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Abstract—Recent advances in wireless technologies have en-
abled many new applications in Intelligent Transportation Sys-
tems (ITS) such as collision avoidance, cooperative driving,
congestion avoidance, and traffic optimization. Due to the vul-
nerable nature of wireless communication against interference
and intentional jamming, ITS face new challenges to ensure the
reliability and the safety of the overall system. In this paper, we
expose a class of stealthy attacks – Stuck in Traffic (SiT) attacks
– that aim to cause congestion by exploiting how drivers make
decisions based on smart traffic signs. An attacker mounting
a SiT attack solves a Markov Decision Process problem to find
optimal/suboptimal attack policies in which he/she interferes with
a well-chosen subset of signals that are based on the state ofthe
system. We apply Approximate Policy Iteration (API) algorithms
to derive potent attack policies. We evaluate their performance on
a number of systems and compare them to other attack policies
including random, myopic and DoS attack policies. The generated
policies, albeit suboptimal, are shown to significantly outperform
other attack policies as they maximize the expected cumulative
reward from the standpoint of the attacker.

I. I NTRODUCTION

In the area of Intelligent Transportation Systems (ITS),
vehicle-to-vehicle and vehicle-to-infrastructure communica-
tions enable many potential applications such as collision
avoidance, cooperative driving, congestion avoidance, and
traffic optimization [1]–[5]. With recent advances in wireless
technologies, the FCC has allocated a frequency band of
about 75MHz in the 5.9 GHz band for Dedicated Short
Range Communications (DSRC) for public safety services [6].
The associated MAC layer can be based on WLAN (IEEE
802.11p) or 3G cellular extended with TDMA and CDMA for
decentralized access when no infrastructure is present [7], [8].

Due to the shared nature of the wireless channels used,
the overall safety of the ITS is affected by interference and
intentional jamming by adversaries. Jamming has been shown
to cause severe effects that may cripple the whole system [9]–
[14]. Previous incidents indicate the possibility of interfering
with these communication mediums [15]. By placing jam-
ming devices in vehicles and at critical transportation points
(bridges, tunnels, cellular towers, etc...), an adversarycan
impact the overall traffic flow, exploit the adaptation of the
drivers to make abrupt decisions causing accidents, or attempt
to maximize their gain by preventing critical information from
reaching a neighboring subset of vehicles [16], [17]. A much

worse scenario may occur if a terrorist can create severe
congestion in an area before detonating a bomb.

As drivers increase their reliance on wireless signals in
making decisions, the absence or even the delay of these
signals may have catastrophic effects due to the real-time
constraints present in the system. Although it may be still years
for autonomous vehicles to become the main stream (with all
the challenges currently present), nowadays, we rely on real-
time traffic information to make driving decisions. Moreover,
many vehicles are already equipped with wireless connections
to invoke traffic services.

Paper scope:Drivers are typically faced with a decision mak-
ing process whenever they encounter alternatives in choosing
their routes. For example, should a driver use the upper or
lower level when driving across George Washington Bridge?
Should a driver use a highway or a local access road for a
given short trip? The decisions made are not random, but are
typically aided by traffic signs (e.g., reflecting the delay or
the expected time to reach a particular point) and/or online
map services (e.g., Google maps with traffic information). The
goal is to reduce congestion as much as possible. It is known
that traffic congestion is a significant problem that costs the
US billions of dollars. In 2010, and across 439 urban areas,
traffic congestion came at the price of 4.8 billion hours of
extra driving time and 1.9 billion gallons of fuel. The cost to
the average commuter was $713 in 2010 [18].

