
Achieving Optional Android Permissions Without
Operating System Modifications

Greig Paul
Department of Electronic & Electrical Engineering

University of Strathclyde
Glasgow, UK

Email: greig.paul@strath.ac.uk

James Irvine
Department of Electronic & Electrical Engineering

University of Strathclyde
Glasgow, UK

Email: j.m.irvine@strath.ac.uk

Abstract—Since the release of the open-source Android op-
erating system in 2009, considerable research has been carried
out into various factors affecting the security and privacy of
user data. As these devices become more widespread in usage,
such as in vehicles with the announcement of Android Auto,
the need for users to have control over the data available to
applications is becoming important. A recurring theme from
other works into this topic is that a more granular permissions
model for Android applications would be beneficial, allowing
users to understand which permissions their apps actually need,
and to make decisions, rather than be forced to accept all
of the requested permissions. A number of effective solutions
have been presented, but these have required modifications be
made to the core operating system, to enforce the existence of
these new, optional permissions. We present an approach which
permits an application developer to add optional permissions to
their application, without any modifications being made to the
underlying operating system. By not requiring rooting or other
modifications to the device, this technique makes use of native
Android functionality, and thus should remain operative between
Android versions (which are increasingly difficult to gain root
access on), unlike alternative techniques.

I. INTRODUCTION

Following the recent announcement of Android Auto [1],
which will bring access to the Android operating system into
consumer vehicles, the privacy and security considerations of
the Android operating system are now a consideration for
users of vehicles equipped with the technology. The Android
operating system has, since its inception, used a model of
install-time permissions to enforce restrictions upon the abili-
ties of applications running on the platform. A well-researched
downside of this approach is that users have no choice over
the permissions an application is granted - the user can either
accept the full permissions list, as requested by the developer
of the application, or decline to install the application.

As early as 2010, Shin et al. described some limitations
of the Android permissions scheme, including the fact that
“the framework does not impose enough controls nor dynamic
adjustment”, since permissions are accessible to an application
throughout their entire lifespan. [2] As described in their
overview of the permissions system, “no permission can be
additionally given to the application nor can it be revoked”.

More recently, in 2014, Do et al. stated in [3] that Android
privacy research is generally split into 2 fields - that of
removing existing permissions from applications, and that

of creating narrower, more granular, permissions. They then
proposed a model for the removal of application permissions
through reverse engineering.

II. PREVIOUS RESEARCH APPROACHES

As there have been a number of previous approaches
towards the preservation of privacy on Android through over-
hauling the permissions system, we attempt to categorise
these approaches, and compare our implementation with the
solutions that have emerged from previous research. Work
by Stach and Mitschang [4] explained the motivation and
justifications for offering greater privacy settings, modifiable at
run-time, which would not cause applications to crash. Taking
this into consideration, along with the findings by Johnson et
al. that many applications over-specify their permissions [5],
we believe a better approach to permission management is for
applications to request minimal permissions at install time, and
request further permissions at a later point, when required.

A. Permissions Removal

A popular proposed means of adding granularity to An-
droid permissions is the use of various reverse engineering
techniques to remove permissions from existing Android ap-
plication packages. The main advantage of this approach is
that, as stated by Do et al. in [3], no modification is needed
to the Android operating system, while the majority of other
presented approaches require modifications to the operating
system, making their implementation much more difficult.
Additionally, permissions removal requires no cooperation of
the developer of an application, since the binary may be
modified through reverse engineering techniques, to remove
the permissions from the application.

The main downside of this approach, as also described
in [3], is the difficulty of actually removing permissions
from compiled applications. If a permission-protected func-
tion call is made, without the appropriate permission being
declared within the application’s manifest at install-time, the
function call typically results in a Java security exception
being triggered by the application, thus terminating it. In
addition, in order to modify the Android application package
to remove permissions, the package itself will need to be
cryptographically signed again. This was identified by Do et
al., where they explained that the modified application cannot
be installed over the unmodified application, due to differing



signatures. Additionally, by modifying the application binaries,
users would not be able to install official updates, due to the
differing signing key.

