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Abstract—Novel vehicular communication methods are mostly
analyzed simulatively or analytically as real world performance
tests are highly time-consuming and cost-intense. Moreover,
the high number of uncontrollable effects makes it practically
impossible to reevaluate different approaches under the exact
same conditions. However, as these methods massively simplify
the effects of the radio environment and various cross-layer
interdependencies, the results of end-to-end indicators (e.g., the
resulting data rate) often differ significantly from real world
measurements. In this paper, we present a data-driven approach
that exploits a combination of multiple machine learning methods
for modeling the end-to-end behavior of network performance
indicators within vehicular networks. The proposed approach can
be exploited for fast and close to reality evaluation and optimiza-
tion of new methods in a controllable environment as it implicitly
considers cross-layer dependencies between measurable features.
Within an example case study for opportunistic vehicular data
transfer, the proposed approach is validated against real world
measurements and a classical system-level network simulation
setup. Although the proposed method does only require a fraction
of the computation time of the latter, it achieves a significantly
better match with the real world evaluations.

I. INTRODUCTION

Designing and evaluating novel communication mecha-
nisms for vehicular networks is a highly complex task as
the performance of the radio link is severely impacted by
mobility-related effects, the properties of the environment and
interference [1]]. Since comprehensive real world evaluations
are very time-consuming, it is often not feasible to perform
parameter studies in the real world.

Therefore, system-level network simulation is a commonly
used approach, which enables to analyze various parameteri-
zations and to evaluate novel schemes in different scenarios. In
contrast to field tests, one of the main strengths of simulations
is their system-immanent control of the environment, which
allows to evaluate different methods under the exact same
conditions. However, as the real world radio medium is shared
with other cell users, for which the communication pattern is
unknown, the generation of realistic simulation setups is itself
a highly challenging — if not impossible — task [2]. Therefore,
the results of these simulations differ significantly from real
world evaluations.

The analysis of end-to-end network performance indicators
(e.g., the resulting data rate) within mobile networks is even
more complicated, as it is impacted by various cross-layer
dependencies within the device itself, mobility-related phe-
nomenons and effects related to the coexistence of different
users and technologies in a shared radio medium (see Fig. [I)

[3]. 1In this paper, we present a fundamentally different
alternative to established analysis methods, which relies on
a data-driven approach for machine learning-based modeling
of end-to-end network performance indicators. In contrast to
system-level network simulation, which is mainly intended
for the system conception phase, the proposed approach tar-
gets the system optimization phase (see Fig. [2). Real world
measurement data is exploited in an automated process to
derive a prediction model, which is suitable for simulative
evaluation as well as for online application within live systems.
In addition, a second machine learning model is derived based
on Gaussian Process Regression (GPR), which learns the
statistical distribution of the prediction errors. Both models
are brought together in a lightweight simulation setup — which
is referred to as Data-driven Simulation (DDS) — for analyzing
a novel Method Under Study (MUS).

With the proposed approach, novel communication methods
can be analyzed under close to reality conditions in a fast
and resource-efficient way. Overall, the proposed machine
learning-based method brings together the accuracy of real
world experiments, the environment control of simulation
setups and the evaluation speed of analytical modeling. The
contributions provided by this paper are as follows:

o An automated process for generating prediction and error

models of end-to-end network performance indicators
based on a combination of multiple machine learning
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Fig. 1. Overview about different effects, which have an impact on the resulting
end-to-end behavior of cellar vehicular networks. The strength of machine
learning is the implicit consideration of hidden interdependencies, which are
partly covered by measurable indicators.
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methods.

o Proof-of-concept evaluation and validation against
system-level simulation and real world measurements
in a case study for anticipatory transmission of vehicular
sensor data.

o The framework itself and the raw results of the considered
case study are provided using an Open Access approach.

The remainder of the paper is structured as follows. After
discussing relevant state-of-the-art approaches in Sec. [l we
present the system model of the proposed solution approach
in Sec. Afterwards, a case study for opportunistic data
transmission is discussed, where the proposed DDS is vali-
dated based on real world measurements and compared to a
purely simulative approach in Sec. Finally, the limitations
of DDS are discussed in Sec. [V] Fig. 2]

II. RELATED WORK

In recent years, machine learning has become an essential
method for analyzing and optimizing communication systems
and processes. Comprehensive surveys about methods and
applications of machine learning within mobile wireless net-
works are provided by [4] and [3].

