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Abstract—Recent advances in wireless technologies have enworse scenario may occur if a terrorist can create severe

abled many new applications in Intelligent Transportation Sys- congestion in an area before detonating a bomb.
tems (ITS) such as collision avoidance, cooperative driv . . . . . . .
congestion avoidance, and traffic optimization. Due to the - As drivers increase their reliance on wireless signals in

nerable nature of wireless communication against interfeence making decisions, the absence or even the delay of these
and intentional jamming, ITS face new challenges to ensurehe  signals may have catastrophic effects due to the real-time
reliability and the safety of the overall system. In this pager, we constraints present in the system. Although it may be stiirg

expose a class of stealthy attacks — Stuck in Traffic (SiT) atks f t hicles to b th i st ith all
— that aim to cause congestion by exploiting how drivers make or autonomous vehicles to become the main stream (with a

decisions based on smart traffic signs. An attacker mounting t_he challgnges CU“’?”“Y present),_n.owadays_, we rely oR rea
a SiT attack solves a Markov Decision Process problem to find time traffic information to make driving decisions. Moregve

optimal/suboptimal attack policies in which he/she interéres with - many vehicles are already equipped with wireless connestio
a well-chosen subset of signals that are based on the statetbé to invoke traffic services.

system. We apply Approximate Policy Iteration (API) algorithms

to derive potent attack policies. We evaluate their perfornance on Paper scopeDrivers are typically faced with a decision mak-

a number of systems and compare them to other attack policies jng process whenever they encounter alternatives in chgosi
including random, myopic and DoS attack policies. The genexted their routes. For example, should a driver use the upper or

g?rige:t’t:liegoslil::?gg tggik:;enfgzm?zgotﬂg“&?&gf&%ﬁ@ lower level v_vhen driving across George Washington Bridge?
reward from the standpoint of the attacker. Should a driver use a highway or a local access road for a
given short trip? The decisions made are not random, but are
typically aided by traffic signs (e.g., reflecting the delay o
the expected time to reach a particular point) and/or online

In the area of Intelligent Transportation Systems (ITSap services (e.g., Google maps with traffic informatiomie T
vehicle-to-vehicle and vehicle-to-infrastructure comnmiza- goal is to reduce congestion as much as possible. It is known
tions enable many potential applications such as collisithat traffic congestion is a significant problem that coses th
avoidance, cooperative driving, congestion avoidancel aWS billions of dollars. In 2010, and across 439 urban areas,
traffic optimization [1]-[5]. With recent advances in wigsk traffic congestion came at the price of 4.8 billion hours of
technologies, the FCC has allocated a frequency band extra driving time and 1.9 billion gallons of fuel. The cost t
about 75MHz in the 5.9 GHz band for Dedicated Shothe average commuter was $713 in 2010 [18].

Range Communications (DSRC) for public safety services [6] \when wireless signals are used to communicate important
The associated MAC layer can be based on WLAN (IEEfzformation to drivers — perhaps through smart traffic signs
802.11p) or 3G cellular extended with TDMA and CDMA forgng wireless transceivers in vehicles — jamming a subset of
decentralized access when no infrastructure is preisgni8l7] ihe signals may impact the overall traffic flow leading to

Due to the shared nature of the wireless channels usadchecked safety conditions. In this paper, we expose a clas
the overall safety of the ITS is affected by interference araf stealthy attacks — that we term Stuck in Traffic (SiT) ditac
intentional jamming by adversaries. Jamming has been showrthat aim to cause congestion. Through solving a Markov
to cause severe effects that may cripple the whole systam [@lecision Process (MDP) problem, an attacker mounting a
[14]. Previous incidents indicate the possibility of ifeging SiT attack selects a subset of signals to interfere with. The
with these communication mediums_[15]. By placing jamehoice of signals is based on the current state conditions of
ming devices in vehicles and at critical transportatiom®i the system, taking into account the exposure risk the atack
(bridges, tunnels, cellular towers, etc...), an adversaay is willing to take. Due to the exponential nature of the state
impact the overall traffic flow, exploit the adaptation of thepace that describes the system, solving the MDP exactly
drivers to make abrupt decisions causing accidents, amptte is computationally prohibitive. Thus, we apply approximat
to maximize their gain by preventing critical informatiaimim  policy iteration methods to solve the MDP problem to identif
reaching a neighboring subset of vehicles| [16]] [17]. A muctuboptimal, yet efficient, attack policies.