Carrying out application binary modifications to remove
permissions from an application requires users to maintain
their own self-signed version of the application, and to repeat
the permissions-removal process each time the upstream appli-
cation is used. For frequently-updated applications, this may
present a significant workload for the user. Additionally, users
cannot easily (and securely) share these modified versions of
the application, as such redistribution would typically be pro-
hibited by most license agreements. Even if it were permitted,
users would not be able to easily verify that only desirable
changes were made to the application binary code.

B. Install-time Granularity

One method used to increase user control over their device,
while still retaining full compatibility with all applications
is the technique of allowing users to set constraints upon
the application’s use of permissions at install time. This was
demonstrated by Nauman, Khan and Zhang in [6] with their
Apex framework’s Poly installer, which contributed a modified
Android installer environment, allowing for the selection of
permissions. This approach of install-time granularity is con-
venient (as users are already familiar with being prompted for
permissions at install time), although it does naturally require
its modifications to be made to the Android operating system,
which may hinder wider adoption. Likewise, the SAINT [7]
proposal introduced a modified install-time interface and pro-
cedure for the granting and denying of permissions, as part of
the installer.

C. Run-time Granulatity

Beresfod et al. proposed a set of modifications to the
Android operating system entitled MockDroid, which intro-
duced the ability for applications to be denied access to a
resource through ‘mocking’ said access, and providing valid
(but inaccurate) data. [8] Since their proposal, MockDroid,
permits runtime adjustment of access to privileged data, this
offers a flexible approach for users wishing to protect their
privacy. Additionally, as valid mocking results are used (such
as stating GPS is disabled, to prevent access to location),
applications should not crash when using this approach, which
is an important advantage over permissions removal.

A similar approach was proposed by Melo and Zorzo in
[9], where users are able to control and personalise their own
settings for privacy, after installation, using their PUPDroid
framework. As with the MockDroid proposal, this technique
requires modifications to be made to the Android operating
system, in order to enforce the user’s selections.

D. Root-based Techniques

A number of other techniques involving modifications
to the device operating system (or similar aftermarket root-
level techniques) exist, such as that of XPrivacy [10] (based
on the Xposed Framework [11] code injection and hooking
framework). Techniques such as that employed by XPrivacy
(hooking the API function calls used by applications to access
potentially private data, and carrying out its own checks based

on user-defined policies) are highly flexible, but are limited by
the need for root access to be available on the Android device
in question, and for a suitable code hooking framework to be
available for the version of Android in question. For example,
Android 5.0, which was released in early November 2014, is
not supported by the Xposed framework at time of writing.

Other root-based techniques are available, which do not
depend on the use of the Xposed framework. These techniques
obviously require root access to be gained on the device in
question. While previously this was almost guaranteed to be
achieved on a device, recent trends have seen steps taken to
make it more difficult to gain root access on Android devices.
Indeed, for many of the new and emerging uses of Android,
gaining root access may be significantly more difficult than
previously, given the introduction of SELinux in enforcing
mode with Android 5.0 [12].

For this reason, we believe that, in future, root-based
solutions for user privacy protection (by disabling applications
from using permissions) are likely to become increasingly
complex for users to deploy, and likely to discourage users
from updating their Android operating system to accept im-
portant security updates, for fear of no longer being able to
root their device, or losing their manufacturer warranty as a
result of modifying the device. In an automotive environment
such as with Android Auto, this could potentially put not only
the user, but also other road users at risk.

III. IDENTIFICATION OF PROBLEMS

Despite considerable research having already been carried
out into the field, we identified that there was, to date, no
clear means through which a developer can prompt a user to
accept extra permissions, while still having these permissions
enforced by the core Android operating system. In light of de-
tailed analysis such as that conducted by Stach and Mitschang
in [4], we believe that a key first step towards users having
greater ability to protect their own privacy and security on their
devices is to allow for selection of which permissions a user
wishes to grant an application. Since at present this has not
been demonstrated to be possible without modifications being
made to the operating system, developers are unable to offer
users this choice. We therefore present a practical approach
towards offering developers a means to grant users control over
permissions, such that they are no longer required to request
every permission their application needs, if a user does not
wish to make use of such functions.

