
 

  

 

Aalborg Universitet

Sharing the Pi

Testbed Description and Performance Evaluation of Network Coding on the Raspberry Pi

Paramanathan, Achuthan; Pahlevani, Peyman; Thorsteinsson, Simon; Hundebøll, Martin;
Roetter, Daniel Enrique Lucani; Fitzek, Frank
Published in:
Vehicular Technology Conference (VTC Spring), 2014 IEEE 79th

DOI (link to publication from Publisher):
10.1109/VTCSpring.2014.7023090

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Paramanathan, A., Pahlevani, P., Thorsteinsson, S., Hundebøll, M., Roetter, D. E. L., & Fitzek, F. (2014).
Sharing the Pi: Testbed Description and Performance Evaluation of Network Coding on the Raspberry Pi. In
Vehicular Technology Conference (VTC Spring), 2014 IEEE 79th (pp. 1-5). IEEE.
https://doi.org/10.1109/VTCSpring.2014.7023090

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2024

https://doi.org/10.1109/VTCSpring.2014.7023090
https://vbn.aau.dk/en/publications/a04df9e8-944c-44cd-8418-6d32219209ec
https://doi.org/10.1109/VTCSpring.2014.7023090


Sharing the Pi: Testbed Description and
Performance Evaluation of Network Coding on the

Raspberry Pi
Achuthan Paramanathan, Peyman Pahlevani, Simon Thorsteinsson, Martin Hundebøll

Daniel E. Lucani, Frank H.P. Fitzek
Department of Electronic Systems, Aalborg University

Email: {ap|pep|sthors10|mhu|del|ff}@es.aau.dk

Abstract—This paper presents the design and performance
evaluation of an inexpensive testbed for network coding protocols
composed of Raspberry Pis. First, we show the performance of
random linear network coding primitives on the Raspberry Pi
in terms of processing speed and energy consumption under a
variety of configuration setups. Our measurements show that
processing rates of up to 230 Mbps are possible with the
Raspberry Pi. Also, the energy consumption per bit can be
as small as 3 nJ/bit, which is several orders of magnitude
smaller than the transmission/reception energy use. Surprisingly,
overclocking the Raspberry Pi from 700 MHz to 1000 MHz
not only produces an increase in processing speed of up to
68 % for large generation sizes, but also provides a reduction of
64 % in the processing energy per bit for most tested scenarios.
Then, we show Raspberry Pi as an inexpensive, viable, and
flexible platform to deploy large research networking testbeds
for the evaluation of network coding protocols. We propose key
parameters and representations to evaluate protocol performance
in network nodes as well as validating the testbed’s statistics using
the case of a one–hop broadcast with random linear network
coding, which is well understood in theory.

I. INTRODUCTION

In recent years, network coding [1] has proven to be a
ground breaking technology for communication and storage
systems. Network coding provides an effective mechanism to
increase throughput, provide reliability, and reduce protocol
complexity by changing the goal of each receiver from get-
ting individual packets to getting enough independent linear
combinations. The fundamental change introduced by network
coding is to treat data packets in the network as algebraic
entities that can be operated upon instead of immutable ob-
jects. This radically changes the network operation’s paradigm
from a store and forward one to a stored, compute, and
forward one. This ability to code in the network contrasts
with standard end–to–end erasure correcting codes, e.g., Reed–
Solomon (RS), LT codes, Raptor codes. This ability allows
network coding to adapt to network losses in the best possible
way without needing to introduce redundancy end–to–end,
thus avoiding an inherent inefficiency in network resource use
of end–to–end codes.

Substantial theoretical research work on network coding has
been carried since its introduction in 2000 by Ahlswede [1]
showing significant gains in a variety of scenarios. Demonstra-
tors on commercial platforms have been introduced, e.g., [2],
[3], [4], [5], but these demonstrators are rare in contrast
with the prolific theoretical research in the area. The intro-
duction of the network coding software library KODO [6]

Fig. 1: Raspberry Pi Testbed at Aalborg University.

was intended to change this trend by making network coding
implementation available to more research groups, particularly
those developing protocols. KODO is implemented in C++
providing fast implementations of finite field operations and
network coding basic primitives, i.e., encoding, decoding, and
recoding, compatible with a variety of coding strategies. This
software library runs on several platforms (e.g., Android, iOS,
Windows, Linux, MacOS) and can be compiled by different
compilers (e.g., gcc, clang). Thus, KODO enables researchers
and engineers to use network coding out of the box and focus
on the implementation of the communication protocols.