When wireless signals are used to communicate important
information to drivers – perhaps through smart traffic signs
and wireless transceivers in vehicles – jamming a subset of
the signals may impact the overall traffic flow leading to
unchecked safety conditions. In this paper, we expose a class
of stealthy attacks – that we term Stuck in Traffic (SiT) attacks
– that aim to cause congestion. Through solving a Markov
Decision Process (MDP) problem, an attacker mounting a
SiT attack selects a subset of signals to interfere with. The
choice of signals is based on the current state conditions of
the system, taking into account the exposure risk the attacker
is willing to take. Due to the exponential nature of the state
space that describes the system, solving the MDP exactly
is computationally prohibitive. Thus, we apply approximate
policy iteration methods to solve the MDP problem to identify
suboptimal, yet efficient, attack policies.
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Contributions: The use of wireless technologies in various
traffic safety applications is becoming the norm. Thus, it is
important to expose potential security issues before deploy-
ment. In particular, we make the following contributions:

• We provide a general framework for identifying stealthy
attacks that reflect the best interest for an attacker:
minimizing the cost while maximizing the damage.

• We expose SiT attacks that aim to cause traffic congestion
through a proper choice ofwhich signals to interfere with
andwhen.

• In almost all the cases studied, we were able to iden-
tify attack policies that are more potent than traditional
DoS attacks and random attacks, among other policies.
Furthermore, the generated policies are shown to signif-
icantly outperform myopic and random attack policies.

Paper organization: In Section II, we survey related work. In
Section III, we describe the framework developed to expose
SiT attacks. We evaluate the impact of SiT attack policies in
Section IV and we conclude the paper in Section V with a
summary and future work.

II. RELATED WORK

The work in this paper relates to two main areas of
research: (1) safety applications through V2V and V2I wireless
communication and (2) security in vehicular networks.

Traffic safety and management applications:There has been
a large body of work in the area of ITS that utilizes wireless
signals for various safety and congestion management appli-
cations. In [2], the authors relied on wireless communication
to develop different cooperative collision warning assistants
for forward collision warning, intersection collision andlane
changes. In [1] the authors investigate the impact of DSRC on
the latency and the success probability in Forward Collision
Warning applications. The work in [19] proposes a safety
application in which each vehicle is aware of its nearest
k neighbors through V2V communication. The architecture
is envisioned for various safety scenarios, such as collision
avoidance, pre-crash sensing, traffic optimization and lane
changes warning. In [20], Dresner et al. devised a scheme
in which vehicles can avoid congestion in intersections by not
stoping at all. The idea is that vehicles, through wireless com-
munications, reserve slots in space and time at the intersection
managers.

Security in vehicular networks: There has also been a large
number of research studies that focused on the security of
vehicular networks. Leinmüller et al. studied the effectsof
false-position data on geographic routing in VANETs [21].
It was shown that malfunctioning and/or malicious nodes
broadcasting false position information can lead to packet
losses, routing delays and traffic interception, and hence can
drastically affect the performance, reliability and security of
position-based routing networks.

A model for attacks on inter-vehicle communication systems
was proposed in [17] wherein the goals and logistics of various
attacks are expressed in terms of attack trees. These trees,

which help understand and classify attacks, are used to expose
weaknesses and identify potential threats facing such systems.

Stealth attacks whereby an attacker partitions an ad-hoc
network or hijacks traffic were studied in [22]. A key idea
is to keep a low exposure and to minimize the cost of the
attack through manipulation of the routing information of well-
behaving nodes.

Other attacks on vehicular networks include Sybil attacks
used to inject false messages into a vehicular network through
use of false identities [23], DoS attacks through jamming
the communication channels, impersonation by using fake
identities, and bogus information attacks wherein wrong data
could be diffused in the network, for example to divert traffic
from a given road. In the SiT attack we consider herein, the
propagation of false information about traffic conditions is
indirectly inflicted by the attacker when the latter interferes
with some of the signals from the vehicles to their neighbor-
ing access points leading to global traffic congestion. For a
summary of various potential attacks on vehicular networks
we refer the reader to [24] and references therein.

III. A G ENERAL FRAMEWORK

In this section we present a framework that enables the
identification of stealthy SiT attack policies that aim to create
traffic congestion.

