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Abstract—In this paper, the resource management problem nearest DC can always get a pleasant user experience since
in geographically distributed cloud systems is consideredThe g |ocal DC can minimize the end-to-end delay between MTs
Follow Me Cloud concept which enables service migration aass and cloud servers.

federated data centers (DCs) is adopted. Therefore, therera . . o

two types of service requests to the DC, i.e., new requests RRN) I_n this paper, a geographma}ly d|str.|buted C'OUQ' system
initiated in the local service area and migration requests fIRs) Which adopt the FMC concept is considered. Multiple DCs
generated when mobile users move across service areas. A abv take charge of respective service areas and each DC is
resource management scheme is proposed to help the resourcesquipped with a resource manager (RM). A MT can initiate a
manager decide whether to accept the service requests (NRspq,y request (NR) to the local DC in its resident service area.

or MRs) or not and determine how much resources should . - -
be allocated to each service (if accepted). The optimizatio When the MT wanders to another service area during service

objective is to maximize the average system reward and keep Period, a service migration request (MR) will be send to the
the rejection probability of service requests under a certin destination DC. The corresponding RM then makes a trade off

threshold. Numerical results indicate that the proposed steme petween the user perceived quality and incurred system cost
can significantly improve the overall system utility as wellas , gecide whether the service should be migrated. RMs also
the user experience compared with other resource managemen .
schemes. make decisions on how much resources should be allocated to
each accepted service request (NR or MR).
|. INTRODUCTION The resource management problem described previously is

The booming of bandwidth-intensive mobile applicationtormulated as an constrained semi-Markov Decision Process
and ever growing mobile user number have brought grd@&MDP). Our work is inspired byl[[7] and [[8]. Authors
challenges for today’s mobile cloud systerns [1]. One of thig [7] introduce an analytical model for FMC concept and
performance bottlenecks lies in the fact that most curremt min [8], the service migration procedure is modeled using MDP
bile cloud systems are highly centralized. The fast grovahg Other relevant works on service migration in cloud systems
mobile cloud computing business is calling for geograghica include [9], [10], etc. In these previous works, the service
distributed cloud infrastructures, i.e., federated dataters model is described from the perspective of MTs, and the
(DCs) [2], to relieve the heavy load of the central server arf@source allocation problem is not considered. In our wibr,
improve user experience. decision making approach is described from the perspective

Except the specialized cloud providers like Google, thef the overall system, and the objective is to improve the
evolution of mobile network architecture has promoted theverall system utility. To solve the SMDP, the value itevati
decentralization of cloud systems as well. Toward the fith-g algorithm and Q-learning algorithm are employed to obtain
eration (5G) [[3] of wireless broadband, emerging paradigrifse optimal policy. Compared with other schemes, the SMDP-
such as network function virtualization (NFV))I[4] can helfased resource management scheme can significantly iacreas
to realize a flat and intelligent mobile network embracedwitthe average system reward and reduce the rejection prapabil
cloud technology. For example, in a mobile system adopted tbf service requests.
concept of C-RANI[5], scattered cloud resource blocks withi The remainder of this paper is organized as follows. The
a certain geographical area can be aggregate into a virtBgstem model and service migration procedure is described i
cloud resource pool. Federated resource pools in multigkection[D. In Sectiof_1ll, the resource management problem
geographical areas can thus form a distributed cloud systeis formulated as an SMDP. The solution to the problem and

The Follow Me Cloud (FMC) concept, which enables sethe numerical results are presented in Sedfidn IV. Fintily,
vice migration across federated DCs following the mobilitgonclusion is drawn in Sectidnl V.
of mobile terminals (MTs), is widely accepted in distribdite

cloud systems[[6]. Enjoying service from the geographycall II. SysTEM MODEL
We consider a typical 3GPP cellular network covered by

1This work is supported in part by the Fundamental Researahdd$-u heterogeneous wireless access nodes, e.g., macro base stat
for the Central Universities (N0.2014ZD03-02), NationagyKTechnology