In [2], the authors present the results of a comprehensive
literature review campaign with the aim of determining the
most important topics, methods and trends of vehicular com-
munication networks. One of the main findings is that many of
the considered research works rely on unrealistic simulation
models for both communication and mobility. Although the
accuracy of simulation results can be increased by using more
detailed — and more computation-intense — simulation models
[6], the required high-resolution data is often not available
(e.g., material parameters for ray tracing simulation [7]). As
a result, system-level network simulation is rather suitable for
comparing novel methods in abstract environments than to
derive conclusions for defined real world scenarios [2].

Anticipatory communication [§8] is a novel wireless net-
working paradigm, which aims to optimize the performance
of communication systems by integrating context information
into decision processes. It is especially well-suited for systems
that experience highly dynamic radio conditions (e.g., due to
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Fig. 2. Comparison of the proposed DDS approach to classical system-level
network simulation.
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Fig. 3. System architecture model of the proposed multi-disciplinary machine
learning-based analysis framework.

the mobility behavior within vehicular networks). As anticipa-
tory communication often aims to optimize a defined number
of end-to-end performance indicators, it requires methods
to describe and forecast the latter. In previous work, we
have demonstrated the massive potentials of this approach
for improving reliable mesh routing by mobility prediction
[9] and optimizing the resource efficiency of vehicular sensor
data transfer [10], [[L1], [12] by machine learning-based data
rate prediction. One of the key strengths of these machine
learning-enabled approaches is their data driven description
of the environment. Instead of actually modeling a scenario
with different interacting entities, only the interdependencies
of multiple measurable variables are considered.

Within this work, we exploit the insights in data-driven
modeling obtained by anticipatory communication to com-
pensate the shortcomings of classical simulative evaluation.
Recently, first results for learning end-to-end models of com-
munication systems have been proposed by Ye et al. and
[13] and Aoudia et al. [14]. While these works analyze the
physical layer modeling, the proposed approach focuses on
the application layer behavior.

III. MACHINE LEARNING-BASED SOLUTION APPROACH

The overall architecture of the proposed solution approach
is shown in Fig. 3] The framework operates on three different
logical domains: real world, data science and communication
engineering. The overall goal is to optimize a novel MUS
using DDS and bring it from theory to real world application.
Although many of the components are derived by means of
automation, the framework relies on two manual steps as
prerequisites. In order to enable the data-driven modeling
approach, a comprehensive data set needs to be obtained in
the real world, which should cover all external influences on
the considered Key Performance Indicator (KPI) as close as
possible. Furthermore, expert knowledge from the communica-
tion engineering domain is required for the feature engineering
phase, in order to monitor meaningful variables that describe
the behavior of the considered end-to-end indicator. After the
real world data acquisition, a DDS model is composed by
the MUS, a derived prediction model (see Sec. and
a derived machine learning-based model for the derivation
behavior of the prediction model itself (see Sec. [[II-B). Within



an optimization loop, the MUS can now be analyzed and
optimized based on DDS.

Finally, the optimized MUS can be transfered to a real
world implementation. As the generated prediction model is
represented as raw C++ code, the trained model can be directly
exploited for performing online predictions in the real world
deployment.

A. Generating and Analyzing Machine Learning-based Pre-
diction Models

Network quality prediction is a regression task, which uses
supervised learning based on a labeled data set 'Y (measure-
ments of the end-to-end network performance indicator) and a
training set X (measurements of related indicators). After the
training phase, the trained model f can be utilized to make
predictions § for unlabeled features sets x such that § = f(x).
Within the proposed framework, this step is performed in an
automated way, which is further described in Sec.

