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Abstract—Interest in smart cities is rapidly rising due to the
global rise in urbanization and the wide-scale instrumentation
of modern cities. Due to the considerable infrastructural cost
of setting up smart cities and smart communities, researchers
are exploring the use of existing vehicles on the roads as
“message ferries” for the transport data for smart community
applications to avoid the cost of installing new communication
infrastructure. In this paper, we propose an opportunistic data
ferry selection algorithm that strives to select vehicles that can
minimize the overall delay for data delivery from a source to a
given destination. Our proposed opportunistic algorithm utilizes
an ensemble of online hiring algorithms, which are run together
in passive mode, to select the online hiring algorithm that has
performed the best in recent history. The proposed ensemble-
based algorithm is evaluated empirically using real-world traces
from taxies plying routes in Shanghai, China, and its performance
is compared against a baseline of four state-of-the-art online
hiring algorithms. A number of experiments are conducted and
our results indicate that the proposed algorithm can reduce the
overall delay compared to the baseline by an impressive 13% to
258%.

Index Terms—Data ferrying, opportunistic online algorithm,
smart communities, limited information and communications
infrastructure, hiring algorithms.

I. INTRODUCTION

It is estimated that about 60% of the world’s population
will live in cities by 2030 [1]. Additionally, by the year
2020, around 20.4 billion devices are expected to be con-
nected to the Internet [2]. To cope with the trend of people
moving to urban centers and to provide high-quality services
to their residents, municipalities are increasingly turning to
Information and Communications Technologies (ICT)—such
as cloud computing, Internet of Things (IoT), Wireless Sensor
Networks (WSNs), and Cyber-Physical Systems (CPS) [3]—
for the deployment of smart community applications that pro-
vide value-added services in diverse fields such as healthcare,
transportation, entertainment, and governance [4].

But such smart community deployments are often pro-
hibitively expensive, especially for smaller communities where
the deployment of smart community applications is hindered
by the unavailability of appropriate communication infrastruc-
ture. One way to address this concern is to exploit existing
infrastructure in innovative ways. In particular, modern ve-
hicles that abundantly ply the roads of urban cities can be
exploited to obviate the need for an expensive communica-
tions infrastructure. In recent times, with increased interest in
vehicular ad-hoc networks (VANETs) and self-driving cars,
vehicles are increasingly becoming more sophisticated and it
is expected that by the year 2020, 90% of vehicles will be
equipped with a hardware-based On-Board Unit (OBU) [5]

that has processing and communications capabilities. There-
fore developing an approach for opportunistically accessing
these smart vehicles in an efficient delay-tolerant manner
becomes a promising approach towards the deployment of
cost-effective and efficient smart community applications with
limited ICT infrastructure overhead. For example, rural areas
that lack the funds to deploy ICT infrastructure can benefit
from our proposed approach.

One approach of delivering data in sparse networks is Mes-
sage Ferrying (MF). In this approach, devices are classified
as message ferries (or ferries) or regular nodes. Ferries are
mobile devices that move around to collect messages from
regular nodes to deliver them to their destination [6]. In this
paper, we use this approach and utilize vehicles as ferries to
transfer data collected from the smart devices (i.e., regular
nodes) to the Smart Community Management Center (SCMC).
One example of the SCMC is the Traffic Management Center
(TMC), which is used for managing traffic in support of
intelligent transportation applications.

In this paper, we envision a smart community application
architecture where the service area is divided into blocks,
each having at least a single Local Community Broker (LCB),
where an LCB is a cloudlet that is deployed in the block or
hosted on a vehicle that has processing and communications
capabilities. Each LCB serves as a block manager responsible
for selecting vehicles to transfer data collected from IoT
devices scattered across the block to the Smart Community
Management Center (SCMC). When a vehicle passes through
the block, the block manager (i.e., LCB) acquires the estimated
delivery delay from the vehicle and decides on whether to
utilize it as a ferry to transfer collected data to the SCMC.
Consequently, the vehicles themselves are used as ferries to
transfer data between the different blocks of the service area.
Actually, sparsely deployed LCBs are the only required infras-
tructure in our proposed architecture and no communications
infrastructure (optical, microwave, or 5G base stations) is
required to relay the data from the LCBs to the SCMC.