I. INTRODUCTION
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Contributions: The use of wireless technologies in variousvhich help understand and classify attacks, are used tosexpo
traffic safety applications is becoming the norm. Thus, it iweaknesses and identify potential threats facing suclessst

important to expose potential security issues before geplo Stealth attacks whereby an attacker partitions an ad-hoc
ment. In particular, we make the following contributions:  network or hijacks traffic were studied in [22]. A key idea
« We provide a general framework for identifying stealthys to keep a low exposure and to minimize the cost of the
attacks that reflect the best interest for an attackexttack through manipulation of the routing information adliv
minimizing the cost while maximizing the damage. behaving nodes.

« We expose SIT attacks that aim to cause traffic congestionother attacks on vehicular networks include Sybil attacks
through a proper choice wihich signals to interfere with ysed to inject false messages into a vehicular network grou
andwhen. use of false identities [23], DoS attacks through jamming

o In almost all the cases studied, we were able to ideflye communication channels, impersonation by using fake
tify attack policies that are more potent than traditiongdentities, and bogus information attacks wherein wrong da
DoS attacks and random attacks, among other policigguld be diffused in the network, for example to divert teaffi
Furthermore, the generated policies are shown to signifom a given road. In the SiT attack we consider herein, the
icantly outperform myopic and random attack policies. propagation of false information about traffic conditiorss i

Paper organization: In Sectior{l, we survey related work. Inindirectly inflicted by the attacker when the latter inteefe
Section[ll, we describe the framework developed to expo®éth some of the signals from the vehicles to their neighbor-
SiT attacks. We evaluate the impact of SiT attack policies iRg access points leading to global traffic congestion. For a
Section[IV and we conclude the paper in Secfidn V with summary of various potential attacks on vehicular networks
summary and future work. we refer the reader to [24] and references therein.

Il. RELATED WORK 1. A GENERAL FRAMEWORK

The work in this paper relates to two main areas of |n this section we present a framework that enables the
research: (1) safety applications through V2V and V2l véissl identification of stealthy SiT attack policies that aim teate
communication and (2) security in vehicular networks. traffic congestion.

Traffic safety and management applicationsThere has been

a large body of work in the area of ITS that utilizes wirelesd The Model

signals for various safety and congestion management-appliwe consider a vehicular network that is composed of a set
cations. In [[2], the authors relied on wireless commun@sati of segments and a decision point. A segment is a portion
to develop different cooperative collision warning assis¢ of an infrastructure (e.g., highway, bridge or a tunnel)ttha
for forward collision warning, intersection collision afahe is controlled by one access point. As vehicles utilize a seg-
changes. In[1] the authors investigate the impact of DSRC afent, they send wireless signals to the access point for the
the latency and the success probability in Forward ColiisiGcegment to get an estimate of its current load (e.g., number
Warning applications. The work in_[19] proposes a safetyf vehicles). The access point reports its measurement back
application in which each vehicle is aware of its neareg a decision point to influence future incoming traffic. Each
k neighbors through V2V communication. The architectursegment presents an alterative route to the driver. A aecisi

is envisioned for various safety scenarios, such as amflisipoint is a location at which drivers must make an “educated”
avoidance, pre-crash sensing, traffic optimization ande ladecision on which segment to use (e.g., at highway entrance
changes warning. In_[20], Dresner et al. devised a schemeints and intersections). At each decision point, the load

in which vehicles can avoid congestion in intersections by neach segment is presented to the driver. Figure 1 shows a
stoping at all. The idea is that vehicles, through wirelessc diagram describing the setup.

munications, reserve slots in space and time at the intérsec
managers.