As different evaluations have shown (e.g., [L1], [L5], [16]),
for predicting network quality indicators, the application of
Classification And Regression Tree (CART)-based models —
e.g., Random Forest (RF) [17] and M5 Regression Tree (M5)
[18] — often yields better performance than more complex
regression models like Artificial Neural Network (ANN) and
Support Vector Machine (SVM). In many cases, one of the
considered network quality indicators has a dominant impact
on the behavior of the considered KPI within a defined scope.
As an example for Long Term Evolution (LTE), the analysis
in [11]] points out that at the cell edge — which can be
identified by the Reference Signal Received Power (RSRP)
— the interference level, which is partly identifiable by the
Reference Signal Received Quality (RSRQ), has a strong
impact on the data rate. In contrast to that, the Signal-to-
interference-plus-noise Ratio (SINR) is of higher importance
within the cell center. This segment-wise definition of ranges
of validity matches the general structure of the CART models.
In addition to their high prediction accuracy, one of the main
advantages of these models is that their tree-like structure
allows a resource-efficient implementation using a sequence
of 1f/else statements.

It needs to be remarked that the accuracy of the resulting
model is severely depending on the quality and the amount of
the training data. Therefore, feature engineering is of tremen-
dous importance in order to achieve a reusable model that
works accurately within the considered evaluation scenario and
provides a good generalization.

However, in contrast to system-level simulation, which
requires complex evaluation setup phase, the derived model
is suitable for making predictions in various scenarios after
a sufficient amount of data has been obtained. For CART-
based prediction models, the tree structure can be exploited to
visually assess the impact of individual features. In addition,
methods such as Mean Decrease Impurity (MDI) [19] allow to
get a deeper insight into the importance of individual features
within RFs.

For comparing the resulting prediction quality of different
models, the coefficient of determination R? provides a statis-
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Fig. 4. For consideration of the error distribution of the trained prediction

model, a GPR is trained on the prediction results of the prediction model
itself. The shaded area illustrates the posterior confidence region.

tical metric that describes how accurate measurement values
fit to a regression model. It is calculated as

SN @i —u)
Zi]\il (ﬂ - yi)2

with ¢; being the mean measurement value, y; being the
current measurement and g; being the current prediction.

R>=1- (1)

B. Machine Learning-based Modeling of Derivations Between
Prediction Model and Real World Measurements

The derived regression model can now be utilized to make
predictions for unobserved values. However, for each input
feature set x, only a single predicted value ¥ is obtained, which
is constant if the same feature set is evaluated again.

Derivations within the distribution of the measured values
are related to other real world influences, which are not
considered by the model. However, in the targeted data-
driven simulation, the results should represent the real world
behavior and not just its predicted average. Therefore, a
second machine learning model is applied for learning the
characteristics of the derivations — which are assumed to have
a gaussian distribution — between predictions and real world
measurements. For this task, a GPR [20] is trained on the
results of the prediction model such that Yepr = prR(?). A
gaussian process GP(m, k) is a collection of random variables
with a joint gaussian distribution and is described by its mean
function m and its covariance function k. This method is
considered non-parametric, as it learns a description for the
data as a distribution over possible functions (in contrast to
regular regression, which learns the distribution over function
parameters). As illustrated by the example in Fig. 4} the GPR
does not only compute predictions Ygpgr but also derives a
confidence interval CIgpr and a standard deviation function
ogpr. Therefore, we can now compute a randomized sample



JGpr, Which follows a gaussian distribution N of the prediction
errors as

Jerr = N (?GPR(Z?), Uém(ﬂ)) 2)

For the data shown in Fig. [ it can be seen that the
confidence area for Y < 3 MBit/s and Y > 33.5 MBit/s is sig-
nificantly larger than for the values in between. In these edge
regions, the prediction model is not sufficiently covered by the
supplied training data and therefore the resulting prediction
accuracy is low. As a consequence to these statistical effects,
unrealistic or even impossible values (e.g., negative data rates)
can occur for ggpr in these regions. To avoid this behavior,
the results are shaped to the value range of the measurements
in a final step with

min(Y)  Jopr < min(Y)
7 =< max(Y) ggpr > max(Y) 3)
UGPR else

For completeness, it is remarked that different machine learn-
ing models (e.g., the considered GPR) are able to derive
confidence regions based on the input features themselves.
However, the advantage of the presented separation of pre-
diction model and derivation model is its modularity. As the
GPR only relies on the measurements Y and the prediction
results Y, the prediction model itself can be easily replaced
by any other regression model.

IV. VALIDATION

In this section, we present a proof-of-concept evaluation of
the proposed DDS approach and validate it against reference
system analysis methods. As MUSs, we study the opportunis-
tic sensor data transmission schemes Channel-aware Transmis-
sion (CAT) and the Machine Learning CAT (ML-CAT) [10],
[L1], which only have been analyzed empirically in previous
work.