A. The Model

We consider a vehicular network that is composed of a set
of segments and a decision point. A segment is a portion
of an infrastructure (e.g., highway, bridge or a tunnel) that
is controlled by one access point. As vehicles utilize a seg-
ment, they send wireless signals to the access point for the
segment to get an estimate of its current load (e.g., number
of vehicles). The access point reports its measurement back
to a decision point to influence future incoming traffic. Each
segment presents an alterative route to the driver. A decision
point is a location at which drivers must make an “educated”
decision on which segment to use (e.g., at highway entrance
points and intersections). At each decision point, the loadon
each segment is presented to the driver. Figure 1 shows a
diagram describing the setup.

Fig. 1. A vehicular network with 2 segments and a decision point.



We consider a discrete-time model in which at each time
step, new vehicles arrive at a decision point based on some
arrival process. For simplicity, we assume an infinite popu-
lation of vehicles for the arrival process. Based on the loads
displayed, a driver picks an appropriate segment. Vehiclesexit
each segment based on its service rate.

Let λk denote the arrival rate at the decision point at time
k, αk(i), i = 1, . . . , n, denotes the admission ratio of vehicles
on segmenti at time k, andβk(i), i = 1, . . . , n, denotes the
service rate for segmenti at time k, where n is the total
number of segments. Then the number of vehicles,qk(i) on
segmenti at timek is given by:

qk(i) = qk−1(i) + αk−1(i)λk − βk(i). (1)

Throughout the paper, we assume that the service rates are
known and fixed.

Depending on the traffic optimization policies, the ad-
mission ratio for each segment is determined based on the
number of vehicles on all segments according to the following
equation:

αk(i) = f (q̂k−1(1), q̂k−1(2), ...q̂k−1(n)) (2)

where f is a traffic optimization function and̂qk(i) is the
estimate of the queue length of segmenti at time k. For
example, the admission ratios can be chosen proportionally
based on the number of vehicles on each segment, weighted
by the service rate of each segment, or simply by picking the
least loaded segment.

B. SiT Attacks

The goal of SiT attacks is to cause traffic congestion by
jamming a subset of the wireless signals from the vehicles to
the access points leading to incorrect estimates displayedfor
drivers, and consequently wrong decisions made by the drivers
(e.g., choosing a congested segment). To reflect their stealthy
nature, an attacker pays a price whenever he/she decides to
jam a wireless signal. Clearly, if the cost of jamming is very
high, SiT attacks would not jam any signal and if the cost of
jamming is very low, SiT attacks would jam all the time (i.e.,
DoS attack). We are interested in identifying attacks policies
that tradeoff damage and cost. In particular, we are interested
in identifying attack policies that can decide the proper attack
action based on the current state of the system.

Let sk ∈ Sk denote the state of the system at timek,
where Sk is the state space at timek. The state of the
system is the combination of the queue lengthsqk(i) and
αk(i), i = 1, . . . , n. Based on the number of new arrivals and
the admission ratios, the state is updated at the next time step.

The goal of the attacks is to unbalance the incoming traffic
across segments by selectively choosing what signal(s) to
attack at any state, if any. Letuk ∈ Uk denote the control
action of the attacker at timek andUk the control space at
time k, which depends on the actual statesk. Note that the
estimateŝqk(i), i = 1, . . . , n, of the queue lengths are function

of the attacker’s control actionuk and the true queue lengths
qk(i), i.e.,

q̂k(i) = h(qk(i), uk) (3)

whereh is some function, which for simplicity is assumed
to be known to the attacker. Equations (1), (2) and (3) define
the state dynamics. Note that from the attacker’s standpoint,
the statesk consists not only of the queue lengthsqk(i), i =
1, . . . , n, but also the admission ratiosαk(i), i = 1, . . . , n,
since even for given values of the queue lengths, the attacker’s
course of action will change depending on the advertised
admission ratios for the various segments.

