A graphical representation of the resulting uplink data rate
prediction performance of the trained RF models is shown
in Fig. 7. It can be seen that the value range, error spread
and the scenario-dependency is different for the considered
MNOs. While MNO A shows a homogeneous behavior for
all scenarios, both other MNOs have defined focus regions
for the provided coverage. Fig. 8 shows the results of
different combinations of training and test sets. The cross-
MNO applicability of a trained model is evaluated in Fig. 8 (a).
It can be seen that multi-MNO data rate prediction requires
MNO-specific training of the machine learning models. This
behavior can be explained by the usage of different network
configurations with respect to resource scheduling, applied
transmission power and distribution of the carrier frequencies.
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Fig. 8. R2 results for RF-based uplink data rate prediction with different combinations of training and test sets. Note: For each element of the main diagonal,
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Fig. 9. Importance of individual features for RF-based uplink data rate
prediction.

Furthermore, the applicability of cross-scenario training and
testing is shown in Fig. 8 (b)-(d). For each MNO, a model
is trained on the data of each individual scenario and tested
against the data of the other scenarios. MNO A achieves very
good generalization for the campus and urban scenarios but
not for the suburban and highway scenarios. The results can
be better understood by considering Fig. 7(a). The prediction
model is very homogeneous for MNO A but the highest
variance is shown by data points from the highway and
suburban data set. For MNO C, the LTE coverage in the
campus scenarios is only 76.25 %, which leads to a bad
prediction performance for this scenario.

B. Feature Importance
Fig. 9 shows the relative average entropy-based Mean

Decrease Impurity (MDI) [30] for the RF data rate prediction
model for each MNO. Again, the considered MNOs show
different behaviors. The features importance explains why the
achieved overall prediction accuracy is significantly higher
than the results achieved by related work, which only rely
on passively measured network quality indicators ([16], [17],
[14]). In addition to the carrier frequency, the payload size
has a dominant impact on the prediction accuracy as it has
different interdependencies to the network quality and the
applied protocols. Larger packets likely correspond to longer
transmission durations, which means that the dependency to
the channel coherence time is increased as the vehicle is
moving during the transmission process. Moreover, the TCP
slow start is severely dependent on the packet size. For
completeness, it should be remarked that the impact of other
indicators (RTT, time of day) was analyzed in a preparatory
step. As the integration of these indicators did not result in
better prediction performance, they were not further evaluated.

We conclude that the added information is already immanently
represented by the considered features, e.g. time of day has
an impact on the cell load, which is correlated to the RSRQ.

C. Exploiting Multi-MNO Connectivity Maps for Data Rate
Prediction

In the following, we analyze the suitability of using CMs for
uplink data rate prediction in vehicular networks. In contrast to
the previous measurement-based predictions approaches, the
network quality is now solely looked up from the a priori
information of the CMs based on the vehicle’s location without
performing dedicated radio quality measurements.

TABLE III
R2 AND MEAN ABSOLUTE ERROR (MAE) FOR RF-BASED PREDICTION

WITH CONNECTIVITY MAPS AND DIFFERENT CELL SIZES IN THE UPLINK

MNO A MNO B MNO C
Data R2 MAE R2 MAE R2 MAE
MNO 0.8 2.92 0.707 2.3 0.82 2.27
CM5 0.797 3.02 0.71 2.23 0.851 2.16
CM10 0.861 2.42 0.716 2.22 0.852 2.15
CM25 0.856 2.56 0.719 2.21 0.852 2.11
CM50 0.857 2.43 0.719 2.22 0.851 2.12
CM100 0.844 2.54 0.714 2.22 0.846 2.14

CMc: Connectivity map with cell size c [m], MNO: Total operator data set

Tab. III summarizes the R2 and MAE values for the consid-
ered MNOs using different CM cell sizes. As a reference, the
results for measurement-based MNO without CMs are shown.
The choice of the cell size value represents the trade-off
between using more data for the learning model and modeling
a more specific representation of the environment. It can be
assumed that the location information is influenced by Global
Positioning System (GPS) positioning errors. Furthermore, the
cell size defines the storage complexity of the CM model.
It can be seen that the CM-based approach has different
implications for the considered MNOs. While MNO B does
not significantly benefit from using CMs, MNO A and MNO
C achieve significant improvements of the prediction accuracy
(for MNO A, the MAE is reduced by 17 % / 0.5 MBit/s).
The prediction benefits from the cell-wise data aggregation
performed by the CMs, which is able to compensate short-term
influences such as multi-path fading. As a result, overfitting
to a very specific radio channel situation is avoided and the
resulting model achieves a better generalization.

For completeness, it should be noted that we investigated the
combined usage of CM as well as measured features. Since
this approach resulted in a similar performance as the pure
CM-based version, it is not further evaluated.



VI. CONCLUSION

In this paper, we presented an empirical evaluation of multi-
MNO communication for vehicular networks and analyzed the
performance of multiple models for online data rate prediction.
The analysis shows that even if one of the MNOs provides
superior coverage and network quality, the overall performance
can still be increased significantly by applying a multi-MNO
approach. The achievable accuracy of data rate prediction is
highly MNO-dependent. Therefore, data-driven multi-MNO
approaches require different learning models for each con-
sidered MNO, which consequently increases the importance
of the resource efficiency of the prediction models. In the
majority of the considered cases, the RF model achieved the
best prediction accuracy.

Although the channel properties have a significant impact
on the achievable data rate, they need to be set into relation
to the payload size in order to achieve precise predictions.
This way, the machine learning process is able to consider
hidden interdependencies between channel coherence time and
network protocols. Connectivity maps can be utilized as a
priori information to compensate short-term influences and
can help to achieve a better generalization of the prediction
schemes by avoiding overfitting. However, the achievable
benefits of this approach and the optimal parametrization
are also MNO-specific. In future work, we will leverage the
prediction models for optimizing communication processes
within context-predictive vehicular networks.
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