The main challenge in this architecture lies in the ‘in-
telligent’ selection of vehicles. If the block manager is not
selective, it may end up using vehicles with high delivery
delay as any vehicle might be selected even if it has a high
delivery delay—delivery delay is the time taken to transfer a
data bundle on a vehicles selected to serve as a data ferry
from the LCB to the SCMC. On the other hand, if it is very
selective and picks vehicles that have a short delivery delay,
it would incur high waiting delay as it needs to wait longer to
find such vehicles—waiting delay is the time taken to select
a vehicle to serve as a data ferry. In fact, this problem is of
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an online nature because once a vehicle leaves the block, the
block manager can no longer utilize the vehicle. Consequently,
the block manager may regret its decision when the delivery
delay of future vehicles is shorter than that of previous ones.

To solve this problem, we propose an online algorithm that
utilizes an ensemble of online hiring algorithms. The pro-
posed algorithm opportunistically selects the best performing
algorithm from its ensemble based on the recent observed
performance. The average overall delay is the sum of the
average waiting delay and the average delivery delay as
detailed later in the paper. The proposed algorithm selects one
algorithm from its ensemble to be active with the objective of
minimizing the average overall delay. All other algorithms in
the ensemble are set to be passive (i.e., inactive). This way,
the active algorithm alone selects the vehicles to be used as
data ferries. Although other algorithms in the ensemble will
not be utilized to select the data ferries, their performance
is utilized in order to choose the best performing algorithm
in the ensemble by choosing the one that demonstrated the
lowest average overall delay in the recent history (i.e., greedy
approach). Consequently, different hiring algorithms from the
ensemble might be utilized over time.

To the best of our knowledge, this is the first research effort
that utilizes online hiring algorithms for the selection of data
ferries in the specific setting of smart community applications.
We perform a thorough evaluation of our work and show that
our proposed algorithm performs better than other state-of-
the-art online hiring algorithms in a wide variety of settings
(including for different traffic volumes).

II. RELATED WORK

The literature is rich with research that deals with network
issues in smart communities. Jawhar et al. [3] presented the
networking requirements for different smart city applications
and additionally presented network architectures for different
smart city systems. In [4], the authors discussed the net-
working and communications challenges encountered in smart
cities. Paradells et al. [7] state that deploying wireless sensor
networks along with the aggregation network in different
locations in the smart city is very costly and consequently
propose an infrastructure-less approach in which vehicles
equipped with sensors is used to collect data.

Bouroumine et al. [8] present a system where public and
semi-public vehicles are used for transporting data between
stations distributed around the city and the main server.
Aloqaily et al. [9] introduce the concept of Smart Vehicle
as a Service (SVaaS). They predict the future location of the
vehicle in order to guarantee a continuous vehicle service in
smart cities. In another work [10], the authors indicate that cars
will be the building blocks for future smart cities due to their
mobility, communications, and processing capabilities. They
propose Car4ICT, an architecture that uses cars as the main
ICT resource in a smart city. The authors in [11] propose an
algorithm for collecting and forwarding data through vehicles
in a multi-hop fashion in smart cities. They proposed a ranking
system in which vehicles are ranked based on the connection
time between the OBU and the RSU. The authors claim that
their ranking system results in a better delivery ratio and
decrease the number of replicated messages.

In [12], authors state that existing network infrastructure in
smart cities can not sustain the traffic generated by sensors. To
overcome this problem, an investment in telecommunication
infrastructure is required. However, authors proposed to ex-
ploit buses in a Delay Tolerant Network (DTN) to transfer
data in smart cities. In [13], the authors introduce mobile
cloud servers by installing servers on vehicles and use them
in relief efforts of large-scale disasters to collect and share
data. These mobile cloud servers convey data among isolated
shelters while traveling and finally returning to the disaster
relief headquarters. Vehicles exchange data while waiting in
the disaster relief headquarters, which is connected to the
Internet.