For the validation, the algorithms of the considered MUSs
are implemented in three methodological setups: the proposed
DDS, a classical system-level network simulator and in a
real world system. The goal is to analyze how well the
proposed DDS and the considered reference methods are
able to represent the real world behavior of the transmission
schemes.

A. Method Under Study: CAT-based Data Transfer

Straightforward periodic transmission methods within cel-
lular vehicular networks do not consider the network quality
within the transmission process itself. Therefore, cell- and
energy resources are often wasted as data transmissions during
low channel quality periods suffer from packet loss and lead
to retransmissions.

To overcome these issues, CAT and ML-CAT [10], [1L1]
have been proposed, which rely on a probabilistic process to
compute a transmission probability p(¢) with respect to the
current network conditions. Data is stored in a local buffer
until a transmission decision is made for the whole buffer. As
this approach introduces an additional delay — the transmission

scheme waits for better channel conditions — it is intended
for delay-tolerant applications (e.g., intelligent traffic control,
predictive maintenance, environmental monitoring) and not
suitable for safety-critical real time applications. The resulting
transmission probability is computed as

0 At < tmin

p(t) = 1 At > tmax (4)

( P(t)—Pumin )0‘
Pmax —Pmin
with the exponent « for controlling the preference of high
metric values and At being the passed time since the last
transmission has been performed . ¢,,;, is used to guarantee a
minimum packet size and ?.,,x specifies an upper bound for
the buffering delay, which has to be chosen with respect to
the application requirements.

For the wvalidation, an SINR-based metric Pgnr
{0 dB,30 dB} and a throughput prediction-based metric
Prr = {0 MBit/s, 30 MBit/s} are applied. For comparison,

straightforward periodic data transmissions with a fixed inter-
val of At =10 s are considered.

else

B. Methodological Setup

For the validation, the considered variants of CAT are ana-
lyzed using DDS and are compared to real world evaluations,
which are carried out in different drive tests the public LTE
network. An Android-based User Equipment (UE) (Samsung
Galaxy S5 Neo, Model SM-G903F) executes the CAT process,
which models a virtual sensor application. Data is transfered
via Transmission Control Protocol (TCP) in the uplink from
the UE through the cellular network to a cloud-based server,
which measures the resulting data rate. Per configuration, five
drive tests are performed on a 9 km long suburban track as
well as on a 14 km long highway track. Tab. [ summarizes
further key parameters of the evaluation setup.

TABLE I
VALIDATION PARAMETERS

Parameter Value
Data source 50 kByte/s

. Evaluation interval 1 Hz

£ tmin 10's

£ fmax 120 s

QO « 6
Metric for CAT dgink = {0 dB, 30 dB}
Metric for ML-CAT Pgrr = {0 MBit/s, 30 MBit/s}
Carrier frequency 2100 MHz

B Bandwidth 20 Mhz

'é UE transmission power 23 dBm

E eNB transmission power 43 dBm

¥ Channel model WINNER II Urban Macrocell

The machine learning based data rate prediction metric
computes its current values as Prp(t) = frr(x(t)) with x(¢)
being a set of ten measured features: payload size, RSRP,
RSRQ, SINR, Channel Quality Indicator (CQI), Arbitrary
Strength Unit (ASU), Timing Advance (TA), carrier frequency,
cell id, and velocity. The prediction model frr is a RF, which
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Fig. 5. Resulting data rate prediction performance for the simplified model
frp> Which is applied in the system-level network simulation.

consists of 100 random trees and is trained on the open data set
of [21], which contains the results and features of 2342 uplink
transmissions. On the supplied data set, the prediction model
achieves a coefficient of determination of R? = 0.8 after 10-
fold cross validation. For training the actual machine learning
model, the Waikato Environment for Knowledge Analysis
(WEKA) toolkit [22]] is used. In order to automate the training
phase and to generate implementations for performing online
predictions, an interface application has been develope

As a methodological reference, a simulation setup in Objec-
tive Modular Network Testbed in C++ (OMNeT++) 5.0 [23]
with INET 3.4 and SimuLTE v0.9.1 [24] is analyzed, which
replays the real world measurements. The evolved Node Bs
(eNBs) are positioned with respect to their real world loca-
tions and the analyzed UE moves according to the recorded
trajectory. Within the simulation setup, the prediction model
fre cannot be directly implemented as the simulator only
implements a fraction of the considered features. Therefore, a
reduced prediction model §5r = fhp(x*) is derived, which
utilizes the available features payload size and the SINR for
the online data rate prediction. As a consequence to the model
simplification, the resulting prediction accuracy is significantly
reduced (R? = 0.5655), which can be observed in Fig. |5 All
measurements are executed with an Intel Core i5-6200@2.3
GHz, 8 GB RAM and Ubuntu 18.04.1 LTS operating system.

