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Abstract—Remote and rural area connectivity is a true challenge
that can be alleviated by allowing shared spectrum access in
bands below 1 GHz. Spectrum sensing can provide benefits when
used together with the database approach for realizing spectrum
sharing. Energy detection (ED) is very suitable in cooperative
sensing because of its low computational complexity and it does
not need prior knowledge about the signal and noise. In this
work, cooperative sensing using the window-based (WIBA) ED
method is studied to maximize signal detection distance in a
rural area scenario with a dedicated channel model. Based on
the required individual user detection probabilities, cooperative
signal detection distances in kilometers are explored using both
OR and k-out-of-n -rules. The results are compared to that of
the localization algorithm based on double-thresholding (LAD)
method. Computer simulations using a rural area channel model
show that the detection distance difference is tens of kilometers.
Furthermore, it was found that the signal detection distance
improvement can be even five-fold when using the cooperative
sensing approach. Thus the proper use and design of cooperative
sensing can help in rural area connectivity.

Keywords—spectrum sensing, collaborative sensing, signal detec-
tion, remote area, channel model.

I. INTRODUCTION

Connectivity in rural and remote areas continues to be
a global challenge. These areas require the use of lower
carrier frequencies below 1 GHz to obtain sufficient network
coverage. In places where mobile network operators (MNOs)
lack the incentives to deploy cellular networks, license-exempt
shared use of TV bands becomes an option to enable cost-
efficient solution for rural area users which could operate as
a secondary user utilizing spectrum white spaces. Spectrum
sharing is therefore an enabler for the deployment of mobile
communication networks to provide rural and remote area
connectivity in a cost-feasible manner. Incumbent spectrum
usage in these areas is often lower than in dense urban areas
which provides opportunities for shared spectrum access while
protecting the incumbents. Currently the rules developed for
the use of TV white spaces (TVWS) typically rely on the use of
geolocation database as the means to protect the incumbent TV
broadcasting usage requiring that devices wishing to access the
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TVWSs need to get the permission to transmit from a database.
That ensures the protection of the incumbents from harmful
interference. The use of spectrum sensing techniques can
provide benefits when used in conjunction with the database
approach to allow shared spectrum access. Especially in rural
and remote areas, spectrum sensing can be used to complement
the database approach by bringing more accurate information
on the actual spectrum usage in the given area. The use of
a single node for conducting spectrum sensing is challenged
by the hidden node problem which is why in rural and
remote deployments the use of cooperative (collaborative)
spectrum sensing is preferred [1], [2]. Long distances and
varying terrains are the challenge in rural areas and therefore
determining the sensing ranges is of key importance.

There exists several spectrum sensing techniques like en-
ergy detection (ED), matched filter detection, compressive
sensing and cyclostationary detection [3]. ED [4] is widely
studied and also adopted in practice due to its low com-
putational complexity and low amount of prior knowledge
need about the signal to be detected and noise. Even though
ED sensing sensitivity performance is not among the best
ones, cooperative sensing helps to overcome performance
degradation [5].

In this paper, the performance of the window-based
(WIBA) ED [6] used for cooperative sensing to maximize
signal detection distance (or radius of the detection area) is
investigated in a rural area case with a dedicated measurement-
based channel model. Recently proposed WIBA ED with the
adaptive sensing threshold has been shown to be among the
most efficient ED methods [6]. It is able to estimate the noise
level blindly and it operates even with signal-to-noise ratio
(SNR) below —10 dB. Cooperative detection decision rules
are introduced to define required individual user detection
probabilities to get the final cooperative detection probability
P; > 0.9 (90%) [3]. Usually, only detection probabilities are
studied in the literature. Here, also a detection distance is
explored. Detection distance is defined here to be the maximum
distance between the transmitter (TX) and the receiver (RX)
to still achieve the final cooperative detection probability



Py > 0.9. The detection distance is a very important aspect
especially in rural and remote areas, where distances are long.
The effect of the used cooperative decision rule and the number
of cooperative nodes to the detection distance are studied.
Based on required individual user detection probabilities, sig-
nal detection distances in kilometers between the TX and RX
are defined. Matlab simulations are performed using a rural
area channel model. This is the first time when the WIBA
method performance is evaluated for cooperative sensing case,
and using a dedicated channel model for rural area scenario.
The results can be used to enable proper design of cooper-
ative spectrum sensing which helps to improve connectivity
in remote areas together with the database approach. The
results are compared to that of the well-known localization
algorithm based on double-thresholding (LAD) ED [7], which
outperforms conventional ED methods [8].