The attacker’s action at timek is obtained through a policy
µk, which is defined as a mapping from the state space to the
control space, i.e.,µk : Sk → Uk.

Let g(i, u, j) denote the reward obtained when the system
evolves from statei to statej, under attack actionu. The
reward can be described by the following equation:

g(i, u, j) = d(i, u, j)− c(i, u, j) (4)

whered is the damage function andc is the cost function of
the attack actionu. An attack action becomes more appealing
if it can cause higher damage with less cost.

The infinite horizon expected reward is given by

J(s0, µ0, µ1, . . .) = E

[

∞
∑

k=0

γkg(sk, µk(sk), sk+1)|s0

]

(5)

wheres0 is the initial system state and0 < γ < 1 is a discount
factor. Since the functiong(.) is bounded andγ < 1, the
reward function (5) is well defined.

The attacker is interested in maximizing the total expected
discounted rewards over the choice of attack policies. Hence,
the goal is to compute the solution to

J∗(s0) = max
µ0,µ1,...

J(s0, µ0, µ1, . . .). (6)

In other words, the adversary aims to maximize the cumulative
expected discounted reward over time by choosing attack
policies µ0, µ1, . . ., as shown in (6). The problem now falls
within the class of infinite horizon problems with discounted
reward. Hence, a stationary policyµ∗(.), i.e., which does not
depend onk, is optimal. The optimal attack policy can be
obtained by solving the following Bellman equation [25]:

J∗(s0) = max
u∈U(s0)

{

E[g(s0, u, s1)]

+ γ
∑

s1

p(s1|s0, u)J
∗(s1))

}

(7)

whereJ∗(.) is the optimal value function. The first term on the
R.H.S. represents the immediate stage reward in (4) and the
second term is the future reward. The conditional probability
p(.) is the probability of a transition of the system to future
statesk+1 from statesk under attack actionu, and hence the
summation in the second term is over all possible future states,



s1 from s0. Solving the fixed point equation above gives the
optimal tradeoff between damage and cost from the standpoint
of the adversary.

Due to the large state space, solving the above equation
may not be computationally feasible. Thus, we propose an
approximate policy iteration method [26]–[28]. Before we
describe the approximate policy iteration methodology, we
provide some brief background on exact policy iteration.

Exact Policy iteration consists of 2 steps: policy evaluation
and policy improvement. In the policy evaluation step, we start
with an initial policy µ. Then, we solve a system of linear
equations to evaluate the cost functionJµ(s) starting from
states and using policyµ:

Jµ(s) =
∑

s′

p(s′|s, µ(s)) (g(s, µ(s), s′) + γJµ(s
′)) (8)

where the summation is over the set of statess′ that can be
reached from states andg(s, µ(s), s′) is the reward obtained
from the transition froms to every state ins′ under policy
µ(s). In the policy improvement step, an improved policyµ̄
is generated according to the following equation:

µ̄(s) = arg max
u∈U(s)

∑

s′

p(s′|s, u) (g(s, u, s′) + γJµ(s
′)) .(9)

The improved policy is the one that maximizes the reward
through selecting the best attack actionu, from the set of
actionsU(s) available from states. The improved policȳµ is
then used as the new policy and a new iteration starts.

One of the main challenges with exact policy iteration is
the size of the state space. Even for a small system with 2
segments with each potentially holding up to 100 vehicles,
the size of the state space is100 × 100, without accounting
for theα which has a similar order of magnitude.

In the approximate policy iteration variant, we run Monte
Carlo simulations to evaluate the current policy rather than
solving the system of linear equations. We approximateJµ(s)
with a parametric representatioñJr(s):

J̃r(s) =

M
∑

j=1

rjφj(s) (10)

whereφ is a column of features,r is a row of weights (one
for each feature), andM is the number of those features. The
idea is to extractM features that characterize states and
approximateJµ(s) by selectingr that solves a least square
problem between the rewards obtained from the Monte Carlo
simulations and the cross product ofrjφj(s). It is known that
the linear combination of well chosen features can capture
essential nonlinearities in the reward function [29]–[31].