C. Results

In the following paragraph, the results of different individual
evaluations are presented and discussed.

1) Modeling the Distribution of Real World Measurements:
Before the results for the CAT transmissions are analyzed, the
impacts of the prediction and the GPR-based derivation model
(see Sec. are studied. For this, all 2342 data transmissions

IThe software is available at https:/github.com/BenSliwa/DDS
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Fig. 6. Comparison of the data distribution modeling accuracy. The goal
of each method is to achieve the highest congruency with the real world
measurements.

of the training set are repeated by means of DDS and compared
to the achieved real world results. For each transmission, the
recorded features are utilized by the RF-based prediction.
Fig. [6] shows a comparison of the resulting accuracy for
modeling the distribution of the measurement values. While
all approaches are able to cover the average behavior of the
observations, the resulting distributions show differences in the
distribution of the data rate values. The RF prediction model
does not consider model derivations, therefore the resulting
value range is centered narrowly around the mean value of
the measurements. In contrast to that, the raw GPR approach
overemphasizes the statistical uncertainties in the edge regions.
As a consequence, even impossible values occur (negative data
rates)

Finally, DDS brings together both components and is able
to detect unrealistic derivations from the observed reality. The
results show a high match with the real world measurements
with a correlation coefficient of r» = 0.9981.

2) End-to-end Performance of the MUSs: It is important to
remark that DDS and system-level simulation utilize the data
of the training set to replay the trajectory of the vehicle and in
the case of DDS, also the channel conditions. The real world
validation itself is performed against additional measurements,
which are not part of the training set and are only used
for validation. This data is captured on the same physical
tracks but subject to different mobility and channel-related
effects. The resulting end-to-end behavior for the considered
methods and transmission schemes is shown in Fig. [/} For
the real world behavior, several effects can be observed. In
contrast to the periodic scheme, CAT and ML-CAT are able
to achieve significant increases in the resulting data rate due
to the opportunistic data transmission approach The schemes
behave differently with respect to the evaluation tracks. While
the SINR-based CAT approach works better on the suburban
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Fig. 7. Comparison of different performance evaluation methods for the considered MUSs.

track, ML-CAT achieves the highest benefits on the highway
track.

The proposed DDS is able to capture most of these phe-
nomenons very precisely. Especially on the suburban track,
the results match well with the real world measurements. As
discussed in previous work [10], the velocity-related network
dynamics lead to a reduced prediction accuracy on the high-
way track, which results in an increased variance within the
DDS. This effect has a doubled impact on ML-CAT, as the
data rate prediction is executed twice (the first time within
the transmission scheme itself and the second time within the
DDS). However, the mean behavior of the data rate is still
captured precisely.

In the SimuLTE evaluation, the effects of the implemented
MUSs are less significant. For the suburban track, CAT only
increases the mean data rate by 4 % (44 % in the real world)
and ML-CAT achieves a boost by 86 % (105 % in the real
world). During the real word measurements, the observed
channel quality is significantly more dynamic than the channel
model-based approach of the simulation. In addition, SimuLTE
does not implement LTE Transmission Power Control (TPC),
which explains the low variance of the results of each scenario.

It can be argued that a better congruency of simulation
results and real world measurements can be achieved by in-
creasing the modeling granularity within the simulation setup.
However, in many cases the required parameters are either
not easily accessible (e.g., operator internals) or impossible to
obtain (e.g., the behavior of all other cell users). Therefore,
the required modeling effort is massively increased for those
intentions. In contrast to that, the strength of DDS is its ability
to extract the parameterization implicitly from the data itself.

