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Abstract—Nowadays, it has become feasible to use mobile
nodes as contributing entities in computing systems. In this paper,
we consider a computational grid in which the mobile devices
can share their idle resources to realize parallel processing.
The overall computing task can be arbitrarily partitioned i nto
multiple subtasks to be distributed to mobile resource providers
(RPs). In this process, the computation load scheduling problem is
highlighted. Based on the optimization objective, i.e., minimizing
the task makespan, a buyer-seller model in which the task sponsor
can inspire the SPs to share their computing resources by paying
certain profits, is proposed. The Stackelberg Pricing Game (SPG)
is employed to obtain the optimal price and shared resource
amount of each SP. Finally, we evaluate the performance of the
proposed algorithm by system simulation and the results indicate
that the SPG-based load scheduling algorithm can significantly
improve the time gain in mobile grid systems.

I. I NTRODUCTION

Computational grids and clusters have been widely used
to solve computationally-intensive problems [1]. With rapid
developments in computer science and manufacturing tech-
nologies, many mobile devices, e.g., smart phones, laptop
computers, intelligent robots, etc., have growing processing
abilities and storage capacities. Together with the advances in
wireless communication, it has become feasible to use mobile
nodes as contributing entities to grid systems. In another
words, mobile devices can act as cloud resources under some
circumstances [2].

In this paper, we consider the systems in which mobile
nodes can share computing resources with each other through
wireless connections. The resource consumer (RC) distribute
computational loads to multiple mobile resource providers
(RPs) to realize parallel processing. During this process,
the load scheduling problem is highlighted. We partition a
divisible computing task [3] into multiple subtasks, which
have different computing volumes and different input/output
data volumes. The load scheduling problem is to determine
the partition policy of the overall computational task, then
distribute each subtask to the corresponding RP.

Many approaches have been proposed to integrate mo-
bile nodes with grid computing systems, in which the grid
schedulers can be categorized by the optimization objectives.

1This work is supported in part by the Fundamental Research Funds
for the Central Universities (No.2014ZD03-02), National Key Technology
R&D Program of China (2014ZX03003011-004) and China Natural Science
Funding (61331009).

Authors in [4] – [6] try to optimize the makespan for some
time sensitive tasks. In [7] – [9], the performance metric is
the throughput, which is the key factor to determine the QoS
of some certain services, e.g., the data streaming service [10].
There are other approaches that aims at improving the energy
efficiency of mobile devices such as [11].

In this paper, we try to minimize the makespan of the overall
task by introducing a novel computational load scheduling
algorithm into mobile grid systems. Main contributions are
summarized as follows:

i) The reward for sharing idle resources is considered in the
problem formulation. Therefore, a buyer-seller model in
which the task sponsor can inspire other mobile devices to
share their computing resources by paying certain profits,
is proposed. The Stackelberg Pricing Game (SPG) [12] is
employed to obtain the optimal price and shared amount
of each SP’s resources.

ii) Two typical computing scenarios are analyzed, i.e., the
proxy-based mobile grid and the mobile ad hoc grid.
The RC can be a mobile device or a computing entity
in the wired domain, and the RPs can access to a base
station/access point or be in a self-organizing way. These
two scenarios are highly applicable in the real world
systems.

iii) Simulation results indicate that the proposed SPG-based
scheduling algorithm can significantly improve the time
gain in mobile grid systems and is proved with good
convergency.

The remainder of this paper is organized as follows. The
system model is described in Section II. In Section III, the
problem formulation and solution is discussed. In Section IV,
the simulation results are presented and analyzed. Finallythe
conclusion is drawn in Section V.

II. SYSTEM MODEL

A. Computing Scenario

As Fig. 1 shows, we consider two computing scenarios in
this paper, i.e., the proxy-based mobile grid and the mobile
ad hoc grid. In both scenarios, the grid system consists of
a variety of mobile devices such as smart phones, laptops,
etc., which can act as the resource providers (RPs). The
proxy-based mobile grid has one base station (BS) such
as a femtocell [13], through which the mobile devices can
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Fig. 1. Computing scenarios.

communicate with each other. While in the mobile ad hoc grid,
the RC is a mobile device which distributes the computation
load and collect the computation results through device-to-
device (D2D) links.