Bonola et al. [14] conduct a study on using taxi cabs as
oblivious data mules for data collection and delivery in smart
cities. They have no guarantee on data communications since
they are using taxi cabs without any selection criteria. They
use real taxi traces in the city of Rome and divide the city into
blocks of size 40×40 meter2. Depending only on opportunistic
connections between vehicles and nodes, the authors claim
achieving a coverage of 80% of the downtown area over a 24
hour period.

The aforementioned papers mostly utilize multiple relays
for transferring data between source-destination locations.
Furthermore, these papers do not approach the ferry selection
problem from an online perspective. Conversely, in this paper
we propose an approach where each vehicle transfers a data
bundle from source to destination without having to use
relays and decisions are made in an online fashion—these
assumptions are practical as more vehicles utilize OBU and
GPS units that provide exact or probabilistic information about
the path of the vehicle. Additionally, this paper considers
online hiring algorithms for data ferry selection.

III. SYSTEM MODEL

To utilize data ferrying in a given area, we divide the service
area (e.g., city) into B blocks. Each block has a number
of smart devices (e.g., sensor nodes) that generate data. In
addition, one of these blocks hosts the SCMC as shown in
Figure 1. Vehicles are used to transfer data collected from the
smart devices to the SCMC. Also, each block has one LCB
positioned near the center of the block. Any vehicle that enters
a given block is within the communications range of its LCB.

In this paper, we make two assumptions about incoming
vehicles. First, it is known if the vehicle will pass through the
SCMC in the future. Second, for vehicles that pass through the
SCMC, the expected arrival time is known. Our assumptions
are based on many research efforts that appeared in the recent
literature [15]–[18] to predict those parameters.

Each LCB serves as a block manager that contacts incoming
vehicles to acquire two pieces of information; namely, whether
the vehicle is going to pass through the SCMC block, and at
what time (i.e., expected arrival time at the SCMC block). If a
vehicle is going to visit the SCMC block, the block manager
computes its expected arrival time. Using the expected arrival
time, the block manager computes the delivery delay d, which
is the time required by the vehicle to transfer the data from the
current block to the SCMC block. Besides, the block manager
computes the waiting delay w, which is the time between the
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selection of the last vehicle and the selection of the current
vehicle. In other words, w is the time the data must wait until
a vehicle is selected to serve as a data ferry.

When a vehicle passes through a block, the block manager,
running the proposed algorithm, makes a decision on whether
to accept or reject the current vehicle to serve as a data ferry.
The block manager computes the delivery delay d and the
waiting delay w and passes them to the proposed algorithm.
Once the proposed algorithm makes a decision, it is impossible
for that decision to be altered. The proposed algorithm utilizes
an ensemble of online hiring algorithm as explained in Section
V. If more than one vehicle exists in a block, and these
vehicles are going to pass through the SCMC block some time
in the future, the block manager considers only the vehicle
with the minimum d.

Once a vehicle is selected, the LCB uploads data of block
j to the vehicle. Next, the vehicle continues its trip and
eventually passing through block k, which has the SCMC.
Once in block k, the OBU of the vehicle uploads data collected
from block j to the LCB of block k, which in turn conveys it
to the SCMC. These steps are illustrated in Fig 1.

Figure 1: Ferrying data from different blocks to the SCMC
block in a community using vehicles.

IV. ONLINE HIRING ALGORITHMS

Many companies around the world use hiring algorithms to
select employees instead of the traditional manual selection
process. Actually, there are many flavors of the hiring algo-
rithm. In [19] [20], researchers investigate the performance
of the different heuristics for the classical secretary problem
that select the best candidate out of multiple candidates. The
problem involves an interviewer interviewing n candidates
one at a time for a position and then deciding after each
interview if the interviewee is the best candidate. The overall
goal in this problem that seeks to decide under uncertainty is
to maximize the probability of choosing the best candidate.
To select the best candidate, the authors introduce three hiring
algorithms [19] including (1) hire above a threshold, (2) hire
above minimum or maximum, and (3) hire above mean or
median (Lake Wobegon1). We provide a brief description of
these algorithms next.

