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Abstract—The application of Compresses Sensing is a promis-
ing physical layer technology for the joint activity and data
detection of signals. Detecting the activity pattern correctly has
severe impact on the system performance and is therefore of
major concern. In contrast to previous work, in this paper we
optimize joint activity and data detection in under-determined
systems by minimizing the Bayes-Risk for erroneous activity
detection. We formulate a new Compressed Sensing Bayes-
Risk detector which directly allows to influence error rates at
the activity detection dynamically by a parameter that can be
controlled at higher layers. We derive the detector for a general
linear system and show that our detector outperforms classical
Compressed Sensing approaches by investigating an overloaded
CDMA system.

I. I NTRODUCTION

Compressed Sensing (CS) is seen as a promising technology
towards novel detectors, optimized for the detection of sparse
signals even in under determined systems. Various CS algo-
rithms formulate the problem of solving an under-determined
set of equations as a convex optimization problem [1]. Involv-
ing a sparsity promoting term such as thel1 norm guarantees
that the algorithm converges and finds the sparsest solution
to an under-determined system [2]. Besides that, various
greedy approaches exist that solve under-determined prob-
lems iteratively. The most prominent ones are the Orthogonal
Matching Pursuit (OMP) [3] and the Orthogonal Least Squares
(OLS) [4].
In the field of communication technology, e.g, CS was success-
fully applied to OFDM systems for the reduction of the Peak to
Average Power Ratio [5]. Furthermore, in [6] the authors have
shown how novel CS techniques can be applied to Machine-
to-Machine communication setups in order to detect activity
and data jointly, thereby decreasing the required signaling
overhead.
Joint detection of activity and data opens a wide field of
application for CS algorithms in communications. Detecting
sparse multi-user signals in a communication system is mostly
motivated by assuming that some users are inactive and, thus,
modeled as transmitting zeros, making the signal sparse. How-
ever, in such a scenario, the detection task is beyond finding
the sparsest solution as pursued in CS. Rather, the detector
has to estimate which users are active and which are inactive.
The detection of the correct activity pattern, known as vector
support in CS, is therefore crucial for successful Compressed-

Sensing Multi-User Detection (CS-MUD). Another important
point is that signals in communication obey a modulation
alphabet which is generally a non-convex set. Accordingly,
problems in communication have to be relaxed prior to solving
them by common CS solvers.
With this application in mind, we would like to stress that
wrongly detecting a user to be inactive is generally worse than
doing the opposite, i.e., wrongly detecting a user to be active.
In the first case information is lost, whereas higher layer error
processing can help to identify erroneous transmissions inthe
latter case. The so called False Active and False Inactive rate
is consequently of crucial importance for CS-MUD.
In this paper, we derive a Bayes-Risk detector for under-
determined systems with non-convex finite alphabet con-
straints, which allows us to control the performance of the
activity detection with respect to False Active and False
Inactive errors. Moreover, this Bayes-Risk CS-MUD (BR-CS-
MUD) can efficiently be implemented using common tree
search algorithms such as the Sphere-Detector. As an example,
we show the performance of our BR-CS-MUD detector by
investigating an overloaded Code Division Multiple Access
(CDMA) network, which can be expressed as an under-
determined set of equations. The proposed detector utilizes the
information about a finite modulation alphabet and finds the
optimal solution by finding the closest lattice point. Utilizing
this strategy outperforms common convex CS solvers such as
the Basis Pursuit De-noising (BPDN) approach.

II. COMPRESSEDSENSING BAYES-RISK DETECTION

A. Sporadic Communication Model

In the following we shortly outline the sporadic communi-
cation model which forms the bases for the formulation of the
Bayes-Risk Compressed-Sensing detector. In this model we
aim to recover an unknown source vectorx whose elements
obey an augmented finite modulation alphabetA0 = A∪{0}.
HereA stands for the modulation alphabet that is used for data
transmission and can be, e.g., Binary Phase Shift Keying. The
zero is used to model inactivity in the source vector which
we assume to be of dimensionx ∈ AK

0 . In a communication
context,x can contain the symbols from different nodes in a
multi-user scenario [6] or symbols from different antennasin a
multiple antenna context. We further assume that the elements
xk of x are i.i.d and each element is non-zero with probability
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pa. Herepa can be interpreted as an activity probability. With
low pa, many elements ofx contain zeros, which makes
the vector sparse. We summarize the channels between the
nodes and the aggregation node with the matrixT ∈ R