This paper is organized as follows. Section II describes
the used rural area channel model. Section III describes
cooperative detection and decision rules. Section IV introduces
the used WIBA ED method. In Section VI, cooperative sensing
results when using rural area channel model are presented, and
Section VII presents our conclusions.

II. RURAL AREA CHANNEL MODEL

The used channel model is based on measurements of delay
spread and path loss performed in rural area by the companies
Ericsson and Telstra for the carrier frequency of 850 MHz and
distance up to 200 km [9]. Restricting the measured data to the
coverage area of 50 km and considering the carrier frequency
of 700 MHz, a simpler path loss model was proposed

PL(d, /) = FSPL(d, ) + K, )

where d is the distance, f is the central frequency, FSPL(-)
is the Free Space path loss model, and K is an offset
which minimizes the mean squared error (MSE) between the
proposed path loss in (1) and the measured path loss samples
in [9]. Fig. 1 depicts the measured data and the proposed path
loss model where K = 29.38 dB.

After the PL is determined, the shadow fading (SF), ogF,
can also be derived. Knowing that the SF corresponds to the
large scale fluctuations of the Channel Impulse Response (CIR)
around its average or, in other words, the standard deviation of
the error function between the measured data and the proposed
model (1), as in [10] it equals osp = 4.47 dB. Moreover, the
recommendations from [11] and the measured delay spread
in [9] were used with the 3rd Generation Partnership Project
(3GPP) Clustered Delay Line (CDL)-A model to generate the
Small Scale Parameters (SSPs) [12] used in the channel model.

III. COOPERATIVE SENSING

In cooperative sensing, information from severe spatially
distributed radios (or their antenna components) is used. The
major reasons to use cooperative spectrum sensing are fading,
Doppler effect, shadowing and receiver uncertainty problems
[2], [3], [13]. This helps to prevent so called hidden terminal
problem, where the radio is not able to sense the signal because
of low SNR caused by shadowing. The problems are illustrated
in Fig. 2, where user A is outside the primary user’s (PU)
transmission range and can not detect PU. In addition, there
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Figure 1. Measured data for four scenarios from [9] and the proposed path

loss model. The measured data is composed of 191 points, where each point
was obtained by averaging thousands of samples.

Figure 2. Illustration of hidden terminal problem in case of primary user
(PU) and users A, B and C.

is a natural obstacle (mountain) between user C and PU, so
C is not able to detect PU even though C is inside PUs
transmission area. Another benefit of cooperative sensing is
that single user’s probability of detection performance can be
lower when compared to the non-cooperative system. Because
cooperation gives diversity gain, simple energy detection is the
most common detection technique in cooperative sensing, even
though its performance in non-cooperative detection is worse
when compared to other techniques [3].

Cooperative sensing can be done in a distributed or cen-
tralized fashion [14]. In distributed sensing, radios operate
independently and communicate among themselves. Local
sensing results are shared with other radios, and decisions are
made locally. In centralized cooperation, the sensing process
is coordinated by a fusion center (FC) and the final sensing
decision is transmitted to all cooperative radios.

In cooperative sensing there are two indicators, namely the
detection probability Py and the false-alarm probability Py. In
spectrum sensing it is desired that the detection probability Py
is as large as possible. Here, we are using a typical requirement
that P; > 0.9 [15]. It is also desired that false alarm probability
Py is as small as possible. In the case of cooperative sensing,



P; (Py) means here the final cooperative detection (false alarm
rate) probability.

Let us assume that individual detection probability for one
node is P, ; and there are n cooperating nodes which perform
sensing and provide results to FC (at base station). Let us
also assume that all the nodes have same individual Py, i.e.,
Py1=PFPy2 =+ = Py, We assume a hard decision (HD)
in which each node decides if the signal is present or not, and
sends a one-bit information about the decision (0 or 1) to the
FC. HD selection is a compromise which decreases amount of
data that mobile users need to send to FC, but on the other hand
it decreases the accuracy of joint decision made by FC. Final
cooperative detection probability P; depends on the number
of cooperating nodes n and also on the used decision rule. The
general decision rules at FC are k-out-of-n, majority, OR and
AND rules [1], [16], [17].