From the previous work discussed above, we believe the
key challenges which users of Android face, with regard to
privacy and data disclosure, can be split into two:

• the requirement for users to accept all requested
permissions (however many there may be), or not be
able to use the application

• the lack of finely-tunable controls for permissions -
some are overly broad, granting access to all of a
user’s contacts, or persistent and unannounced access
to record video and audio from the device

We propose a simple solution to the first problem, of
Android not supporting optional permissions. While this ap-
proach requires the application developer to implement it, this



should reduce the potential for applications that have not been
designed for such a system to crash, or otherwise fail to work
correctly. The process of adding this system to an application is
relatively straightforward, and can be retrofitted to an existing
application.

Despite a long-running feature request from January 2010
on Google’s Android Open Source Project (AOSP) issue
tracker [13], there has been no clear progress in offering
this functionality to developers. Indeed, many application
developers specifically detail the reason for each permission
being present in their application, including those of relatively
high-profile and frequently downloaded applications. For ex-
ample, the Pocket application has between 5 and 10 million
installations, and has justification for its permissions at [14],
which is linked from its Play Store entry. Indeed, the Facebook
Messenger app, with between half a billion and one billion
users [15] has its own designated help page, to explain which
permissions are requested for each function of the application,
and why [16]. As such, we believe that application developers
would be willing to implement a more granular permissions
system, if one were available, given the efforts taken currently
to explain which features require which permissions.

IV. OVERVIEW OF METHODOLOGY

When developing for the Android platform, permis-
sions for an application are ordinarily declared in the
AndroidManifest.xml file, located within the source
project. These permissions are evaluated by the Android
package manager at time of installation, and are referenced
by the system when evaluating access attempts being made
by the running application to permission-protected functions.
While Android itself does not support the concept of optional
permissions, we present an after-market implementation of a
user-friendly system to allow for optional permissions to be
used. Users are able to install an application with a minimal
set of permissions (our methodology does not require any
permissions itself to operate). After installation, a user can
be prompted to allow further permissions, and this will again
be approved by the user, in a standard process, through the
installation of a new (very small) application to the system.

At this point, the application will have access to its original
permissions, as well as the new permissions agreed to by the
user. The enforcement of permissions continues to be carried
out by the operating system (there are no changes needed
to the system), and therefore this implementation should not
introduce any new security risks which are not already part of
Android.

It is possible to both add, and revoke, an application’s
permissions at run-time, without the need to stop the execution
of the application. This assists in making our proposal more
user friendly, since a user can accept a prompt to allow more
access, and be able to make use of those new permissions
without having to restart the application (and the task they
were attempting to carry out).

V. IMPLEMENTATION

In order to add permissions, after time of install, to an
existing application, the Android shared user ID (UID) feature
is used. Within Android, each installed application is assigned

Fig. 1. Flowchart illustrating process of accepting a new permission

a Linux UID, and permissions are assigned to these UIDs.
All applications wishing to share a UID must be signed
by the same developer key, and these share access to the
same protected data files, as private data files created by the
application are owned by the UID of the application, which is
in this case shared between a group of applications. [9]

One additional feature of the shared UID facility on
Android is the ability for permissions to be shared between
different packages using the same UID. [8] In this manner,
it is possible for an application with no permissions, which
shares a UID with a privileged application, to make use of
these privileged permissions, without itself requesting these
permissions. By then detecting the presence of packages, it is
possible for an application to make runtime decisions, based
on the presence of these privileged helper applications.

A flowchart illustrating the workflow experienced by a user
is shown in Figure 1.

A. Detection of Permissions

In order to detect whether or not a permission is made
available to an application at runtime, we propose 2 possible
methods of carrying out this check, although there are count-
less other methods of simply determining if the permissions
are available. The first is a relatively straightforward method,
where the main application attempts to invoke a stub method,
declared within the permissions-carrying package, that returns
an agreed value. When a correct reply from this function,
the developer can be assured that a package, signed with



Fig. 2. Application listing showing main app and helper app

their developer key and using the specified package name,
is present and installed on the system, and thus that the
additional permissions are available for use. If an incorrect
reply is received, the user has not yet chosen to allow these
permissions.

The second means of detecting if extra permissions are
available is to simply verify if the correct permissions package
has been installed on the device by the user (by querying the
PackageManager service on Android for the presence of the
permissions package).