M×K .
y ∈ R

M represents the noise corrupted observation at the
aggregation node. The canonical input-output relation of the
system is given by

y = Tx +w. (1)

If M < K the system refers to an under-determined sys-
tem where the number of variables exceeds the number of
observations. The noise vectorw ∼ N

(
σ2
n, 0

)
obeys an

uncorrelated zero mean Gaussian distribution with variance
σ2
n. Henceforth, the task is to recoverx ∈ AK

0 from M noise
corrupted measurements. To ease notation, we consider the
communication system to be a real valued system which is
not a general restriction. The scheme we propose can also be
applied to complex systems using an equivalent real valued
system description. With (1) we have a common noisy CS
problem with a-priori information about the source vector.

B. Generalized Likelihood Ratio Test

With the previously introduced sporadic communication
model, the goal of the detector is to reconstruct the symbols
from the augmented modulation alphabetA0. In [7] the au-
thors derived the MAP detector for an overdetermined system
given the knowledge about the a priori distribution of the
source vectorx. Our approach to recoverx is twofold. First,
we derive a detector that copes with under-determined systems
given the a-priori knowledge of the source vector. Second, we
formulate the detector such that the error rates for the activity
detection can be tuned depending on the system by formulating
the detection task in a Bayesian framework.
We start by considering the activity detection. For each el-
ement x̂k the detector estimates whether the element was
active, i.e.,x̂k ∈ A or inactive, i.e.,x̂k = 0. The possible
outcomes for the activity detection task are summarized as
follows. Table I shows the so called Confusion matrix of the

xk ∈ A xk = 0

x̂k ∈ A True Active False Active
x̂k = 0 False Inactive True Inactive

TABLE I
CONFUSIONMATRIX FOR ACTIVITY DETECTION

possible mappings between the true classes (element is active
or inactive) and the hypothesized classes (element is active
or inactive) [8]. The two error events are of special interest.
If an element is wrongly estimated to be inactive, the data
corresponding to this element is simply lost and cannot be
recovered. However, in the the opposite case, when an element
is wrongly estimated to be active, higher layer error detection
methods can sort out wrong data packets. Thus, we state that
these two possible error events have different impact on the
overall system performance. With the knowledge that the two
error classes have different impact, our approach is to derive
a detector that can be controlled by an additional parameter

that balances the activity detection.
To include this balancing in the detector, we consider a binary
hypothesis testing problem arising when determining whether
an element is active or inactive.

H1 : xk ∈ A → Element is active

H2 : xk = 0 → Element is inactive

With Tab. I we assign the following costs for wrong activity
detection.

• CFi : Cost for estimating False Inactive
• CFa : Cost for estimating False Active

Costs for correct decisions are implicitly set to zero. We cast
the problem as the minimization of the Bayes-Risk defined as

R = CFaPr(xk = 0)

∫

ZA

p (ym|xk = 0) dym+

CFiPr(xk ∈ A)

∫

Z0

p (ym|xk ∈ A) dym. (2)

The Bayes-Risk given in (2) expresses the risk of a wrong
activity detection.p (ym|xk) denotes the density for an obser-
vation ym under hypothesisxk. Pr(·) is an event probability.
Z0 andZA are the regions in the observation space where the
detector estimates the element to be inactivex̂k = 0 or active
x̂k ∈ A. For the sake of clarity we omit lengthy derivations
and refer the reader to [9]. With the results from [10] we
cast (2) as a Generalized Likelihood Ratio Test (GLRT) which
has the following form

p (ym|xk = 0)Pr(xk = 0)CFa

maxx∈A p (ym|xk)Pr(xk)CFi

H2
≷
H1

1 (3)

The GLRT in (3) evaluates the weighted a posteriori prob-
abilities for both hypothesis and assigns the observation to
the hypothesis with higher probability. Moreover, hypothesis
H1 covers the setA and is therefore a so-called composite
hypothesis. As (3) shows we compare the best model inH1
with H2. It can be seen that (3) can be rewritten as

x̂k = arg max
xk∈A0

p (ym|xk)Pr(xk)C (xk) , (4)

with
C (xk) = C

1A(xk)
Fi C

1−1A(xk)
Fa . (5)

Here,1A (·) is the indicator function which takes the value
1 if the argument is contained in the setA. The solution to
the optimization problem given in (4) is the optimal scalar
estimate forxk given a scalar observationym. Assuming i.i.d.
observations and vector hypothesisx, it can be shown that
under application of the max-log approximation, (4) can be
extended to

x̂ = arg max
x∈A0

log
M∏

m=1

p (ym|x)
K∏

k=1

Pr(xk)C (xk) . (6)