k-out-of-n rule means that the signal is decided to be
present in the channel if k users out of n users report that there
is a signal at the detector input. In this case, the final detection
probability at the FC is Py = >, (7) P§;(1— Pyq)" " [1],
[18]. Corresponding final cooperative false alarm probability
is. P o= >0 (T;)P]’fl(l — P;;)"7" [1]. When k = 1
this corresponds to OR rule (1-out-of-n), when k& = n, this
corresponds AND rule (n-out-of-n), and when k = n/2,
this corresponds so called majority rule ([n/2]-out-of-n, called
later as [n/2]/n rule) [3]. OR rule means that the signal is
decided to be present when any of the cooperative sensing
nodes reports that signal is detected. This means that final
cooperative detection and false alarm rates are both high. In
AND rule, the signal is decided not to be present even though
only one cooperative node reports that the signal is not present.
This means that final cooperative detection and false alarm
rates are both small, so when using AND rule, cooperative
detection does not increase the detection probability. Optimal
decision rule depends on, e.g., the number of n, channel and
used detection threshold [3]. Majority rule has been noticed to
be optimal in most of the cases [19], so it is used also here
when exploring the detection distance.

It is reasonable to assume that in rural area scenario, the
amount of possible cooperative nodes is small. Therefore, in
this paper n was selected to be 5, 7 and 10. Table I presents
which individual user detection probability values will result
in the final cooperative detection probability to be Py > 0.9
when using k-out-of-n rule. It can be noticed that larger the
n is, the smaller individual detection probability is required,
and the better is the sensing performance. However, also Py
increases with n [1]. In addition, as n increases, the reporting
time and the overhead is higher, which also increases the
energy consumption. So, it is not always reasonable - or even
possible, e.g., in rural areas - to have as many cooperative
nodes as possible. From Table I it can also be seen that large
k requires high individual detection probability Py ; to get
final cooperative P; > 0.9. Majority rule has been found to
be a good compromise between required individual detection
probability and resulting cooperative detection performance
[19]. When using majority rule, required individual user de-
tection probability values P;; are 0.8 for 3/5 rule, 0.7 for
4/7 rule, and 0.65 for 5/10 rule (Table I). Those individual
user detection probability values were used in the simulations.
Also OR rule was used in the simulations so that the maximum

TABLE L. INDIVIDUAL Py ;:S TO GET FINAL COOPERATIVE Py > 0.9

WHEN USING k-OUT-OF-n RULE (n = 5,7 AND 10).

k/5 Pai | kJ7 Py, | k/10 Pa
1/5=0R 0.4 | 1/7=0R 0.3 | 1/10=0R 0.2
2/5 0.6 | 2/7 0.45 | 2/10 0.35
3/5=MAIJ.* 0.8 | 3/7 0.6 | 3/10 0.45
4/5 0.9 | 4/7=MAL* 0.7 | 4/10 0.55
5/5=AND 0.98 | 5/7 0.85 | 5/10=MAL*  0.65
6/7 0.95 | 6/10 0.75

7/7=AND  0.98 | 7/10 0.8

8/10 0.9

9/10 0.95

10/10=AND  0.98

* majority rule

distances were obtained for comparison.

1V. THE WIBA METHOD

In this work, spectrum sensing is performed using the
WIBA method [6] that uses a detection threshold when defin-
ing if there is a signal or only noise present in the channel. If
the signal is present, it means that the channel is occupied, as a
noise-only case means that the channel is free for a secondary
user transmission. Let us assume that the received frequency
domain samples x; are zero mean, independent Gaussian
distributed complex random variables. Thus, the sample energy
y; = |z;|? follows a chi-squared distribution with 20\ degrees
of freedom. The detection threshold parameter 7" can be solved
from [20], [21]

M-—1 1
Pea=e ™™ Z E(TM)’“, )
k=0

where Pra means the desired false alarm rate which is decided
beforehand. When M = 1, variables follow chi-squared
distribution with two degrees of freedom, and from (2) we
get that

Teme = — lll(PFA). 3)

For example, if M = 1 and Pgsa = 0.01, T" = 4.6. The
threshold parameter is constant for specific M and Pra, and,
thus, can be calculated beforehand.

In the WIBA method, at first the received waveform
samples are divided into L blocks called as detection windows
with length M. Window length M is selected beforehand.
Here, 50% overlapping is used. It means that first block
consist samples 1, - - - , M, second block consists samples % +
1,---, % -+ M, third block consists samples M +1,--- ,2M,
and so on. Energy samples y; in each block are summed up to
get the total energy in each block, which is, Z; = Zﬁl Yi(l),
i=1,---, L. The signal detection threshold is [6]

L
1
T, :ngZi, “)

where T comes from (2).