B. Installation of Extra Permissions

In the event of the helper permissions-granting ap-
plication not being present on the device, this will
be detected during the process of attempting to in-
voke this function, as a NameNotFoundException or
ClassNotFoundException will be invoked, allowing a
developer to handle this exception with a prompt to the user
to accept new permissions. If the user accepts the permissions
request by the application, an intent would be invoked to dis-
play the Google Play Store (or any other application delivery
platform) on the installation page of the relevant permissions
package, ready for installation. As the Play Store workflow
handles permissions, this ensures users are aware of what they
are installing.

C. User Perception of Permissions

Since the helper application itself is installed as normal
on the device, it can also be seen within the system list of
all installed applications, as shown in Figure 2. The optional
permissions packages need not be visible to the user within
their launcher or homescreen.

Despite the permissions of a package not being declared
at the time of installation, users can verify the permissions
of an installed application using this technique in the usual
manner - as shown in Figure 3, the shared permissions will
appear listed for each application making use of a shared UID.
Prior to the installation of the optional permissions, there were
no permissions listed. This allows for easy auditing of the
permissions which are accessible to an application, since only
those permissions which the application has specifically been
granted, either in the core package, or in one of the helper
packages, will appear in this listing.

Fig. 3. Main app showing optional permissions

D. Runtime Permissions Modification

In order for this approach to optional permissions to be vi-
able, users and developers must not be unduly inconvenienced
by implementing a scheme such as this. We propose that any
system requiring the application to be restarted every time
permissions were added or removed would be unacceptable
for users.

We have verified in our own testing that our implementation
of optional permissions was able to both add and remove
permissions from a running application, without any special
measures being implemented within the application. The appli-
cation did not need restarted, nor did the activity need restarted
or refreshed, for updated optional permissions to take effect.

VI. EVALUATION OF PROPOSAL

The main limitation of the proposal, as described above,
is that it requires users to be connected to the internet (in
order to install the helper application from Google Play). It
would be possible to remove this limitation, if users enable
the option to allow installation of applications from unknown
sources (which contravenes good security practices). In that
case, the main application would store the APK files of the
helper applications with its application assets, and prompt the
user to accept the permissions of the application and install the
helper application. This process would not require an internet
connection. We have, however, chosen not to implement this
technique, as we believe it to be sub-optimal, in that it requires
users to accept and install packages from outwith the Play
Store, which contradicts standard accepted best-practice for
security. [17]

Our proposal does require that application developers elect
to use this technique when developing their application, which
may prove a barrier towards adoption, although likely a much
smaller barrier than that experienced with techniques which
require users to install a full custom operating system on their
mobile device. Especially when considering the integration
between Android devices and automobiles through the Android
Auto scheme, we believe it is highly desireable for users to
have the ability to have control over permissions in an out-of-
the-box scenario.

One limitation of this approach is that the user interface
for the management of, and removal of, optional permissions
is somewhat limited. A new application entry will appear in
the manage apps list for each helper installed (though no
new launcher icons are required). This means that in order
to revoke permissions, a user must first identify the relevant
helper application to remove, which relies upon the developer



using accurate titles for their helper applications. As these
are entirely developer-defined, there is a potential risk that an
unscrupulous developer could misleadingly name their helper
applications.

In terms of application performance, we carried out run-
time tracing of the execution of the program code for the
getDeviceId() function of the TelephonyManager service
in Android, using the Android SDK tools. This function
was selected as it is relatively simple, returning the device
IMEI (if equipped with a modem), otherwise returning null.
Two tests were carried out (as shown in Table I) - for the
proposed optional permissions scheme, and for the status-quo
with compile-time declared permissions. In each test, both a
successful operation (permission was granted), and a failure
operation (permission was not granted) were tested. In each
case, the test duration was recorded through the tracing tool
as the time taken from the system responding to a button’s
onClick() event, until the device IMEI was stored in a
string variable. It is worth noting that the status-quo failure
test time is not significant, as this resulted in a crash of the
application. As such, a try-catch loop was placed around it, to
demonstrate the approximate time taken.

TABLE I. PERFORMANCE COMPARISON OF STATUS-QUO
IMPLEMENTATION WITH PROPOSED METHOD

Test Granted Denied
Status-quo 45.3ms 40.8ms
Proposed 49.8ms 44.1ms

From these results, it is clear that the impact on perfor-
mance of our proposed implementation within the context of
an Android application is negligible, given there was only an
increase in execution time of around 5 milliseconds to carry
out a permission availability check prior to carrying out an
action.