C. Feature Selection

Due to the approximate nature of our proposed method-
ology, we must rely on a set of representative features to

capture the fundamental characteristics of the state. We used
the following features to approximate the value functionJ̃r(s)
for states with:

1) The number of vehicles on each segment.
2) The degree of imbalance between the number of vehicles

on each segment (weighted by their departure rates when
segments have different service rates).

3) The segment that is the least occupied.
4) The admission ratios reported to the drivers.
5) Difference between the true admission ratio (that is

based on the true occupancy of vehicles) and the one
utilized by drivers at the decision point.

6) How far the admission ratio is from the ideal one (e.g.,
0.5 in case of two identical segments).

7) A flag to indicate whether the two segments are empty
or not.

D. Performance Metrics

Throughout this work, we focus on different met-
rics/functions for assessing damage and cost. The damage
function due to a SiT attack can be instantiated as the im-
balance between different segments, weighted by their service
rates. Another possible instantiation is the gap between the
admission ratios reported to the drivers and the “true” admis-
sion ratios thatshould have been reported. Our model can
also be easily extended to account for other forms of damage
such as queueing delays and other factors that typically occur
under congestion. For example, it is expected that the service
rates of segments decrease as the number of vehicles increase.
Similarly, different instantiation for the cost function are
possible. The motivation behind the ones we consider in this
paper is that as the number of attacked vehicles increases, the
attack can be more exposed and thus the cost of the attack
should reflect such a greater risk of exposure.

Since the attacker must select an attack cost, it is not clear
what would be a reasonable choice for a given problem. By
varying the attack cost, however, an attacker can discover
different polices. In this paper, we are interested in stealthy
attacks, thus we focus on a smaller region of the attack cost
values where the resulting policy is not a complete DoS-like
attack nor a no-attack policy. This is obtained through trial
and error until the interesting region is found.

IV. PERFORMANCEEVALUATION

In this section we report on our evaluation of the approxi-
mate policy iteration (API) methods on a number of systems
that are instantiated from the model described in Section III.
In this paper we limit our evaluation to systems with two
alternate segments. We fix the discount factorγ to 0.99.

A. System One

Consider a system composed of 2 segments and 1 decision
point. Vehicles arrive to the decision point per unit time
based on the following probability distribution: 3 vehicles with
probability 0.3, 8 vehicles with probability 0.6 and 30 vehicles
with probability 0.1. Thus the average arrival rate is 8.7. We



assume the two segments are identical and each one has a
maximum service rate of 5 vehicles per unit time. Based on
the reported number of vehicles on each segment, the decision
point reflects the admission ratio for each segment to balance
traffic between the segments. In this system we assume that
all the drivers follow the information displayed.

An attacker mounting a SiT attack jams a subset of the
signals from vehicles to the access point. We assume that a
SiT attack only affects 50% of the vehicles. Thus, the estimate
q̂k(i) in (3) becomeŝqk(i) = 1

2 × qk(i) whenever the attacker
decides to attack. We take the cost function,c, to be a constant
value,CT , multiplied by the number of vehicles affected.

In this system, the attacker aims to unbalance the traffic
between the two segments. We instantiate the damage function,
d, to be the absolute difference between the number of vehicles
on each segment:

d = |qk(1)− qk(2)|. (11)

At any state, the attacker can choose between the following
actions:

1) Not attack with cost 0.
2) Attack half the vehicles on segment 1 with costCT ×

0.5× qk(1).
3) Attack half the vehicles on segment 2 with costCT ×

0.5× qk(2).
We start our approximate policy iteration method from

32 representative states that are chosen at 25 increments to
give good coverage of the state space. Moreover, half those
states reflect the true admission ratio while the other half
have admission ratios chosen at random. We start with a
random policy as a roll-out one. From each representative
state, we run 50 independent trajectories and we compute the
average reward across them. In each trajectory, we simulate
the attack policy for 100 steps. In each iteration, a new policy
is generated and we keep track of the weight vectorr that
produces the policy with the maximum reward.