This paper leverages KODO to take a significant step
forward in this process breaking ground to make network
coding available for all interested researchers at nearly no
cost. Our goal is to ease the process of building a network
coding capable testbed for testing more complex protocols.
Using the Raspberry Pi as an inexpensive device to allow for
large scale deployments, this paper first shows a performance
characterization of the Raspberry Pi for a wide range of critical
network coding parameters, e.g., different field size arith-
metics, generation sizes, as well as characterizing performance
when overclocking the CPU and providing a thorough study
of the energy per bit consumption of these devices. The paper
also provides key installation and compilation steps for KODO
in these devices. This paper also provides a description of
the testbed’s features and relevant statistics for a variety of
network coding protocols. Finally, we provide measurement



results for standard communication topologies using network
coding to validate our system.

II. NETWORK CODING PRINCIPLES

This section describes basic network coding principles.
In particular, we discuss principles of intra–session network
coding, which focuses on creating linear combinations of
packets of the same session. The most standard approach is
to organize the original packets into groups of g packets,
e.g., p1, p2, ..., pg . This group is called a generation of size
g. Then, the packets are linearly combined to create a coded
packet, e.g.,

∑g
i=1 cipi. To do this in practice, we consider that

each original packet can seen as a concatenation of symbols
over a finite field GF (q), where each symbol has a length of
h = dlog2(q)e bits. Thus, a linear combination of the g packets
occurs on a symbol by symbol basis. The choice of the coding
coefficients, ci, is critical for determining performance and
a variety of schemes are possible. However, we focus on
random linear network coding (RLNC) [7], where each coding
coefficient is picked uniformly at random from the elements
in the finite field. The reason is that (i) a variety of proposed
schemes rely on RLNC, e.g., [4], [8], (ii) key performance
metrics studied for RLNC are also relevant in other coding
approaches, and (iii) RLNC’s performance is well understood
and modeled, e.g., [9], [10], which will allow us to validate
our practical results.

In order to understand the performance of network coding
protocols, there are a series of key metrics and statistics that
can shed light on a protocol’s performance. We consider three
statistics that are applicable not just to RLNC protocols but
also useful for future protocols with more complex coding
structures, e.g., [11], [12]. In the following, we describe these
statistics as well as their expected RLNC performance under
ideal conditions.

• Mean number of linearly dependent coded packets at
a node when it has a given rank: This metric is key to
understanding how effective the protocol is in delivering
independent linear combinations with each transmission.
Using the model in [9], [13], we can calculate the mean
number of linearly dependent coded packets, D(g − i),
for a receiver when it has rank g − i as

D(g − i) =
1

1− q−i
− 1 =

1

qi − 1
. (1)

Although this is valid for an ideal RLNC system, specific
implementations can differ. This is particularly true if
we consider the effect of recoding at intermediate nodes,
which increases the probability of transmitting linearly
dependent combinations because the transmitting inter-
mediate node may not have full rank. On the other end
of the spectrum, this statistic is critical to understanding
the performance of sparse network codes, for which
performance is not characterized is such a clean fashion
as for RLNC.

• Number of received coded packets before decoding:
Relying on the absorbing Markov chain formulation

in [9], the transition probability is given by

Pq =
q−g 1− q−g 0 · · · 0 0
0 q−g+1 1− q−g+1 · · · 0 0
: : : : :
0 0 0 · · · q−1 1− q−1

0 0 0 ·· 0 1

 .

The probability of decoding on k transmissions is

P(k) = P k
q (1, g + 1)− P k−1

q (1, g + 1), (2)

where P k
q (i, j) represents the k-th power of Pq reading

the i–th row and j–th column.
• Total transmissions per device: This is key to char-

acterizing the overall performance of the system, which
is particularly important in the presence of multiple
receivers. This metric captures the effect of channel
losses. Previous research, e.g., [14] has studied the case
of broadcast to multiple receivers under the assumption
that the field size is large. [10] provided a thorough
model of field size effects for the case of two receivers,
but the extension to more receivers proved cumbersome.
Analyzing these effects for a larger number of receivers
through the testbed is of value for practical systems.

III. RASPBERRY PI HOW TO FOR RLNC
This section, briefly describes the setup for our experimental

testbed to be used for conducting our measurement results.

A. Installing an Operating System
Raspberry Pi Model B [15] has been selected as the testing

platform. We installed a Linux distribution known as the
Raspbian OS [16]. An easy to follow guide on how to install
the OS can be found in [17].