Security in vehicular networks: There has also been a large
number of research studies that focused on the security of
vehicular networks. Leinmuller et al. studied the effeofs
false-position data on geographic routing in VANETs]|[21].
It was shown that malfunctioning and/or malicious nodes
broadcasting false position information can lead to packet
losses, routing delays and traffic interception, and hemece c
drastically affect the performance, reliability and sétyuof
position-based routing networks.

A model for attacks on inter-vehicle communication systems

was proposed ir [17] wherein the goals and logistics of vexio
attacks are expressed in terms of attack trees. These treesfig. 1. A vehicular network with 2 segments and a decisiomipoi

Decision
point



We consider a discrete-time model in which at each tine the attacker’s control action, and the true queue lengths
step, new vehicles arrive at a decision point based on soméi), i.e.,
arrival process. For simplicity, we assume an infinite popu- . ,
lation of vehicles for the arrival process. Based on the soad G (@) = hlgn (i), ur) ®)
displayed, a driver picks an appropriate segment. Veh&tés where i is some function, which for simplicity is assumed
each segment based on its service rate. to be known to the attacker. Equatiofi (I, (2) did (3) define
Let )\, denote the arrival rate at the decision point at timée state dynamics. Note that from the attacker’s standipoin
k, ax(i),i = 1,...,n, denotes the admission ratio of vehicleghe states;. consists not only of the queue lengig(i), i =
on segment at time k, and 3, (4),i = 1,...,n, denotes the 1,...,n, but also the admission ratias(i),i = 1,...,n,
service rate for segmenit at time k, wheren is the total since even for given values of the queue lengths, the attacke
number of segments. Then the number of vehicigsi) on course of action will change depending on the advertised

segment at timek is given by: admission ratios for the various segments.
, ) , , The attacker’s action at time is obtained through a policy
q (i) = qe-1(i) + ar—1()) A — Br (7). (1) ..., which is defined as a mapping from the state space to the

Throughout the paper, we assume that the service rates Ggatrol space, iy : S — Uy .
known and fixed. Let g(i,u, j) denote the reward obtained when the system

volves from state to statej, under attack action:.. The

Depending on the traffic optimization policies, the ad ard can be described by the following equation:

mission ratio for each segment is determined based on fRy
number of vehicles on all segments according to the follgwin g(i,u,j5) = d(i,u,j) —c(i,u,j) (4)

equation: ) ) ) )
whered is the damage function andis the cost function of

ar (i) = f(Gr-1(1), Gx=1(2), ...gg—1(n)) (2) the attack actiom.. An attack action becomes more appealing
if it can cause higher damage with less cost.

where f is a traffic optimization function andy (i) is the The infinite horizon expected reward is given by

estimate of the queue length of segménat time k. For

example, the admission ratios can be chosen proportionall B N

based on the number of vehicles on each segment, Weightéycfso’uo’ul’ --)=E 27 9w ok (sk)s s1)ls0| - (5)
by the service rate of each segment, or simply by picking the k=0

least loaded segment. wheresy is the initial system state arfd< v < 1 is a discount
factor. Since the functiog(.) is bounded andy < 1, the
B. ST Attacks reward function[(b) is well defined.

The goal of SiT attacks is to cause traffic congestion b _The attacker is interested in m_aximizing the to_ta_l expected
jamming a subset of the wireless signals from the vehicles‘%j{)’scounte,’d rewards over the choice of attack policies. Henc
the access points leading to incorrect estimates displéyed (€ 902l is to compute the solution to

drivers, and _consequently wrong decisions made by therdrive J*(s0) = max J(so, o fi1, - - -)- (6)
(e.g., choosing a congested segment). To reflect theittlsgeal HOsH L5

nature, an attacker pays a price whenever he/she decidetntother words, the adversary aims to maximize the cumudativ
jam a wireless signal. Clearly, if the cost of jamming is vergxpected discounted reward over time by choosing attack
high, SiT attacks would not jam any signal and if the cost gfolicies yq, i1, ..., as shown in[{(6). The problem now falls
jamming is very low, SiT attacks would jam all the time (i.e.within the class of infinite horizon problems with discouhte
DoS attack). We are interested in identifying attacks pedic reward. Hence, a stationary poligy (.), i.e., which does not
that tradeoff damage and cost. In particular, we are intedesdepend onk, is optimal. The optimal attack policy can be
in identifying attack policies that can decide the prop¢sick obtained by solving the following Bellman equation [25]:
action based on the current state of the system.