1Lake Wobegon refers to a fictional town, where “all the women are strong,
all the men are good looking, and all the children are above average.”. A
Lake Wobegon strategy refers to one that hires above the average (mean or
median).

• Hiring Above a Threshold: In this version of the hiring
algorithm, vehicle i is selected only if the delivery delay
di is less than or equal to a fixed threshold τ .

• Hiring Above the Mean: In this hiring algorithm version,
vehicle i is selected only if the delivery delay di is
less than ab (the average delivery delay of selected
vehicles in block b). Initially, the algorithm accepts the
first vehicle that enters block b and then sets ab to d0,
and subsequently ab decreases gradually as the algorithm
accepts more vehicles.

• Hiring Above the Median: Hiring above the median uses
mb (the median of the delivery delay of all selected
vehicles in block b). Like hiring above the mean, this
algorithm initially accepts the first vehicle that enters
block b. This algorithm needs an odd number of selected
vehicles before recomputing mb since mb is the value
in the middle after sorting. Therefore, after selecting a
vehicle, if the number of selected vehicles is even, the
algorithm does not update mb postponing the update of
mb to the situation where the number of vehicles is odd.

V. HEURISTIC SOLUTION

In this work, we propose an algorithm that strives to
minimize the average overall delay for transporting data from
one block to the SCMC block. The overall delay is the sum of
the waiting delay and the delivery delay. The idea is simply
to run an ensemble of N online hiring algorithms in passive
mode while selecting only one of them to be active at any point
in time. By passive, we mean an algorithm makes a decision
for whether a given vehicle should be selected to serve as a
data ferry but the decision is not executed. This is done in
order to collect performance metrics needed to compare the
performance of the different algorithms in the ensemble.

The proposed algorithm utilizes four hiring algorithms;
namely, low threshold, high threshold, mean, and median.
These algorithms can only consider the delivery delay and
cannot take the waiting delay into consideration. In other
words, they cannot make a decision based on the overall delay
which includes the waiting delay. This stems from the fact that
the waiting delay can be larger than the threshold used by
those algorithms. Consequently, those algorithms will reject
all requests after that time and will be stuck in this state
forever. For example, if the threshold of the low threshold
algorithm is set to 50 minutes and the algorithm is waiting for
more than 50 minutes (i.e., waiting delay is greater than 50)
then the overall delay will always be greater than 50 even if
the delivery delay is zero. Thus, the low threshold algorithm
will reject vehicles from serving as data ferries indefinitely.
However, the proposed algorithm is capable of analyzing the
history of all algorithms in its ensemble in terms of the overall
delay. Moreover, to be efficient, the proposed algorithm has the
chance to switch between the four algorithms in its ensemble
every S time units in case the performance of the already
selected algorithm deteriorates.

Algorithm (1) shows the three parts of the proposed algo-
rithm. One of the four algorithms in the ensemble is selected
randomly to serve as the active algorithm in the initialization
part, which is executed once when the algorithm starts. The
second part is executed whenever a vehicle arrives and a
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Algorithm 1 Proposed algorithm for selecting ferries
Input: vehicle arrival time A.
Output: decision (accept or reject)
Initialization (executed once at time 0):

1: Set all algorithms as passive
2: Set activeAlgorithm = select an algorithm randomly.

On vehicle arrival:
3: Set d = A− current time
4: Set w = current time - last time a vehicle was accepted
5: for each of the 4 algorithms do
6: Run the algorithm
7: if Decision is accept then
8: Save overall delay as d+ w
9: if this algorithm is activeAlgorithm then

10: Accept the vehicle
11: end if
12: else if this algorithm is activeAlgorithm then
13: Reject the vehicle
14: end if
15: end for

Executed every S minutes:
16: Compute average overall delay based on saved data
17: Set bestAlgorithm = algorithm with minimum delay
18: if activeAlgorithm 6= bestAlgorithm then
19: Set activeAlgorithm = bestAlgorithm
20: end if

decision needs to be made on whether to select it as a data
ferry. In the second part, the four algorithms in the ensemble
are executed and the overall delay of each one is saved for
later analysis in the third part. Moreover, the decision made
by the active algorithm is committed while decisions of other
algorithms are ignored. The last part is only executed after S
time units had passed. Furthermore, the average overall delay
of all algorithms is computed based on saved data and the
algorithm with the minimum average overall delay is set as the
active algorithm while setting the other algorithms as passive.