B. RLNC on Raspberry Pi
The RLNC related methods and tools used in this paper are

provided by the KODO Library [6]. KODO is a C++ library
that provides several methods, tools, and functions that can
be used by other applications for RLNC related operations.
We have used the coding and decoding of data packets in
this paper, but recoding is also readily available. KODO
also allows to seamlessly change key coding parameters such
as the finite field size, namely, GF (2), GF (28), GF (216),
and GF (232 − 5), and the generation size. For a detailed
description on how to install KODO, we refer the interested
reader to [18]. However, KODO works directly out of the shelf
on Raspberry Pi. We advise the interested reader to follow the
instructions provided by the installation script in [18], this
script automatically download the missing dependencies and
guide the user through with compiling, e.g., code examples
and benchmark applications.

C. Overclocking the Raspberry Pi
By default, the Raspberry Pi Model–B is configured for a

processing speed of 700 MHz. However, it provides a series
of overclocking options. We can use the

sudo raspi-config
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Fig. 2: Processing speed of encoding [Mbps] for the Raspberry
Pi for various field sizes, generations sizes, and core operating
frequency

command in a terminal on the Raspberry Pi to access the
configuration to overclock the device . This command will
open a GUI, here select option 7 (Overclock) and select the
desired frequency. We have characterized the two extreme
cases in this paper, namely 700 MHz and 1000 MHz.

D. Configuration of the Mesh
The coded packets are wirelessly exchanged between sev-

eral Raspberry Pis devices over a meshed network using a
Wi–Fi dongle of type TP–Link (TL–WN722N) [19]. There
are several ways to achieve this. For example, one can simply
hard code the mesh or use available mesh routing protocols.
However, for our setup, we are using B.A.T.M.A.N. [20] as
our mesh routing protocol, because it is part of the Linux
kernel and it is straightforward to use. We refer the interested
reader to [20] for a detailed explanation of how to setup and
use B.A.T.M.A.N. [20] in Linux.

IV. RLNC PERFORMANCE IN RASPBERRY PI
In this section, we shall characterize the processing speed

and energy per bit consumption characteristics of the Rasp-
berry Pi Model B [15] for various RLNC parameters. These
measurement characteristics and strategies are similar to those
that used in [21].

A. Processing Speed
The performance measurement of network coding is han-

dled by running the KODO benchmark application. By running
this application, we get the processing speed of RLNC for
different coding parameters. We adjust two key parameters:
the finite field and the generation size. Each packet tested in
this benchmark is of size 1000 bytes.

Figure 2 and Figure 3 show the data processing speeds
for encoding and decoding for two different CPU frequencies
(0.7 GHz and 1 GHz) using different field size and generation
size. These figures show that the Raspberry Pi is able to
encode and decode at speeds of up to 230 Mbps while using
GF (2) and with a generation size of 16. The figures show that
differences between the CPU frequencies have a significant
impact on processing speed especially for higher field sizes
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Fig. 3: Processing speed of decoding [Mbps] for the Raspberry
Pi for various field sizes, generations sizes, and core operating
frequency

TABLE I: Average Current Measurements

Idle Device @ 700MHz 0.4475 A
Idle Device @1000MHz 0.5211 A
Processing (Encoding/Decoding) @700MHz 0.1156 A
Processing (Encoding/Decoding) @1000MHz 0.1389 A
WiFi Reception 0.5670 A
WiFi Transmission 0.6500 A

and larger generation sizes. In fact, processing at 1 GHz
outperforms 0.7 GHz up to a factor of 1.68, i.e., 68 % faster.
This tendency can also be seen for higher field sizes and
generation sizes.

B. Energy Consumption
The energy performance measurement focuses on one Rasp-

berry Pi device connected to our measurement equipment (Ag-
ilent 66319 [22]). The Agilent supplies power to the device and
logs both the current flow and the voltage usage of the device
during the measurement. Table I shows the average current
during our measurements. Combining the measurements from
Table I with the processing speed, we compute the energy per
bit used for processing in the device.

Figure 4 and Figure 5 shows the energy per bit for encoding
and decoding respectively for frequencies 0.7 GHz and 1 GHz.
Again, we see a significant difference in terms of energy cost
per processed data bit. For most field sizes and generation
sizes, increasing the processing speed from 0.7 to 1 GHz
reduces the energy per bit by a factor of 1.64. This is explained
by the processing speed increase by a factor of 1.68 and the
minor increase in current used by the device (See Table I).

V. EXPERIMENTAL SETUP: ONE TO ALL BROADCAST

Our measurement setup consists of ten Raspberry Pi de-
vices, placed inside the campus building. Each device is con-
figured using the procedure in Section III. One device has been
configured as a source, which has the purpose of broadcasting
data packets to the other devices in the network. The remaining
nine devices have been configured as destination devices with
the purpose of listening for coded packets from the source,
store them, and decode them when enough linear combinations
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have been received. These testbed devices are controlled and
configured by a central server. The server also controls the
execution of tests and collection of results from each test from
each of the devices to be able to calculate the desired statistics.