Let s, € Sy denote the state of the system at tirhe J*(sp) = max {E[g(so,wsl)]
where S is the state space at time. The state of the u€t(s0)
system is the combination of the queue length$i) and
ax(i),i =1,...,n. Based on the number of new arrivals and + VZP(31|SOa “)J*(Sl))} ()
the admission ratios, the state is updated at the next tigpe st 51

The goal of the attacks is to unbalance the incoming traffichereJ*(.) is the optimal value function. The first term on the
across segments by selectively choosing what signal(s) RAH.S. represents the immediate stage rewardlin (4) and the
attack at any state, if any. Let, € U denote the control second term is the future reward. The conditional probgbili
action of the attacker at timé andi{, the control space at p(.) is the probability of a transition of the system to future
time &, which depends on the actual state Note that the states;,; from states, under attack actiom, and hence the
estimatesj; (i), = 1, ..., n, of the queue lengths are functionsummation in the second term is over all possible futurestat



s1 from so. Solving the fixed point equation above gives theapture the fundamental characteristics of the state. Wd us
optimal tradeoff between damage and cost from the stantipdime following features to approximate the value functifs)

of the adversary.

Due to the large state space, solving the above equatiorl)
may not be computationally feasible. Thus, we propose an2)
approximate policy iteration method [26]-[28]. Before we
describe the approximate policy iteration methodology, we

for states with:

The number of vehicles on each segment.

The degree of imbalance between the number of vehicles
on each segment (weighted by their departure rates when
segments have different service rates).

provide some brief background on exact policy iteration. 3) The segment that is the least occupied.
Exact Policy iteration consists of 2 steps: policy evalrati 4) The admission ratios reported to the drivers.
and policy improvement. In the policy evaluation step, veatst 5) Difference between the true admission ratio (that is
with an initial policy .. Then, we solve a system of linear based on the true occupancy of vehicles) and the one
equations to evaluate the cost functidp(s) starting from utilized by drivers at the decision point.
states and using policyu: 6) How far the admission ratio is from the ideal one (e.g.,
0.5 in case of two identical segments).
7) A flag to indicate whether the two segments are empty

Tu(s) =D o(s'Is,1(s)) (g(s, ), 8) + 7 Tu(s")) (8)

where the summation is over the set of stateshat can be

or not.

D. Performance Metrics

reached from state and (s, su(s), s') is the reward obtained Throughout this work, we focus on different met-

from the transition froms to every state ins’ under policy
u(s). In the policy improvement step, an improved poligy
is generated according to the following equation:

fi(s) = argurél;é)gp(S’ls,U)(g(sw,s’)+7Ju(8’))(9)

rics/functions for assessing damage and cost. The damage
function due to a SiT attack can be instantiated as the im-
balance between different segments, weighted by theiicgerv
rates. Another possible instantiation is the gap between th
admission ratios reported to the drivers and the “true” admi
sion ratios thatshould have been reported. Our model can
also be easily extended to account for other forms of damage

The improved policy is the one that maximizes the rewa&tch as queueing delays and other factors that typicallyrocc

through selecting the best attack actian from the set of
actionsl{(s) available from state. The improved policyi is
then used as the new policy and a new iteration starts.

under congestion. For example, it is expected that the crvi
rates of segments decrease as the number of vehicles iacreas
Similarly, different instantiation for the cost functiorrea

One of the main challenges with exact policy iteration igossible. The motivation behind the ones we consider in this

the size of the state space. Even for a small system withP

gper is that as the number of attacked vehicles incredees, t

segments with each potentially holding up to 100 vehicle&ltack can be more exposed and thus the cost of the attack

the size of the state space 180 x 100, without accounting
for the o which has a similar order of magnitude.