VI. ILLUSTRATIVE EXAMPLE

Let Algorithm A and Algorithm B be two online hiring
algorithms with Algorithm A initialized in passive mode and
Algorithm B initialized in active mode (i.e., selected randomly
by the proposed algorithm) at t0. Table I shows the average
overall delay per algorithm recorded every S minutes (see
Algorithm 1), which is computed as the average of overall
delays in the period ti to tj , where j = i+1. The performance
of the proposed algorithm is not the best at t1 since it randomly
selects Algorithm B as the active algorithm between t0 and
t1, which performs worst than Algorithm A. However, the
proposed algorithm switches to Algorithm A at t1 and got an
average overall delay of 4 minutes between t1 and t2, which
is the same value gained by Algorithm A. Between t2 and
t3, Algorithm B performs better than Algorithm A leading the
proposed algorithm to get 6 minutes instead of 2 minutes. In
t3, the proposed algorithm switches to Algorithm B and get
the minimum average overall delay of 2 minutes between t3
and t4. By t4, the proposed algorithm achieves less average
overall delay compared to both algorithms.

VII. EXPERIMENTAL RESULTS

In this section, we describe the dataset used in our ex-
periments; explain the experiments’ settings; evaluate the
performance of the proposed online algorithm by comparing it
with four baseline online hiring algorithms using real vehicular

Table I: Performance (average overall delay) of the proposed
algorithm compared to the two online hiring algorithms

Time
Algorithm A Algorithm B Proposed
Avg. delay Avg. delay Avg. delay Selection

t0 0 0 0 Algorithm B
t1 8 10 10 Algorithm A
t2 12 22 14 Algorithm A
t3 18 26 20 Algorithm B
t4 30 28 22 Algorithm B

traces; and finally, discuss the results and present the major
insights learned from our experiments.

A. Dataset & Experimental Settings

In our experiments, we make use of the Shanghai dataset
consists of taxi traces collected in the city of Shanghai in
China. Each taxi has a GPS unit and a GPRS wireless com-
munications modem. Vehicles send their GPS location along
with other information to a data center every minute. Around
2,109 taxis participated in this dataset in 2007. Information
sent by taxis includes ID, timestamp, longitude and latitude,
speed, and heading direction [21].

In order to utilize the Shanghai dataset, we have encoded
the geographical location that encompasses longitude and
latitude into a string of 7 characters using the GeoHashing
method [22]. Every string represents a grid (i.e., block) of
the city. Actually, we used a GeoHashing of 7 characters
because this allows for the division of the globe into blocks,
each of 153×153 meters, which is within the communications
coverage of a typical LCB. Using these blocks, we position
the SCMC in the block that is mostly visited by vehicles.
Additionally, we filtered the dataset to remove blocks that have
no traffic activity and focus on the active blocks. The dataset is
based on a one-day observation. However, one day is a very
short period for the proposed algorithm to work effectively.
Therefore, we replicate the one-day data a number of times to
have datasets for 5, 10, 15, 20, and 25 continuous days.

To study the performance of the proposed algorithm under
different traffic scenarios, we divide the city into three areas
based on the traffic volume. We computed the average number
of vehicles per block along with the standard deviation and
found that the standard deviation is greater than the average.
Therefore, we categorized each block based on Nb, the number
of vehicles in block b, as follows:

• Light traffic area: Nb < average
• Medium traffic area: average ≤ Nb ≤ standard deviation
• High traffic area: Nb > standard deviation

We set S to 30 minutes in all of the experiments to
be consistent. Also, to derive the low and high threshold
values for the threshold algorithms in every block, we used
a percentile of the delivery delay in the block. The dataset
used in the experiment has a heavy-tailed distribution and
particularly a long-tail distribution and we resort to extremely
low and high threshold values—2nd percentile for the low
threshold algorithm and 95th percentile for the high threshold
algorithm—to fully explore the space of values in such a
distribution.
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B. Results Discussion

1) Evaluation of the proposed algorithm for different traffic
volumes: Considering the four baseline hiring algorithms only,
it can be clearly seen that a different one outperforms in each
area depending on the traffic volume. The mean algorithm is
the best in light traffic areas, the high threshold is the best in
medium traffic areas, and the low threshold is the best in high
traffic areas as shown in Fig. 2.