3) Computation Time: In addition to the achievable result
validity, the computation time is another crucial factor for
the simulative method. Often very detailed simulation envi-
ronments lead to very high computation times, which limits
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Fig. 8. Comparison of different performance evaluation methods for the

considered MUSs.

the applicability for large-scale evaluations.

Fig. |8 shows the resulting computation times per run for
the proposed DDS and the system-level network simulator.

In the considered case study scenarios, the proposed DDS
is more than 5000 times faster than the classical system-level
simulation while being significantly more precise. Although
the resulting RF model is very large — the generated RF
contains 120533 leafs — it can be evaluated very resource
efficiently, the computation time for online application of the
trained model is negligible.

Within the case study, only the results of a single end-to-end
indicator are considered. However, in contrast to the black box
approach of the proposed DDS, classical network simulation
spends a massive effort to derive the corresponding results. In
addition to the focused UE and its protocol stack, the whole
network infrastructure is simulated.

V. LIMITATIONS OF DDS

With this work, DDS is spotlighted as sophisticated al-
ternative to classical system analysis approaches for specific



evaluation tasks. Although the proposed approach has signif-
icant advantages in comparison to other scientific evaluation
methods, it has limitations that are related to its data-driven
nature.

Due to the high dependency to the training set, the possible
evaluations are fixed to the measured labels. In most cases,
introducing additional performance indicators requires to per-
form additional measurements in the real world. Therefore,
the exploitation of expert knowledge about the to be analyzed
indicators is of tremendous importance to proactively optimize
the data acquisition phase. For each considered performance
indicator, dedicated prediction and error models need to be
learned. In contrast to system-level simulation, the protocol
stack is treated as a black box, therefore it is not possible to
investigate intermediate indicators, which are not contained in
the feature set.

VI. CONCLUSION

In this paper, we presented a data-driven approach for end-
to-end network performance evaluation of novel communica-
tion methods. The proposed scheme — which is referred to
as DDS - has been validated against real world measurements
and system-level network simulation. DDS exploits the unique
characteristics of different machine learning models, which
are applied to derive a prediction model and a description
for the derivations between predictions and real world mea-
surements. The joint consideration of these models leads to a
close to reality evaluation environment for the study of novel
communication methods. In contrast to system-level network
simulation, the scenario modeling overhead is very low as the
parameterization is implicitly extracted from the data itself.
Moreover, within an example case study, it was shown that
DDS achieves a significantly better modeling accuracy of the
real world behavior while only requiring a fraction of the
computation time of regular simulation methods. In future
work, we will evaluate the applicability of novel machine
learning methods for both prediction and simulation model
generation. Furthermore, we will utilize DDS to analyze novel
anticipatory communication methods.

ACKNOWLEDGMENT

Part of the work on this paper has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876
“Providing Information by Resource-Constrained Analysis”, project B4.

REFERENCES

[1] B. Sliwa, T. Liebig, T. Vranken, M. Schreckenberg, and C. Wietfeld,
“System-of-systems modeling, analysis and optimization of hybrid ve-
hicular traffic,” in 2019 Annual IEEE International Systems Conference
(SysCon), Orlando, Florida, USA, Apr 2019.

[2] E. R. Cavalcanti, J. A. R. de Souza, M. A. Spohn, R. C. d. M. Gomes,
and A. F. B. F. d. Costa, “VANETS’ research over the past decade:
Overview, credibility, and trends,” SIGCOMM Comput. Commun. Rev.,
vol. 48, no. 2, pp. 31-39, May 2018.

[3] B. Sliwa and C. Wietfeld, “Empirical analysis of client-based network
quality prediction in vehicular multi-MNO networks,” in 2019 IEEE
90th Vehicular Technology Conference (VIC-Fall), Honolulu, Hawaii,
USA, Sep 2019.

[4] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine learning
for vehicular networks: Recent advances and application examples,”
IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 94-101, June
2018.

[5]

[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

(23]

[24]

C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo,
“Machine learning paradigms for next-generation wireless networks,”
IEEE Wireless Communications, vol. 24, no. 2, pp. 98-105, April 2017.
Z. H. Mir, “Large-scale simulation of site-specific propagation model:
Defining reference scenarios and performance evaluation,” in Advances
in Internet, Data and Web Technologies, L. Barolli, F. Xhafa, Z. A.
Khan, and H. Odhabi, Eds. Cham: Springer International Publishing,
2019, pp. 492-503.