In the approximate policy iteration variant, we run Mont

should reflect such a greater risk of exposure.
Since the attacker must select an attack cost, it is not clear

what would be a reasonable choice for a given problem. By

Carlo simulations to evaluate the current policy rathemthd@7Ying the attack cost, however, an attacker can discover

solving the system of linear equations. We approximéates)
with a parametric representatioh (s):

M

Ji(s) = Y rieils)

j=1

(10)

where ¢ is a column of features; is a row of weights (one

different polices. In this paper, we are interested in ttgal
attacks, thus we focus on a smaller region of the attack cost
values where the resulting policy is not a complete DoS-like
attack nor a no-attack policy. This is obtained throughl tria
and error until the interesting region is found.

IV. PERFORMANCEEVALUATION
In this section we report on our evaluation of the approxi-

for each feature), and/ is the number of those features. Thenate policy iteration (API) methods on a number of systems

idea is to extractM features that characterize stateand

that are instantiated from the model described in Sed¢fibn I

approximate.J, (s) by selectingr that solves a least squarein this paper we limit our evaluation to systems with two
problem between the rewards obtained from the Monte Cadéternate segments. We fix the discount factdo 0.99.

simulations and the cross productgf;(s). It is known that

the linear combination of well chosen features can captlﬁa

essential nonlinearities in the reward function! [28]+[31]

C. Feature Selection

System One

Consider a system composed of 2 segments and 1 decision
point. Vehicles arrive to the decision point per unit time
based on the following probability distribution: 3 vehighith

Due to the approximate nature of our proposed methogrobability 0.3, 8 vehicles with probability 0.6 and 30 velbks
ology, we must rely on a set of representative features woth probability 0.1. Thus the average arrival rate is 8.2 W



assume the two segments are identical and each one has a 15y
maximum service rate of 5 vehicles per unit time. Based on

the reported number of vehicles on each segment, the decisio 1000¢
point reflects the admission ratio for each segment to balanc

traffic between the segments. In this system we assume that S0

all the drivers follow the information displayed. g .
An attacker mounting a SiT attack jams a subset of the ¢
signals from vehicles to the access point. We assume that a -500/
SIiT attack only affects 50% of the vehicles. Thus, the edéma e
dr (i) in @B) becomesj; (i) = & x qx(i) whenever the attacker _10007%2137‘“
decides to attack. We take the cost functigrtp be a constant oo/ MOos | ‘ ‘ ‘ ‘ ‘
value,Cr, multiplied by the number of vehicles affected. 006 0125 025 05 075 12

In this system, the attacker aims to unbalance the traffic
between the two segments. We instantiate the damage fanctio
d, to be the absolute difference between the number of veshicle
on each segment: 5001

0 o
HI

1000

d = lar(1) — qx(2)]. (11) £
3
At any state, the attacker can choose between the following % _s}
actions:
1) Not attack with cost 0. _1000f| =rdem
2) Attack half the vehicles on segment 1 with cast x %/Tgfpic
0.5 x gx(1). 1500 IS, : : : : ]
3) Attack half the vehicles on segment 2 with c@st x 006 0125 025 05 075 12
0.5 x Qk(2)

1000

We start our approximate policy iteration method from
32 representative states that are chosen at 25 increments to
give good coverage of the state space. Moreover, half those
states reflect the true admission ratio while the other half 0
have admission ratios chosen at random. We start with a
random policy as a roll-out one. From each representative
state, we run 50 independent trajectories and we compute the
average reward across them. In each trajectory, we simulate  -000f
the attack policy for 100 steps. In each iteration, a newcpoli
is generated and we keep track of the weight vectdhat
produces the policy with the maximum reward.

2000 006 0125 02 05 075 1 2

Once the weight vectar is obtained, we compare between Cost
policies based on a completely different set of states tteat a
generated at random. In other words, there is no intentioma). 2. Comparison between API, myopic, random, DoS and tazkatfor

overlap between our training data and the ones we use foptem One under different attack costs. Attack successisat00% (top),
evaluation 75% (center) and 50% (bottom).