These two scenarios are widely applicable in the real world,
based on which the load scheduling problem for mobile grid
systems is formulated. Assume that there areK RPs in the
mobile grid and each RP has a certain amount of computing
resources, e.g., CPU slices. These computing resources canbe
divided into two parts, i.e., the dedicated computing resource
(DCR) and the sharable computing resource (SCR). The for-
mer is dedicated for each device to implement basic computing
while the latter can be shared for grid computing.

Assume that the RC has certain computing task to perform
and it may want to borrow the RPs’ SCRs for cooperation.
We make the following assumptions:

i) The overall task can be arbitrarily partitioned into multiple
subtasks, i.e., computation loads, for multiple RPs to conduct
parallel processing. ii) Each subtask has a certain volume of
input data which needs to be transmitted to the corresponding
RP. There exists a line relationship between the computing
volume and input data volume for each subtask; iii) The
computing capacity for unit amount of SCR is fixed and the
processing time for each subtask is inversely proportionalwith
the occupied SCR amount; iv) The data volume of computing
result of each subtask is relatively small so that the result
returning delay can be ignored in the problem formulation.

B. System Model

1) Single-RP scenario:We first consider the simplest case
in which there are only one RCc and one RPv. Denote the
input data volume and the computing volume of the overall
task asS andV , respectively. The available SCR amount of
the RC and RP to process the task are denoted asCc andCv.
According to assumption (iii) we haveS = γV , whereγ is
the balance factor. If the RC perform the overall task by itself,
the makespan isTl = V /Cc.

In the parallel processing scenario, we assume that the
channel state information (CSI) can be perfectly known by
both RC and RP [14]. The maximum achievable data rate of
the wireless link between RC (BS/AP) and RP can be given
by

Rc,v = log (1 + SNR) = log

(

1 +
pc |hc,v|

σ2

)

(1)

wherepc is the transmission power (in a proxy-based mobile
grid, pc is the power of BS/AP, in the mobile ad hoc grid,pc
is the power of the RC device), which is a constant value since
the power control is not considered in this paper.SNR stands
for the signal-to-noise ratio.hc,v ∼ CN (0, 1) represents the
channel fading coefficient of the link andσ2 is the additive
white noise power at the receiver.

Let β, 0 ≤ β ≤ 1 denote the proportion of computation load
allocated to the RP. To minimize the makespan, the parameter
β should satisfy

(1− β)V

Cc

=
βS

Rc,v

+
βV

Cv

. (2)

By solving (2), we get

β∗ =
Rc,vCvV

SCvCc +Rc,vCcV +Rc,vCvV
. (3)

In this case, the task makespan can be expressed as

Tc = Tt + Tp =
β∗γV

Rc,v

+
β∗V

Cv

, (4)

whereTt denotes the wireless transmission time andTp is the
task processing time. Therefore, the time saved by introducing
the parallel processing can be expressed as

Tsv = max (Tl − Tc, 0) = max

(

V

Cc

− β∗γV

Rc,v

− β∗V

Cv

, 0

)

.

(5)
Obviously,Tsv is an increasing function of the shared SCR
amountCv. However, theCv is finite and the RP is also stingy
to offer the SCRs unless there are satisfactory returns. So
the key issue is how to allocate the computation load and
set a reasonable price to meet the optimization objective, i.e.,
minimizing the makespan of the overall task.

2) Multi-RP Scenario:In this part, we extend the single-RP
scenario to multi-RP Scenario. Assume that in the mobile grid
there are multiple available RPs, the set of which is denoted
asAc. The maximum data rate that thej-th RP can achieve
is expressed as

Rc,j =

NRB
∑

k=1

sk,j log

(

1 +
pc |hc,j|

σ2
j

)

, j ∈ Ac, (6)

wherehc,j represents the channel gains from RC (or BS/AP)
to thej-th RP andσ2

j is the additive white noise power at the
j-th RP’s receiver.NRB denotes the number of transmission
resource blocks in the system. In a proxy-based mobile grid,
transmission resource blocks can be frequency resource blocks
(in FDD system) or time slots (in TDD system). While in
a mobile ad hoc grid, the transmission resources blocks can
only be time slots for the FDMA is not supported in the D2D
communication scene.sk,j ∈ {0, 1} denotes the allocation
indicator for thej-th RP at thek-th resource block.sk,j =
1 (sk,j = 0) indicates that thek-th resource block is (not)
allocated to thej-th RP.