R&D Program of China (2014ZX03003011-004) and China Natsaence (BS), femtocell nodel[11], WLAN access point, etc. Each
Funding (61331009). hexagonal cell is equivalent to a service area and be askigne
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(b) Migration request rejected. (1= p)pm (1 =p7) dp > 0,d = 0(2)
~ Fig- 1. Service migration diagram. wherep’™ denotes the average rejection probability of MRs.
a DC. For simplicity, we assume that each cell is covered By — ( indicates that the MT is receiving service form

a single macro BS which is collocated with a DC. When th@e |ocal DC. The transition diagram of service distance
MT enters the coverage area of a BS, it enters the servigejllustrated in Fig[2, wherd’ denotes the state that the
area of the attached DC equivalently. Each DC has a resougggvice has been finishedD is the maximum allowable
pool which containsB units of resources. MTs are offeredservice distance. When service distance excégdbse service
resources (computation or storage) represented in the 8rmyil| be interrupted and this situation is represented byesta
virtual machines (VMs). After a service request is accepéedDy. Based on the transition diagram, we can obtain the
guest VM is constructed in the DC and the RM will allocatgrobability distribution of each service distance value,,i

resources to the VM for running the service. Py = (Pr[d. =1],Prld.=2],--- ,Pr|d. = D]) € [0,1]".
When a MT moves from one service area to another during
service period, a service MR will be sent to the destinatiGh D I1l. PROBLEM FORMULATION

If the MR is accepted, as shown in Fig. 1(a), the correspandin |, this section, the service model described previously is
VM in the original DC will be released and a new VM will beformylated as an constrained SMDP. From the perspective
constructed in the destination DC. During migration precesyf 5 service area, the system statalescribes the resource

the new VM via backhaul. Another case is that the MR is

rejected, as Fig. 1(p) shows, the VM in the original DC will be se{st sfe}eS, ecE={AT,M}, (3
maintained and the MT will receive service via an additional
wired link between the serving DC and the current connectglcji]e
base stati_on. _ _ sl = {55,557... 755}7 st = {sf,s?,--- ,Sg}_ (4)

The arrival process of NRs is modeled as a Poisson process
with the rate of),. Let p,, denote the cross-area movemerﬁ£ denotes the number of local MTs (MTs that are currently
rate of MTs and the service time is assumed to be geometffi-this service area) which occupiesunit resources of this
cally distributed with meari /(1 — ). Therefore, the arrival DC. Similarly, s’ denotes the number of remote MTs (MTs
process of MRs is also poissonian with the rate of which are located in other service areas but still receivéce

o Am = A (1= 10) P, _ from this DC) that occupie_s unit resgurces. Total amount of

A six-directional random walk mobiiity model [12] is Usedoccupied resources of this DC §C_, ¢ (s% + sf) < B,
to characterize the user movement. When a MT moves l&-denotes the maximum amount of resources that can be
tween two adjacent service areas, the previous distance afidcated to a single service.represents an event occurs in
current distance between the MT and its serving DC (defindtk system and the event d8tis described as follows:

reS is the system state spaceg: ands”? are defined as



o« A={A" A™}. A" and A™ denote the arrival of a NR occupation costd denotes the average service distance which
and a MR to this DC, respectively. can be calculated by = Zle dPr[d. =d].

o T = {TFTElce{1,---,C}}. TF denotes the finish  The state duration functions, a) which denotes the expect
and departure of a local service (service to a local MTime length between two consecutive decision epochs, is the
which occupiesc unit resources. SimilarlyT'f* denotes reciprocal of event rate (s, a), i.e.,

the finish of a remote service (service to a remote MT) . c
which occupies: unit resources. v (s,a) =y(s,a)” = A"+ X" + Z (1 +pm) (s + sF).
e M = {MI MElce{1,---,C}}. MF denotes the =1

cross-area movement of a local MT that occupies The RM chooses actions according to a certain poIicy(lg\k/hich
unit resources. SimilarlyM/? denotes the cross-areas defined a$) = (6 (s), 02 (s), - - -). 0k (s) = a is the action
movement of a remote MT that occupiesnit resources. decision rule at thek-th decision epoch. In this paper, we
The occurrence time points of a sequence of events a@nsider stationary policies only, which remain constant a
called decision epochs which are indexedibg {1,2,---} in different decision epochs, i.€ = (6 (s),d (s),---). Given a
chronological order. At each decision epoch, the RM choostesisible unichain policy?, the induced state transition process

an actiona from the action spacel, which is defined as can form a Markov chain with transition probabilities of
/\n