A. Test applications
In order to perform measurement on these devices, we wrote

two applications, one for the test server (PC) and one for the
clients (Raspberry Pis). The server side application can be
executed on a PC with the necessary testing parameters and
KODO configurations, e.g., finite field size, generation size,
packet size, duration of each test.

The client application encapsulates KODO and manages the
connectivity of our wireless mesh network. Depending on the
role assigned within the network, it will use a different set of
functionalities of the test application. If the device is targeted
as the source by the server then the client application will use
KODO to encode data packets according to the configuration
parameters fed by the server for that test. Each coded packet is
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Fig. 6: Average linearly dependent packets for different re-
ceived rank using GF (2) and a generation size of 32

then transmitted using the wireless mesh network. If a device
is chosen as a destination, then the client application will listen
to any incoming coded packet from the source over the mesh
network and try to decode the original packets. For both the
source and destination the application generates a statistics of
the performance metrics (described earlier) and log them as
a test file. At the end of our experiment, this log file is then
collected by the server for further analysis.

B. Configurations and Experimental Procedure
The communication link between the source and the desti-

nations are established over UDP–socket connections on top of
the B.A.T.M.A.N. routing protocol [20]. The source is config-
ured to broadcast data packets over the established connection
to the destination devices. The size of the transmitted packet
is set to 1000 bytes and for the current tests we have used
a GF (2). We tested with the following generation sizes: 16,
32, 64, and 128 packets, where a series of tests are performed
separately for each generation size. We illustrate two out of
the three key statistics of Section II due to space constraints.

C. Experimental Results and Discussion
Figure 6 shows the linearly dependent packets for different

received rank using GF (2) and a generation size of 32 for two
of the nine devices from our testbed and the theoretical RLNC
model of Section II. This figure shows that the performance
of each individual device matches that of the theoretical
model for GF (2). This behavior is expected and validates
the RLNC nature of the coded packets transmitted from the
source to the destinations. All other devices showed similar
performance. This metric will be more relevant in practical
settings where there is recoding at intermediate nodes because
an aggressive relay may send too many coded packets before
having collected sufficient dimensions, thus increasing the
number of linearly dependent packets received. Identifying
variations with the current pattern will allow us to identify
inefficiencies in an RLNC protocol.

Figure 7 illustrates the maximum number of transmission
needed by the source in order for the destination to decode
the received packets. The packet loss ratio was below 10 %.
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This metric inherently brings together the effect of multiple
receivers, field size effects, and effects of channel losses.
Figure 7 shows the distribution of the number of transmissions
needed by the source before all destinations are able to decode
(lines) for generation sizes of 16, 64, and 128 packets. The
bar plots illustrate the distribution of the number of received
packet before decoding for a single device. This result shows
that there is a compounded effect of the performance of
individual devices on the overall transmission distribution of
the source. This effect is in part due to the effect of losses
and the linear dependencies that occur for RLNC in GF (2),
as shown in Figure 6. Figure 7 also shows that an increase
in generation size can radically increase this effect even for
low packet losses. This is explained by the fact that there is
a larger probability to experience a losses in each individual
device, which creates differences in the linear combinations
accumulated by the devices during the transmission process
translating in a larger deviation in the overall system perfor-
mance with respect to that of individual devices.

VI. CONCLUSION

This paper showed the key mechanisms to setup, configure,
and operate inexpensive large–scale network coding enabled
deployments using the Raspberry Pi as key testing device.
We showed that the Raspberry Pi device is capable of high
processing speeds, especially when overclocking it, as well
as providing a thorough characterization of the energy per bit
consumption of it. We also proposed some key statistics of
interest that can be computed and extracted at each device to
better understand a network coding protocol. All these findings
prove the fact that even a low cost device as the Raspberry Pi
can run network coding at outstanding speeds.

Although we demonstrated the testbed’s capabilities using
the simple case of a one–to–all broadcast case, a variety of
topologies and protocols can be tested using our approach, e.g.
wireless meshed networks with different topologies. Our goal
was to validate our results with a well understood topology
that can be easily repeated as a first step after setting up the
Raspberry Pi. The main benefit of this paper is the fact that

it empowers other researchers to carry out their own network
coding based research on commercial WiFi enabled devices
at low cost. The basic steps explained in this paper show the
way how to bring network coding on a Raspberry Pi.
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