In the following we consider the system given in (1). The a
posteriori probability for the elementym with vector hypoth-
esisx can now be expressed as

p (ym|x) = 1√
2πσn

exp

[

− 1

2σ2
n

|ym −Tmx|2
]

, (7)



and

M∏

m=1

p (ym|x) = 1

(2π)M/2σM
n

exp

[

− 1

2σ2
n

‖y −Tx‖22
]

. (8)

Here Tm is the mth row vector of the matrixT. In the
following we assume that the elements of the source vectorxk

from (1) obey a Bernoulli / Uniform distribution. In particular,
we have

Pr(xk ∈ A) = 1− Pr(xk = 0) = pa (9)

p (xk|xk ∈ A) =
1

|A| (10)

and we write the a priori probability of the source vectorx

weighted with the costs from (5) as

K∏

k=1

Pr(xk)C (xk) =

K∏

k=1

[CFa(1− pa)]
1−1A(xk)

(

CFi
pa
|A|

)1A(xk)

= [CFa(1− pa)]
K−

∑
k
1A(xk)

(

CFi
pa
|A|

)∑
k
1A(xk)

, (11)

with (8) and (11) we can finally rewrite the optimization
problem given in (6) to

x̂ = arg min
x∈A0

‖y−Tx‖22+2σ2
n

K∑

k=1

1A (xk) log

(
CFa

CFi

1− pa
pa/|A|

)

.

(12)
Moreover, the indicator function1A (xk) can be replaced by
the zero pseudo-norm defined as‖x‖0 = #{xk : xk 6= 0}. We
further express the ratio of costs asΩ = CFa

CFi
and we obtain

the non-convex optimization problem

x̂ = arg min
x∈A0

‖y−Tx‖22 + 2σ2
n‖x‖0log

(

Ω
1− pa
pa/|A|

)

x̂ = arg min
x∈A0

‖y−Tx‖22 + λ (Ω) ‖x‖0. (13)

Where the penalty termλ (Ω) = 2σ2
nlog

(

Ω 1−pa

pa/|A|

)

reflects
the a priori assumption about the source vectorx weighted by
the parameterΩ. With Ω = 1 andM ≥ K (13) equals to the
MAP detector from [7]. The optimization problem (13) can
be interpreted as a generalized MAP detector involving the
Bayes-Risk for the activity detection. Additionally,Ω scales
the a priori assumption and can be interpreted as an additional
parameter that determines whether the detector is conservative
Ω > 1 or liberalΩ < 1. A conservative detector will decide in
favor of inactivity and will produce less False Active errors.
In contrast a liberal detector will decide in favor of activity
and produce less False Inactive errors than a conservative
detector. The problem given in (13) is non-convex but can
be implemented via a Sphere- Detector under the condition
thatM ≥ K holds. In the following we augment this detector
for under-determined systems, i.e.,M < K.

C. Constant Modulus Restriction

To solve (13) forM < K efficiently, we restrict to constant
modulus alphabets which allows us to replace thel0 pseudo-
norm by thelp norm, i.e.,‖x‖0 = ‖x‖22 = ‖x‖pp and we have

x̂ = arg min
x∈A0

‖y −Tx‖22 + λ (Ω) ‖x‖pp. (14)

The penalty termλ(Ω) is directly influenced byΩ and can be
negative for small values ofΩ. We make use of the norm-
invariance of the source vectorx and expand (14) to an
overdetermined system

x̂ = arg min
x∈A0

‖y −Tx‖22 + ‖x‖22 + [λ (Ω)− 1] ‖x‖0 (15)

=

∥
∥
∥
∥

[
y

0K

]

−
[
T

IK

]

x

∥
∥
∥
∥

2

2

+ [λ (Ω)− 1]
︸ ︷︷ ︸

Θ(Ω)

‖x‖0. (16)

If Θ(Ω) ≥ 0, (16) can be directly implemented using a
Sphere-Detector. One of the main prerequisites for the Sphere-
Detector is an increasing metric in the sequence of detected
symbols which is not guaranteed ifΘ(Ω) < 0. However,Θ(Ω)
controls how non-zero symbols are penalized compared to
no costs for zero symbols. ForΘ(Ω) < 0 the cost for non-
zero symbols are set to a negative value while zero symbols
are still charged with no costs. To ensure that the penalty
term remains positive, we re-write the optimization problem
such that zero-symbols are penalized with positive costs. To
proof this approach, we briefly review that thel0 pseudo
norm can be written as a sequence of indicator functions as
‖x‖0 =