It is important to note that with approximate policy itecati
methods, there are no guarantees that the system will apaver ) . _ ) _ )
(i.e., no guarantee that the resulting policy is an improsem myopic attack (in v_vh|ch only the immediate reward is used to
of the previous one) as with exact policy iteration. Thus doe select an qcnon Wlthout regard to the future reward). We onl
not have a termination method except to run for a large numtglPW the interesting region based on the attack costs. If the
of iterations and to choose the best policy. We typically u&9St ©f the attack is very low, API matches a DoS attack and
between 100 and 1000 iterations. if the cost of the attack is very high, APl matches a no-attack
Figure2 shows the rewards obtained for different cost wluBO'iCY- One can see that AP tracks the best policies very wel
Cr under different policies. Figufe 2 (top) is for attack suase a_nd in the majority of the cases it provides the policy wita th
rate 100%, Figurl2 (center) is for attack success rate 7660, dighest reward.
Figure[2 (bottom) is for attack success rate 50%. We compareNotice also that the performance of the API method appears
our Approximate Policy Iteration (API) to a no-attack pglic to improve as the degree of certainty in the attack succéss ra
a random attack, a DoS attack on one of the segments, andeareases. With an attack success rate of 50%, the API method

500

-5001

Rewards

-1500




was consistently better than all policies across all costs,4)

Attack 75% of vehicles on segment 1 with ca@st x

whereas with higher attack success rates, the performaage m 0.75 x qx(1)
be slightly less than some policies. This is the case bedhase 5) Attack 25% of vehicles on segment 2 with c@st x
API method takes the success rate into account which chgosin ~ 0.25 x ¢4 (2)
actions that achieve a balance between the immediate and th&) Attack 50% of vehicles on segment 2 with ca@st x
future rewards. 0.5 x qx(2)
7) Attack 75% of vehicles on segment 2 with c@$t x
o 0.75 X qx(2).

Percentage of actionl (no attack)

Fig. 3. Percentage of no-attack actions as we vary the co#fteofttack.

"~ Cost

Results are for System one with 75% success rate.

Figurel4 shows results for System Two under three different
attack costs (0.5, 0.75 and 1). We compare between random,
no attack, myopic, API, and DoS attacks at various levels on
both segments (D25, D50 and D75 indicate attacking 25%,
50% and 75% of the vehicles on a segment, respectively).
When the cost of the attack is low (left), APl matches the most
aggressive DoS attack. When the cost is 0.75 (center), API
outperforms all the policies. Note, however, that undeachtt
cost, 1, we failed to find a good policy, since API does worse
than some of other policies. As noted above, this can happen
with approximation methods. The algorithm can get stuck in
local maxima or needs more iterations to find better policies
One approach to tackle this issue is to force different oall-
policies or introduce randomization within the obtainedigyo
(e.g., choose a subset of actions at random regardless of the

Figure[3 shows the percentage of time the no-attack actiBflicy) [32]. We leave this issue for future investigation.
was selected as we vary the cost of the attack. The results

are shown for System one with 75% attack success rate.

eS)/stem Three

can see that our proposed policy smoothly adjusts the Idvel oIn this system, we consider the case when segments have
aggression based on the cost of the attack.

NUMBER OF ITERATIONS TO FIND THE BEST POLICY FOR SYSTEM ONE

Attack Cost 0.06 | 0.125] 0.25]| 05 | 0.75] 1 2
50% (500 iter) | 473 | 357 | 238 | 248 | 318 | 378 | 375
75% (100 iter) 98 32 2 79 76 65 62

100% (1000 iter)| 812 | 970 | 659 | 328 | 460 | 284 | 669
TABLE |

UNDER DIFFERENT SUCCESS PROBABILITIEES0%, 75%AND 100%).

different service rates. To make valid comparisons, we luse t
exact system as System One except that the maximum service
rate for segment 1 is 4 vehicles per unit time and for segment
2 is 6 vehicles per unit time. Both systems started with the
same total number of vehicles weighted by their servicesrate
The initial admission ratio reflected the true admissioiorat
Figure[® shows the number vehicles on each segment and the
admission ratio for System One (top row) and those for System
Three (bottom row). Results are presented for Cost 2. When
the attacker decides not to attack, the admission ratiortego

Table[] shows the number of iterations it took to reaclfhatches the true admission ratio.

the best policy for System One under different attack costs
and for different attack success probabilities. Throudtoau
evaluation, we limited the number of iterations below 1000.
Finding the best policy changes from a system to another
and depends on our choice of roll-out policies and on the
randomization within the framework. We listed those values
here as a mean to share our experience with the APl methods.