VII. CONCLUSION

We have presented a means of achieving user-controllable
optional permissions on the Android platform, without re-
quiring any changes be made to the operating system, in a
manner which can be implemented by developers, and used
on a regular stock Android installation. By making use of
the shared user ID facility of the Android platform, we are
able to share permissions between the main application and
a series of small helper applications, which exist solely to
provide extra permissions to the main package. Applications
can detect if permissions are available at runtime by looking
for the presence of the helper application (using the same
UID), and prompt the user to install a permissions helper
package if it is not yet installed. It is not necessary for users to
restart the application in order for the new permissions to take
effect. Permissions can also be removed, again with no need
for the main application to be restarted, simply by uninstalling
the appropriate helper application.

ACKNOWLEDGMENT

This work was funded by EPSRC Doctoral Training Grant
EP/K503174/1.

REFERENCES

[1] (2014, June) Android Auto. Google Inc. Retrieved 16 September 2014.
[Online]. Available: http://www.android.com/auto/

[2] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A
small but non-negligible flaw in the Android permission scheme,” in
Policies for Distributed Systems and Networks (POLICY), 2010 IEEE
International Symposium on. IEEE, 2010, pp. 107–110.

[3] Q. Do, B. Martini, and K.-K. R. Choo, “Enhancing user privacy on
Android mobile devices via permissions removal,” in System Sciences
(HICSS), 2014 47th Hawaii International Conference on. IEEE, 2014,
pp. 5070–5079.

[4] C. Stach and B. Mitschang, “Privacy management for mobile platforms–
a review of concepts and approaches,” in Mobile Data Management
(MDM), 2013 IEEE 14th International Conference on, vol. 1. IEEE,
2013, pp. 305–313.

[5] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of
Android applications’ permissions,” in Software Security and Reliability
Companion (SERE-C), 2012 IEEE Sixth International Conference on.
IEEE, 2012, pp. 45–46.

[6] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints,” in
Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security. ACM, 2010, pp. 328–332.

[7] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
rich application-centric security in Android,” Security and Communica-
tion Networks, vol. 5, no. 6, pp. 658–673, 2012.

[8] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading
privacy for application functionality on smartphones,” in Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications.
ACM, 2011, pp. 49–54.

[9] L. L. de Melo and S. D. Zorzo, “Pupdroid-personalized user privacy
mechanism for Android,” in Systems, Man, and Cybernetics (SMC),
2012 IEEE International Conference on. IEEE, 2012, pp. 1479–1484.

[10] M. Bokhurst. XPrivacy. Retrieved 12 January 2015. [Online]. Available:
https://github.com/M66B/XPrivacy

[11] R. Vollmer. Xposed framework. Retrieved
13th January 2015. [Online]. Available:
http://repo.xposed.info/module/de.robv.android.xposed.installer

[12] (2014, November) Security-enhanced Linux in Android. Google
Inc. Retrieved 12th January 2015. [Online]. Available:
http://source.android.com/devices/tech/security/selinux/index.html

[13] (2010, January) Allow apps to specify optional permissions in the
manifest. Android Bug Tracker. Retrieved 13th January 2015. [Online].
Available: https://code.google.com/p/android/issues/detail?id=6266

[14] (2014, December) Pocket - Google Play Store. Read It
Later. Retrieved 12th January 2015. [Online]. Available:
http://getpocket.com/permissions

[15] Facebook. (2014, December) Facebook - Google Play Store.
Facebook. Retrieved 13th January 2015. [Online]. Available:
https://play.google.com/store/apps/details?id=com.facebook.orca

[16] ——. (2014, August) Why is the Messenger app requesting
permission to access features on my Android phone or tablet?
Facebook. Retrieved 13th January 2015. [Online]. Available:
https://www.facebook.com/help/347452185405260

[17] T. Oh, B. Stackpole, E. Cummins, C. Gonzalez, R. Ramachandran, and
S. Lim, “Best security practices for Android, Blackberry, and iOS,” in
Enabling Technologies for Smartphone and Internet of Things (ETSIoT),
2012 First IEEE Workshop on. IEEE, 2012, pp. 42–47.