The LAD method [7] [8] is used as a point of comparison
in the performance evaluation and therefore it is shortly intro-
duced here. The LAD method uses iterative forward consecu-
tive mean excision (FCME) threshold setting process [22]. The
threshold is T}, = Temey, where Teye comes from (3) and o
is the mean. Basically, the threshold calculation corresponds to



TABLE II. THE MAXIMUM DISTANCE BETWEEN TX AND RX WHERE
THE SIGNAL CAN BE DETECTED FOR DIFFERENT TRANSMIT POWER
VALUES [DBM] AND SIGNAL BANDWIDTHS [MHZ]. OR RULE IS USED.
NUMBER OF COOPERATING NODES 1 > 5 AND Py ; > 0.4.

Transmit power | Signal BW | TX-RX distance | TX-RX distance
[dBm] [MH z] WIBA method LAD method
53 2 60 km < 32 km
53 4 60 km < 14 km

53 6 60 km < 7 km
46 2 60 km < 16 km
46 4 < 45 km < 6 km
46 6 < 30 km < 3 km
30 2 < 12 km < 2 km
30 4 < 8 km < 1km

30 6 < 5 km —
20 2 < 4 km —
20 4 < 3 km —
20 6 < 2 km —
10 2 < 1km —
10 4 - -

WIBA threshold setting when one sample corresponds to one
block, i.e., detection window length M/ = 1 and the number
of blocks L equals to the number of considered samples. The
LAD method calculates two FCME thresholds, namely the
upper and lower ones, with two different threshold parameters.
After that, the LAD method clusters together adjacent samples
above the lower threshold. The cluster is decided to be caused
by a signal if at least one of the samples is also above the
upper threshold. Usually, ACC parameter that allows p (usually
p = 3) samples to be below the lower threshold between two
accepted clusters, is used [8]. That procedure increases the
detection performance.

V. SIMULATIONS

This section provides cooperative sensing results when
using rural area channel model described in Section II. The
total bandwidth of the channel is 23.4 MHz and carrier
frequency is 700 MHz. In the simulations, used transmit power
values were 10, 20, 30,46 or 53 dBm and signal BW was 2,4
or 6 MHz corresponding to 8.5,17 and 25.6% of the total
BW. Matlab simulations for the WIBA and LAD methods
were performed to get individual detection probabilities Py ;,
and those results were combined to results from Section III in
order to get final cooperative detection probability P, results
(Table I). The results were used to find out sensing distances
in kilometers (km). Technically, sensing distance corresponds
a radius of a circular detection area (or zone). For the sake of
simplicity, this radius is called as a detection distance here. It is
of interest what is the maximum distance [km] between TX and
RX where signal still can be detected, assuming different signal
BWs and transmit powers. It is assumed here that the signal
is defined to be detected only if final cooperative detection
probability Py > 0.9 is achieved.

We used two cooperative decision rules, OR and majority
([n/2]/n) rule. As the OR rule gives the best possible perfor-
mance (so called upper limit of detection) but has high false
alarm rate, majority rule is a good compromise and, thus, a
reasonable choice that gives practical results. AND rule was
not used because it requires that all the nodes must detect the
signal, leading to a very low cooperative detection probability.

First, the results for OR rule are presented. In this case,
the final cooperative P; > 0.9 is reached when n > 5 and

TABLE III. THE MAXIMUM DISTANCE BETWEEN TX AND RX WHERE
THE SIGNAL CAN BE DETECTED FOR DIFFERENT TRANSMIT POWER
VALUES [DBM] AND SIGNAL BANDWIDTHS [MHZ]. kK — out — of — n
RULE IS USED AND Py ; > 0.9.

TX-RX distance [km] TX-RX distance [km)]
WIBA method LAD method
Transmit Signal 3/5 | 4/7 5/10 | 3/5 | 4/7 | 5/10
power BW rule rule rule rule rule rule
[dBm)] [MH?Zz]
53 2 50 > 60 > 60 10 15 17
53 4 33 44 50 4 6 7
53 6 22 31 35 2 3 3.5
46 2 24 32 40 4 7 ]
46 4 15 21 23 2 2.5 3
46 6 10 14 17 — 1.5 1.5
30 2 4 5 6 — 1 1
30 4 2 3 4 - - —
30 6 1 2 2.5 — — —
20 2 1 1.5 2 - - -
20 4 - 1 1 — — —
20 6 — - — — — -
TABLE IV. PERFORMANCE IMPROVEMENT [%] USING COOPERATIVE

OR AND k — out — of — n RULES. THE WIBA METHOD.