Z. Yun and M. F. Iskander, “Ray tracing for radio propagation modeling:
Principles and applications,” IEEE Access, vol. 3, pp. 1089-1100, 2015.
N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini, and
J. Widmer, “A survey of anticipatory mobile networking: Context-based
classification, prediction methodologies, and optimization techniques,”
IEEE Communications Surveys & Tutorials, 2017.

B. Sliwa, D. Behnke, C. Ide, and C. Wietfeld, “B.A.T.Mobile: Leverag-
ing mobility control knowledge for efficient routing in mobile robotic
networks,” in IEEE GLOBECOM 2016 Workshop on Wireless Network-
ing, Control and Positioning of Unmanned Autonomous Vehicles (Wi-
UAV), Washington D.C., USA, Dec 2016.

B. Sliwa, T. Liebig, R. Falkenberg, J. Pillmann, and C. Wietfeld,
“Machine learning based context-predictive car-to-cloud communication
using multi-layer connectivity maps for upcoming 5G networks,” in 2018
IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, USA,
Aug 2018.

“Efficient machine-type communication using multi-metric
context-awareness for cars used as mobile sensors in upcoming 5G
networks,” in 2018 IEEE 87th Vehicular Technology Conference (VIC-
Spring), Porto, Portugal, Jun 2018, Best Student Paper Award.

B. Sliwa, R. Falkenberg, T. Liebig, N. Piatkowski, and C. Wietfeld,
“Boosting vehicle-to-cloud communication by machine learning-enabled
context prediction,” IEEE Transactions on Intelligent Transportation
Systems, 2019, Accepted for publication.

H. Ye, G. Y. Li, and B. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Communications Letters, vol. 7, no. 1, pp. 114-117, Feb 2018.

F. A. Aoudia and J. Hoydis, “End-to-end learning of communications
systems without a channel model,” in 2018 52nd Asilomar Conference
on Signals, Systems, and Computers, Oct 2018, pp. 298-303.

A. Samba, Y. Busnel, A. Blanc, P. Dooze, and G. Simon, “Instanta-
neous throughput prediction in cellular networks: Which information
is needed?” in 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), May 2017, pp. 624-6217.

F. Jomrich, A. Herzberger, T. Meuser, B. Richerzhagen, R. Steinmetz,
and C. Wille, “Cellular bandwidth prediction for highly automated
driving - Evaluation of machine learning approaches based on real-
world data,” in Proceedings of the 4th International Conference on
Vehicle Technology and Intelligent Transport Systems 2018, no. 4.
SCITEPRESS, Mar 2018, pp. 121-131.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
Oct. 2001.

J. R. Quinlan, “Learning with continuous classes.”
1992, pp. 343-348.

G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” in Proceedings
of the 26th International Conference on Neural Information Processing
Systems - Volume 1, ser. NIPS’13. USA: Curran Associates Inc., 2013,
pp. 431-439.

C. E. Rasmussen, Gaussian Processes in Machine Learning.
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 63-71.

B. Sliwa, “Raw experimental cellular network quality data,” Februar
2019. [Online]. Available: http://doi.org/10.5281/zenodo.2553832

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: An update,” SIGKDD
Explorations, vol. 11, no. 1, pp. 10-18, 2009.

A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Proceedings of the Ist International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools 08. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008, pp. 60:1-60:10.

A. Virdis, G. Stea, and G. Nardini, Simulating LTE/LTE-Advanced
networks with SimuLTE. ~ Cham: Springer International Publishing,
2015, pp. 83-105.

World Scientific,

Berlin,


http://doi.org/10.5281/zenodo.2553832

	I Introduction
	II Related Work
	III Machine Learning-based Solution Approach
	III-A Generating and Analyzing Machine Learning-based Prediction Models
	III-B Machine Learning-based Modeling of Derivations Between Prediction Model and Real World Measurements

	IV Validation
	IV-A Method Under Study: CAT-based Data Transfer
	IV-B Methodological Setup
	IV-C Results
	IV-C1 Modeling the Distribution of Real World Measurements
	IV-C2 End-to-end Performance of the MUSs
	IV-C3 Computation Time


	V Limitations of DDS
	VI Conclusion
	References