Once the weight vectorr is obtained, we compare between
policies based on a completely different set of states that are
generated at random. In other words, there is no intentional
overlap between our training data and the ones we use for
evaluation.

It is important to note that with approximate policy iteration
methods, there are no guarantees that the system will converge
(i.e., no guarantee that the resulting policy is an improvement
of the previous one) as with exact policy iteration. Thus, wedo
not have a termination method except to run for a large number
of iterations and to choose the best policy. We typically use
between 100 and 1000 iterations.

Figure 2 shows the rewards obtained for different cost values
CT under different policies. Figure 2 (top) is for attack success
rate 100%, Figure 2 (center) is for attack success rate 75%, and
Figure 2 (bottom) is for attack success rate 50%. We compare
our Approximate Policy Iteration (API) to a no-attack policy,
a random attack, a DoS attack on one of the segments, and a
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Fig. 2. Comparison between API, myopic, random, DoS and no attack for
System One under different attack costs. Attack success rate is 100% (top),
75% (center) and 50% (bottom).

myopic attack (in which only the immediate reward is used to
select an action without regard to the future reward). We only
show the interesting region based on the attack costs. If the
cost of the attack is very low, API matches a DoS attack and
if the cost of the attack is very high, API matches a no-attack
policy. One can see that API tracks the best policies very well
and in the majority of the cases it provides the policy with the
highest reward.

Notice also that the performance of the API method appears
to improve as the degree of certainty in the attack success rate
decreases. With an attack success rate of 50%, the API method



was consistently better than all policies across all costs,
whereas with higher attack success rates, the performance may
be slightly less than some policies. This is the case becausethe
API method takes the success rate into account which choosing
actions that achieve a balance between the immediate and the
future rewards.
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Fig. 3. Percentage of no-attack actions as we vary the cost ofthe attack.
Results are for System one with 75% success rate.

Figure 3 shows the percentage of time the no-attack action
was selected as we vary the cost of the attack. The results
are shown for System one with 75% attack success rate. One
can see that our proposed policy smoothly adjusts the level of
aggression based on the cost of the attack.

Attack Cost 0.06 0.125 0.25 0.5 0.75 1 2
50% (500 iter) 473 357 238 248 318 378 375
75% (100 iter) 98 32 2 79 76 65 62

100% (1000 iter) 812 970 659 328 460 284 669

TABLE I
NUMBER OF ITERATIONS TO FIND THE BEST POLICY FOR SYSTEM ONE

UNDER DIFFERENT SUCCESS PROBABILITIES(50%, 75%AND 100%).

Table I shows the number of iterations it took to reach
the best policy for System One under different attack costs
and for different attack success probabilities. Throughout our
evaluation, we limited the number of iterations below 1000.
Finding the best policy changes from a system to another
and depends on our choice of roll-out policies and on the
randomization within the framework. We listed those values
here as a mean to share our experience with the API methods.

B. System Two

Our second system is a variant of the first system, but covers
a wider attack scope. In particular, we assume that an attacker
can decide between different SiT attack intensities by choosing
between the following actions:

1) Not attack with cost 0
2) Attack 25% of vehicles on segment 1 with costCT ×

0.25× qk(1)
3) Attack 50% of vehicles on segment 1 with costCT ×

0.5× qk(1)

4) Attack 75% of vehicles on segment 1 with costCT ×
0.75× qk(1)

5) Attack 25% of vehicles on segment 2 with costCT ×
0.25× qk(2)

6) Attack 50% of vehicles on segment 2 with costCT ×
0.5× qk(2)

7) Attack 75% of vehicles on segment 2 with costCT ×
0.75× qk(2).