∑K
k=1 1A (xk). If Θ(Ω) < 0, we can rewrite the

optimization problem by subtracting the absolute value of the
negative costs while adding the constant|Θ(Ω)|K. These two
step do not change the optimization problem and we obtain
for (16)

x̂ = arg min
x∈A0

∥
∥
∥
∥

[
y

0K

]

−
[
T

IK

]

x

∥
∥
∥
∥

2

2

− |Θ(Ω) |‖x‖0 + |Θ(Ω)|K

= arg min
x∈A0

∥
∥
∥
∥

[
y

0K

]

−
[
T

IK

]

x

∥
∥
∥
∥

2

2

+ |Θ(Ω) | [K − ‖x‖0]

= arg min
x∈A0

∥
∥
∥
∥

[
y

0K

]

−
[
T

IK

]

x

∥
∥
∥
∥

2

2

+ |Θ(Ω) |
K∑

k=1

10 (xk)

= arg min
x∈A0

‖y′ −T′x‖22 + |Θ(Ω) |
K∑

k=1

10 (xk) . (17)

Due to the application of10 (·), each zero symbol is penalized
by Θ(Ω). Moreover, the penalty term in (17) shows that the
metric is monotonically increasing in the elements contained in
x which allows direct implementation via a Sphere-Detector.
We note that the augmented matricesy′ ∈ R

M+K andT′ ∈
R

M+K×K constitute an overdetermined set of equations.

D. Compressed-Sensing Bayes-Risk Sphere-Detector

We here briefly rewrite the optimization problem (17) such
that efficient implementation via a Sphere-Detector is possible.
We apply the following procedure for solving (17) efficiently.



First, we apply the skinny [11][p. 217] QR decomposition on
T′ and obtainT′ = QR with Q ∈ R

M+K×K being a matrix
with orthonormal columns andR ∈ R

K×K being an upper
triangular matrix. With this decomposition ofT′, we rewrite
the optimization problem (17) as

= arg min
x∈A0

‖y′ −QRx‖22 + |Θ(Ω) |
K∑

k=1

10 (xk) (18)

= arg min
x∈A0

‖QTy′ −QTQRx‖22 + |Θ(Ω) |
K∑

k=1

10 (xk)

(19)

= arg min
x∈A0

‖ỹ −Rx‖22 + |Θ(Ω) |
K∑

k=1

10 (xk) (20)

Note that for aΘ(Ω) ≥ 0, the optimization problem can be
solved by the direct application of the QR decomposition on
(16) [7][12].

III. PERFORMANCEEVALUATION
A. Setup

In the following, we exemplary show the performance of
our detector by investigating an overloaded Code Division
Multiple Access (CDMA) [13] system. In this model, we
assume that in totalK sensor nodes are connected to a central
aggregation node. The nodes are active only occasionally with
a probability factorpa which is equal for allK nodes in
the system. Active nodes transmit Binary Phase Shift Keying
(BPSK) modulated symbols and we haveA = {±1}. The
symbols are spread by pseudo-noise sequences to chips by
a factor ofN which is equal for all nodes in the network.
The chips are transmitted over a frequency selective Rayleigh
fading channel with impulse response length ofLh which is
also assumed to be of equal length for all nodes. Inactive
nodes are modeled as transmitting zeros. The joint activity
and data detection task is thus the detection of symbols from
the augmented alphabetA0 = A ∪ {0}. In the following
we write x ∈ mathcalAK

0 as the source vector containing
the symbols from theK nodes. To be consistent with the
previously derived detector, we express the node specific
spreading and convolution with the underlaying channel with
the matrixT ∈ R

N+Lh−1×K . This allows us to formulate the
symbol-rate CDMA system as

y = Tx +w. (21)

Here y ∈ R
N+Lh−1 is the received signal at chip-rate and

w is the white uncorrelated noise vector with zero mean and
varianceσ2

n. We apply a pre-whitening filter in order to ensure
white Gaussian noise at symbol-rate. We neglect the details
here, for further information the reader is referred to [?].