_ {0,1,---,0}, ee{An’Am} (el S(a))’ e =A"
As = { {-1}, otherwise ' ®) W(S,\’gb(s)) S g
a = 0 indicates that the request is rejected by RM= ¢ V(Slvf ()’ ‘

indicates that the request is accepted anohits of resources “fci“, e =Tk
are allocated to this service. In other cases, the RM neetbnot P (s']s,8(s)) = 7 (Ssbi(s)) , (10

make decisions but update the resource consumption (aknote m, e =T'

by a = —1) in the system state. - , ;

Based on the system stateand the corresponding action 7 (s,6(5) e =M

a, the system reward function can be evaluated as sEpm , L

y(s,a) 3505 e =M,

r(s,a) =g(s,a) - /0 d(s,a)dt, (6) wheres, s’ € S ande’ is the event element in staté.

g(s,a) is the lump sum income the system gains immediately The average reward optimality criterion is used in this
after actiona is taken.d (s, a) is the cost rate function which model. Therefore, the optimization objective of the SMDP is

indicates the per unit time cost during service period ari@ achieve the optimal policy satisfying

y (s, a) is the expected sojourn time of system state until next 1 K 7y (s,0a)
decision epoch. The lump sum income functign, a) can be  max 7= lim Eq |— —
QeP K00 K = yk (s,a)

expressed as % .
G — cel st. pr= lim E 1 > (w"_"k + wm_mk) <
Gm (1 — p;”) e e Mn e Pr Koo Q K = Py Pr >p
-, e=A"a=0 (11)

=< - =A™ (7 . - . -
9(s,a) C';’ e=A"a#0 ™ P is the set containing all feasible policid8g[*] represents

—— Prlde=D], e=A"a=0 the expectation value of quantity * under poli€y ;. (s, a)
0 otherwise andy (s, a) are the reward function and state duration func-

G, andG,, denote the system income for finishing a servicggn in thek-th time periodp_;lk andﬁk are average rejection
and accomplishing a service migration, respectivelyis the propabilities of NRs and MRs at the-th decision epoch,
system loss caused by rejecting an NR aflis the overhead respectivelyw, andw,, are relevant importance factors and
incurred by service data migration from previous serving DG | (, = 1. p = WP + wmp™ is the threshold of
to the migration destination DC. Finallg; is the system loss rejection probability of service requests, wheteandp” are
due to service interruption. maximum allowable rejection probabilities of NRs and MRs,
We take the end-to-end delay between MT’s connected Bsspectively. By introducing the Lagrange multipligr the

and its serving DC as the main QoS factor related to thgove constrained optimization problem can be converted to
service migration. This part of delay can influence the $&rvign ynconstrained one as

response time and is proportional to the service distance. | K )
Another considered factor is the system resource occupatianax 75 = lim Eg [_ 3 M}
cost. Therefore, thé(s,a) can be expanded as Qep Koo & | K kzolyklgs’a)

c . —k —k

_ -6 lim Eq |— (w”"—i—wmm)]
d(s,a) = Z (wasfd + w,Cre (sh + sk)). (8) BK%OO @ [K ,;::0 Pr br d2)

c=1
C, denotes the one unit resource occupation price per umte optimal policy which satisfies the above equations can
time.wy andw, (wq+w, = 1) are weighting factors indicating be obtained by solving the following Bellman equations| [13]
the relative importance between service delay and resoureeursively, i.e.,



Vi(s) = max {7’6 (s,a) — 0y (s,a) | The SMDP-based policy
(23) The R-RSV policy

+ 3 p?(s']s,a) V (5')} ,Vs € S. The Fixed policy

s'eS

6 andV (s) are called the average system gain and potential

function of states. r3(s, a) is the Lagrange reward function

which is given by

y(s,a)
rg(s,a) =g(s,a) — /0 d(s,a)dt — Bf (s,a), (14)

f(s,a) is the constrain function which is given by
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. . .. L Fig. 3. Average per unit time reward of the system under wiffe policies.
If there exists a policy)* satisfying [18), it is called the 18

optimal policy and we havé* = 75*. 6* is the maximum
average system gain ib_{13) corresponds to the optimalypolic
Q*. 75" is the maximum average gain which satisfies (12).
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IV. PROBLEM SOLUTION AND PERFORMANCE
EVALUATION

A. Solution to the Constrained SMIDP

In this paper, the VIA is used for obtaining the optimal
policy, before which the SMDP has to be transformed to an
equivalent discrete-time model as follows.