80

[Ino attack
[lattack segment one
[l attack segment two

5 40

B. System Two 0k

Our second system is a variant of the first system, but covers 200
a wider attack scope. In particular, we assume that an aftack 10}
can decide between different SiT attack intensities by shmap . 1
betWeen the fO||0WIng aCtIOI’IS System om}:\stogram of actions !akeﬁyslem Three

1) Not attack with cost 0

2) Attack 25% of vehicles on segment 1 with c@st x Fig. 6. Histogram of the actions taken under the same attask ¢

0.25 x qk(l)
3) Attack 50% of vehicles on segment 1 with c@st x We have found that, under the same cost, attacks on systems

0.5 x qx(1) that have segments with different service rates lead toenigh
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rand no-atkmyopic APl D25 D50 D75 D25 D50 D75
olicy

rand no-akmyopic APl D25 D50 D75 D25 D50 D75 rand no-atkmyopic APl D25 D50 D75 D25 D50 D75
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Fig. 4. System 2 with 6 actions. Cost 0.5 (left), cost 0.751eg. and cost 1 (Right). We compare between random, nokattayopic, API, and DoS
attacks at various levels. D25, D50 and D75 indicate attacki5%, 50% and 75% of the vehicles on a segment, respec{results are shown for segment
one first and then for segment two).
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o . .
0 10 20 30 40 50 60 70 80 90 100
Time Time

(©) (d)
Fig. 5. Comparison between identical service rate segnéspsrow) and different service rate ones (bottom row) uritier same attack cost. (a) and (c)
show the number of vehicles on each segment. (b) and (d) dadmission ratio comparing the one reported to the drigesus the true admission ratio.

attack reward than attacks on systems that have segmehts wit V. CONCLUSIONS

'(;j.]?fmlcal service ratkes. Elguh@ 6 Sholle thzaverageznl];m:]bber Traffic safety applications are increasingly relying onewir
fferent actions taken by the attacker under cost 2, fohbog, technologies in transforming our transportation esyst

systems. One can see that for system three, the best att[%?g

. ! ugh empowering drivers to make good decisions, im-
0,
policy attacks either one of the segments more than 90% bbving their safety and reducing the overall cost. Culyent

the.t|me when cpmpared to system one in which the be()St att ﬁ% development of many ITS applications and standards are
policy attacks either one the segments only around 65% of tuﬁderway. Thus, it is crucial to expose vulnerabilitieshas t

time. early phase before deployment and to have the appropriate
defense mechanisms in place once these systems become
operational. In this paper, we developed a framework that is



capable of exposing stealthy SiT attacks that aim to causel
traffic congestion by selectively interfering with a subset

X ] . 10]
of the signals from vehicles to the infrastructure. We have
evaluated the generated attack policies and demonstiead t
potency when compared to other policies such as myopitll
random and DoS attacks. Unlike other policies, the propos&Q]
policy judiciously adapts to the system parameters (ewguq
lengths, costs, and service rates) to select attack actions
that balance between the current stage and future rewar[gﬁ.
Moreover, we have shown that our proposed policy performs
better as the degree of uncertainty in the system increases,
making it appealing to adversaries that may not be confidé%l
of the exact impact of the attack. Furthermore, through our
evaluation we have demonstrated that systems that emp %
segments with different service rates are more susceptbl
attacks than those employing segments with similar servige]
rates. To the best of our knowledge, this work is the first
to look at the effect of jamming attacks through an MD
framework and to apply approximation techniques to idgntif
optimal/suboptimal stealthy policies. 8]

We are currently investigating the impact of feature sédect
on the resulting policies and what constitutes a good s&fl
We are also looking at systems in which the service rates
for the different segments changes based on the numbein2of
vehicles present. Another direction we are working on is
the development of defense techniques against SIiT attacks.
In particular, we are looking at the use of randomizatiopni)
techniques to prevent an attacker from implicitly adjugtine
admission ratios.
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