B. Symbol Error Rate

We investigate the performance of the detector by consid-
ering errors on the augmented alphabetA0 which we term
Gross Symbol Errors (GSE) since activity and data errors are
summarized in this class. For assessing the performance at the

GSE, we start by investigating it for different degrees of over-
loading the system. Overloading is done by varyingN while
keepingK constant. The remaining simulation parameters are
summarized in Table II

Simulation Parameters

Number of Nodes K = 20

Spreading Gain 1 ≤ N ≤ 20

Length of Channel Impulse Resp. Lh = 4 chips
Channel Type real valued Rayleigh Fading

Channel State Information Perfect
Activity Probability pa = 0.2

Bayes Factor Ω = 1

Modulation Type BPSK

TABLE II
SIMULATION PARAMETER
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Fig. 1. Gross Symbol Error Rate parametrized by the length ofthe spreading
sequenceN . ForN = 5, the dotted curve shows the performance of a Basis
Pursuit De-noising for comparison.

Fig.1 shows the GSE for varying the spreading gainN .
Most significantly, decreasing fromN = 20 chips down to
N = 10 chips results only in small losses. Overloading the
system further, decreases the performance. However, even with
N = 1, communication is still possible at high SNR. One
should note that forN = 1, the system has the dimension
4 × 20 due to the channel. Additionally, the BR-CS-MUD
performs exhaustive search among all possible hypothesis with
an efficient search method. This explains the good perfor-
mance of our detector. Additionally, the performance of the
Basis Pursuit De-noising (BPDN) is shown for a system with
a spreading gain ofN = 5 for comparison. Comparing the
performance of the BPDN with the BR-CS-MUD shows that
the BPDN converges into a error floor even for high SNR.
Our detector gains performance from the knowledge that the
source vector obeys a constant alphabet with a known a priori
distribution. In contrast, the BPDN relaxes the problem to a
convex optimization problem prior to solving, which results
in significant performance losses.



C. Performance of the Activity Detection

To assess the performance of the activity detection, we
employ the so called Receiver Operating Characteristic (ROC)
curve [8]. The ROC evaluates the True Active and the False
Active rates of the activity detection which are dependent
on the SNR and the choice ofΩ. An optimal detector will
produce a True Active rate of100% and a False Active rate
of 0%. Fig. 2 shows the ROC for the setup summarized in
Table II. The spreading gain is set to a fixed value ofN = 5
for all nodes and the Bayes factorΩ is varied to influence
the activity detection. For a Bayes factorΩ = 1, the curve
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Fig. 2. Reciever Operating Characteristic for the activitydetection for an
SNR range of5dB− 40dB

starts at the point(0/0) which means that the detector neither
correctly detects active nodes nor detects nodes wrongly to
be active. Consequently, the detector estimates all nodes to be
inactive. For increasing SNR (moving upwards on the curve),
this detector increases the True Active rate while still meeting
a very low False Active rate. This shows that the detector
only detects nodes to be active if the particular probability
that the node is active is very high, which can be interpreted
as a conservative behavior of the detector. Increasing the Bayes
factor toΩ = 10 andΩ = 100 makes the detector even more
conservative and the False Active rate is kept very low at
increasing SNR. At very high SNR, the detector reaches the
(1/0) point and no errors for the activity detection occur.
Decreasing the Bayes factor down toΩ = 0.1 andΩ = 0.01
promotes the detection of symbols instead of zeros. This
setting tunes the detector such that the activity detection
decides more likely in favor of activity instead of inactivity.
At very low SNR, the curves start at the point(1/1) and
the detector estimates all nodes to be active, producing a
False Active and True Active rate of100%. The behavior for
increasing SNR is analogous to the previous setting, the False
Active rate decreases down to0%. The True Active Rate also
decreases slightly and reaches100% for high SNR. Since the
detector has the tendency to decide in favor of activity instead

of inactivity, we term this a liberal detector. In a practical setup
Ω can be tuned by higher layer applications such that certain
False Active of True Active rates are met. Moreover, it might
be useful to scaleΩ as a function of the current SNR.

IV. CONCLUSION

In this work, we introduced a novel Compressed Sensing
Bayes-Risk Detector that minimizes the risk of an erroneous
decision with respect to the activity detection. This detector
allows reliable communication even in under-determined com-
munication systems. As a degree of freedom the performance
of the activity detection is controlled by an additional param-
eter. This provides a system depended flexible management of
the False Active and False Inactive rate and can be adjusted by
higher layers such that certain system specific error rates are
met. We showed that our detector utilizes the finite alphabet
constraint of the modulation alphabet as side information,
which allows reliable communication even in highly under-
determines systems. With this side information we our detector
outperforms a classical Basis Pursuit De-noising approach.
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