7g(s,a) =rg(s,a)/y(s,a),Vs €S, (16)

B

Overall

o

Average resources amount allocated to each service

=]
e
o

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Arrival rate of new service requests
5 (s'|s,a) = np* (s'|s, a)/y (s,a), s# s Fig. 4. Average resource amount allocated to each servideruhe optimal
P T L [P (s, a) — 1] fy (s,a), s=s"  polioy

N . . (1_7) size of the system state space. For a feagiblbere exists a
All quantities with “~" denote the corresponding ones in they« gagisfying
transformed model. Then we can employ the VIAI[13] directly

* Q%
with a given value of3. B =Y pod” (5)f (s.05- (5)) = p, (21)
sES
Algorithm 1 The Q-learning VIA Q4. = 0+ (s) denotes the policy obtained by solving (13)

1 * — * + .
1.Sets = 8, 8! is an arbitrary number greater than 0. Specif%/;l]lth B*' Arxlssume Lhaﬁ is smaller thang* and 3™ is larger
e >0 and seth = 1. an 3", thep, we have -

2. Substitutes™ into (18) as pr o = Zpoof (s)f (505~ (5)) > p, (22)
~ * s€S Q*
Tgn (s,a) =rgn (s,a)/y(s,a),Vs €S (18) prlet = ipm‘” (s)f (s,85+ () < p. (23)
Solve f licyQ™ i ith d functi i by (18 sE€S . .
Solve for policy2" in (13) with a reward func |onn given by (18) Q- = ds- (s) andQ, = ds+ () are policies obtained by
3. Calculate the system steady state distributin under policy solving [I3) with3~ and 8, respectively.
Q™. Then calculate When solve[(IB), we set as a arbitrary positive value and
— o Qi employ the VIA to get a temporary optimal poli€y;. Then
% = 3" " (s) £ (s, 0m (5)). (19) CmPloy tog porary optimal poliéyj. Ther
ice the expected rejection probabilipy**s can be calculated with

. P @7). If p,*% + p, then we adjust the value ¢f according to
4. Let A" = p —poom, if A" < e whenn > 2, go to step 5. (@3) and [ZB). Thus repeatedly, the valuefotan converges
Otherwise updaté™ by . L . )
to 5* with arbitrarily small error. This approach is referred

gt = g 4 LA, (20) to as the Q-learning VIA and the detailed flow is shown in
) . . " _ _ _ _Algorithm [1
whereq is the step size which can be revised during the iteration ] .
process. Then go to step 2. B. Numerical Results and Analysis

5. TakeQ" as the optimal policy and stop. In this subsection, the performance of the SMDP-based

resource management scheme is evaluated. The optimal pol-
The system state transition matrix under politys denoted icy Q* obtained by employing the Q-learning VIA is com-
asP? = (p(s/[s,a)|s,s' € S) € RM*M whereM is the pared with four reference baselines. Baseline 1 refers to a
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based policy can significantly reduce the rejection prdtissi
of both NRs and MRs. By adjusting the value of threshald
the rejection probability of service requests can be cdietto
within a certain scope. Therefore, we can conclude that for
distributed cloud systems which support service migration
the proposed resource management scheme can significantly
improve the overall system utility as well as the user pewxbi
quality.

V. CONCLUSION

In this paper, the resource management problem in geo-
graphically distributed cloud systems which adopt the FMC
concept is considered. An SMDP-based admission control and
resource allocation scheme is proposed to help RMs make
decisions on whether to accept the service requests (NRs or
MRs) or not and determine the amount of resources allocated
to each accepted service. The optimization objective is to
maximize the average system reward and keep the rejection
probability of service requests under a given threshold. To
determine the value of the Lagrange multiplier, the Q-leayn
algorithm is used and then the VIA is employed to obtain the
optimal policy. Numerical results indicate that the progbs
resource management scheme can improve the system reward
and reduce the rejection probability of service requestame
while.
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