Figure 2: Average overall delay per block. Our proposed
algorithm achieves minimal overall delay per block regardless
of the traffic volume.

(a) Average waiting delay per block.

(b) Average delivery delay per block.

Figure 3: Average waiting & delivery delay per block. Our
proposed algorithm performs the best either with minimal
average waiting delay or average delivery delay per block,
but not with both.

The low threshold algorithm suffers from a high overall
delay in the light traffic areas because the waiting delay is
very high since it is very selective. However, the low threshold
algorithm outperforms in the area of the high traffic since
it only selects vehicles with low delivery delay and there
are plenty of vehicles to pick from. On the other hand, the
high threshold algorithm performs best in the medium traffic

Figure 4: Number of selected vehicles. Our proposed algo-
rithm hires the most number of vehicles with the exception of
the high threshold algorithm.

areas, which provide a balance between waiting delay and
delivery delay. Since the high threshold algorithm accepts the
majority of vehicles, it benefits from this balance. As for the
mean and median algorithms, their performance is best in
the areas of light traffic. This is because the thresholds of
these algorithms decrease with more vehicles. The more these
algorithms accept, the more greedy they become towards a
lower threshold.

The proposed algorithm achieves the best results in all
areas with up to 258% less overall delay albeit at a cost.
To understand this cost, we focus on the 10 days results and
record the number of selected vehicles, average delivery delay,
average waiting delay, and average overall delay.

The proposed algorithm outperforms the baselines algo-
rithms regardless of the traffic volume by either performing
better on the waiting delay or on the delivery delay but not
both as indicated in Fig. 3.

It should be noted that the proposed algorithm does not
only perform better in terms of the average overall delay but
it also accepts more vehicles to serve as data ferries as shown
in Fig. 4 (with the exception of the high threshold algorithm
since it accepts the majority of vehicles in all areas).

2) Evaluation of the proposed algorithm for different time
periods: To assess the performance of proposed algorithm
relative to the four baseline hiring algorithms, we run the
algorithms for different number of days. Results are collected
in terms of the average overall delay in each of the three
different areas as shown in Fig. 5. The figure shows the
consistent behaviour of the proposed algorithm regardless of
the number of days.

3) Switching activity of the proposed algorithm: To show
the switching activity of the proposed algorithm, we record the
average overall delay every hour for one block over 10 days as
illustrated in Fig. 6. The figure shows how some algorithms
perform better for a period of time and how the proposed
algorithm follows the one with the minimum average overall
delay based on performance collected from the recent history.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of selecting vehicles to serve
as data ferries in support of smart community applications is
considered. The selection process strives to achieve the mini-
mum average overall delay. An online algorithm is proposed
that utilizes four online hiring algorithms by running all of
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(a) Light traffic area. (b) Medium traffic area. (c) High traffic area.

Figure 5: Average overall delay using different algorithms for the various traffic scenarios (light, medium, high) over different
days. Our proposed algorithm achieves the minimal overall delay for different number of days results regardless of the traffic
volume.

Figure 6: Performance of algorithms in one block over 10 days.
Our proposed algorithm switches between different hiring
algorithms to achieve minimal overall delay.

them together in passive mode and selecting the one that has
performed the best in recent history. The proposed algorithm
is evaluated using real taxi traces from the city of Shanghai in
China and compared against a baseline of four online hiring
algorithms. Experiments with these traces demonstrate that
the proposed algorithm outperforms online hiring algorithms
presented in the literature regardless of the traffic volume by
either performing better on the waiting delay or on the delivery
delay but not both.

In the future, we plan to evaluate the proposed algorithm
analytically to provide performance guarantees, in terms of
competitive ratio, in worst-case scenarios.
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