Transmit | Signal OR 3/5 4/7 5/10
power BW rule rule rule rule
[dBm)] [MH?Zz]

53 2 170% | 147% | 176% | 176%
53 4 300% 165% | 220% 250%
53 6 400% | 200% | 200% 230%
46 2 400% | 160% | 213% | 267%
46 4 500% 170% | 233% 255%
46 6 500% 170% | 233% 283%

Py > 0.4 (Table I). Table II presents the maximum distance
[km] between TX and RX where the signal is detected. The
WIBA method defeats the LAD method. It can be seen that
when the WIBA method is used and transmit power is 53
dBm, the distance where the signal can be detected is 60 km,
regardless of the signal BW. The corresponding distance for
the LAD method is only 7 — 32 km.

Next, the results for 3/5, 4/7 and 5/10 rules are presented.
In this case, the final cooperative P; > 0.9 is reached when
P;; is 0.8 (3/5 rule), 0.7 (4/7 rule), and 0.65 (5/10 rule)
(Table I). Table III presents the maximum distance [km]
between TX and RX where the signal is detected. Again, the
WIBA method outperforms the LAD method. For example,
when transmit power is 53 dBm, signal BW is 2 MHz and
the WIBA method is used, signal can be detected (final
cooperation detection probability P; = 0.9) when TX-RX
distance is 50 — 60 km. The corresponding distance for the
LAD method is only 10 — 17 km. It can be seen that when
n increases, also the detection distances increase. When the
number of cooperative nodes is doubled, the detection distance
is 10 — 17 km longer. However, it can be seen that even
with few cooperative nodes n, it is possible to achieve long
detection distances, even 50 km, depending on the transmit
power and signal bandwidth.

Table IV presents performance improvement in percentage
terms. For example, when signal BW is 4 MHz and transmit
power is 53 dBm, cooperative sensing gives 300% (OR rule),
165% (3/5 -rule), 220% (4/7 -rule) and 250% (5/10 -rule)
benefit. The larger the n is, the bigger the performance dif-
ference is in per cent. The performance difference is between
147 — 500%. That is, the detection distance is at least one and
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Figure 3. Distance [km] where cooperative sensing using OR and 3-out-of-5
-rules can detect the signal. Transmit power is 53 dBm and signal BW is 2,
4 and 6 MHz. The WIBA and LAD methods.
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Figure 4. Distance [km] where cooperative sensing using OR and 3-out-of-5
-rules can detect the signal. Transmit power is 46 dBm and signal BW is 2,
4 and 6 MHz. The WIBA and LAD methods.

a half-fold and at its best five-fold when comparing to single
sensing. When there are only few cooperative nodes (3/5 -
rule), performance difference is 147 — 200% when compared
to single sensing.

Figures 3 and 4 show visually the distance where cooper-
ative sensing can detect 2, 4 and 6 MHz signals with transmit
powers 53 and 46 dBm. Results for both OR and 3/5 -rules are
presented. Although the detection area is a circle with radius R
[km], a rectangle shape is used here for the sake or simplicity.
It can be seen that the WIBA method outperforms the LAD
method clearly. As expected, cooperative OR sensing gives
best results. It can also be seen that cooperative sensing gain
increases with bandwidth of the signal to be detected. In the
case of the WIBA method, cooperative sensing gives 26 — 45
km (OR method) and 4 — 16 km (3/5 -rule) benefit when
compared to single sensing, depending on the signal BW and
transmit power.

VI. CONCLUSION

Cooperative spectrum sensing performance of the WIBA
energy detection method was studied here to maximize signal
detection distance in a rural area case using a dedicated channel
model. Both OR and k-out-of-n cooperative decision rules were
studied to define required individual user detection probabil-
ities to get final cooperative detection probability, P; > 0.9.
The signal detection distance results were compared to that
of the LAD method. The WIBA method clearly outperformed
the LAD method: the detection distance difference was tens
of kilometers, even when the number of cooperative nodes
was small. It was also noticed that cooperation improves
the signal detection distance even five-fold, depending on
the signal bandwidth, used cooperative decision rule, and the
number of nodes. Therefore, the results are useful to enable
proper design of cooperative spectrum sensing which helps
to improve connectivity in remote areas together with the
database approach.
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