Figure 4 shows results for System Two under three different
attack costs (0.5, 0.75 and 1). We compare between random,
no attack, myopic, API, and DoS attacks at various levels on
both segments (D25, D50 and D75 indicate attacking 25%,
50% and 75% of the vehicles on a segment, respectively).
When the cost of the attack is low (left), API matches the most
aggressive DoS attack. When the cost is 0.75 (center), API
outperforms all the policies. Note, however, that under attack
cost, 1, we failed to find a good policy, since API does worse
than some of other policies. As noted above, this can happen
with approximation methods. The algorithm can get stuck in
local maxima or needs more iterations to find better policies.
One approach to tackle this issue is to force different roll-out
policies or introduce randomization within the obtained policy
(e.g., choose a subset of actions at random regardless of the
policy) [32]. We leave this issue for future investigation.

C. System Three

In this system, we consider the case when segments have
different service rates. To make valid comparisons, we use the
exact system as System One except that the maximum service
rate for segment 1 is 4 vehicles per unit time and for segment
2 is 6 vehicles per unit time. Both systems started with the
same total number of vehicles weighted by their service rates.
The initial admission ratio reflected the true admission ratio.
Figure 5 shows the number vehicles on each segment and the
admission ratio for System One (top row) and those for System
Three (bottom row). Results are presented for Cost 2. When
the attacker decides not to attack, the admission ratio reported
matches the true admission ratio.
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Fig. 6. Histogram of the actions taken under the same attack cost.

We have found that, under the same cost, attacks on systems
that have segments with different service rates lead to higher
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Fig. 5. Comparison between identical service rate segments(top row) and different service rate ones (bottom row) underthe same attack cost. (a) and (c)
show the number of vehicles on each segment. (b) and (d) show the admission ratio comparing the one reported to the driver versus the true admission ratio.

attack reward than attacks on systems that have segments with
identical service rates. Figure 6 shows the average number of
different actions taken by the attacker under cost 2, for both
systems. One can see that for system three, the best attack
policy attacks either one of the segments more than 90% of
the time when compared to system one in which the best attack
policy attacks either one the segments only around 65% of the
time.

V. CONCLUSIONS

Traffic safety applications are increasingly relying on wire-
less technologies in transforming our transportation system
through empowering drivers to make good decisions, im-
proving their safety and reducing the overall cost. Currently,
the development of many ITS applications and standards are
underway. Thus, it is crucial to expose vulnerabilities at this
early phase before deployment and to have the appropriate
defense mechanisms in place once these systems become
operational. In this paper, we developed a framework that is



capable of exposing stealthy SiT attacks that aim to cause
traffic congestion by selectively interfering with a subset
of the signals from vehicles to the infrastructure. We have
evaluated the generated attack policies and demonstrated their
potency when compared to other policies such as myopic,
random and DoS attacks. Unlike other policies, the proposed
policy judiciously adapts to the system parameters (e.g., queue
lengths, costs, and service rates) to select attack actions
that balance between the current stage and future rewards.
Moreover, we have shown that our proposed policy performs
better as the degree of uncertainty in the system increases,
making it appealing to adversaries that may not be confident
of the exact impact of the attack. Furthermore, through our
evaluation we have demonstrated that systems that employ
segments with different service rates are more susceptibleto
attacks than those employing segments with similar service
rates. To the best of our knowledge, this work is the first
to look at the effect of jamming attacks through an MDP
framework and to apply approximation techniques to identify
optimal/suboptimal stealthy policies.

We are currently investigating the impact of feature selection
on the resulting policies and what constitutes a good set.
We are also looking at systems in which the service rates
for the different segments changes based on the number of
vehicles present. Another direction we are working on is
the development of defense techniques against SiT attacks.
In particular, we are looking at the use of randomization
techniques to prevent an attacker from implicitly adjusting the
admission ratios.
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