Let βj , j ∈ Ac represent the proportion of the overall
computation load that be allocated to thej-th RP. β0 is the



computation load that remains to be processed by RC itself
and there has the constraintβ0 +

∑

j∈Ac
βj = 1.

Obviously, βj must fulfill the same constrain as (2) to
minimize the makespan, i.e.,

β0V

Cc

=
βjS

Rc,j

+
βjV

Cj

, j ∈ Ac, 0 ≤ Cj ≤ Cj , (7)

whereCj is the SCR amount thej-th RP agreed to share and
Cj is the maximum SCR amount that thej-th RP can provide.

According to the normalization conditionβ0+
∑

j∈Ac
βj =

1 and (7), we can achieve

βj =
β0V Rc,jCj

SCcCj + V CcRc,j

, (8)

β0 =
1

1 +
∑

j∈Ac
V Rc,jCj/(SCcCj + V CcRc,j)

. (9)

Therefore, the time saved in multi-RP scenario can be ex-
pressed as

Tmv = max (Tl − Tc, 0) = max

(

V

Cc

− β0V

Cc

, 0

)

. (10)

Similar with (5), the time gain is an increasing function of
the occupied SCR amount. The RC makes decision on how
much SCRs to “buy” from each SPs based on their “price”.
According to assumption (iii), when the shared SCR amount
of a certain SP is determined, the computation load distribute
to this SP is determined, too. Therefore, the computation load
scheduling problem can be solved by determining the price and
sold amount of each SPs’ SCRs. In next section, a Stackelberg
Pricing Game (SPG) is formulated to highlight this problem
and the pricing process is described.

III. PROBLEM FORMULATION

A. Stackelberg Pricing Game

The SPG can be viewed as a seller-buyer interaction game.
The sellers, i.e., RPs, wants to maximize their profits via
setting a high price. However, the buyer, i.e., RC, attemptsto
maximize his own utility by lower the price. In a mobile grid,
the RC can inspire RPs to share their available SCRs by paying
corresponding benefits. Thus, a SPG can be formulated with
the RC and RPs as players, and the Stackelberg equilibrium
can be considered as the solution of this game. The SPG is a
two-level game which can be described from two sides, i.e.,

1) The Buyer (RC) Side:The RC wants to acquire the
most benefits, i.e., minimize the task makespan, with the least
possible cost. As a result, there exists a unique demand/supply-
based profile for the RC, given by solving the following
optimization problem:

max Uc = Tmv −
∑

j∈Ac

λjCj , s.t. 0 ≤ Cj ≤ Cj , (11)

whereλjCj is the cost paid to thej-th RP, λj denotes the
price set by thej-th RP for sharing one unit of SCR, andCj

represents the SCR amount that the RC has “bought” from the
j-th RP.

2) The Seller (RP) Side:The RPs charge the RC for using
their SCRs and they attempt to achieve as much profits as
possible. Therefore, the SPG at the RPs’ side can be defined
as

max Uj = λjC
bj
j − ηjC

bj
j , (12)

wherebj ≥ 1 is a constant tradoff balancer.
Note that the information needs to be exchanged between

the RC and RPs are the price and sold amount of each RP’s
SCRs. In the following part, the properties and solution of the
Stackelberg equilibrium is investigated.

B. Stackelberg Equilibrium

A typical Stackelberg game theoretic equilibrium, in which
one player acts as leader and the others as followers, is
that the leader sets strategy taking account of the follower’s
optimal response. The Stackelberg game will finally converge
to the Stackelberg Equilibrium. In this subsection, we givethe
definition of the Stackelberg Equilibrium and analyze it in a
mathematical way.

Definition 1: if the parametersλSE
j and CSE

j are the
Stackelberg Equilibrium of the proposed SPG, the following
conditions should be satisfied: whenλSE

j is fixed,

Uc

({

CSE
j

})

= sup
0≤Cj≤C̄j

Uc ({Cj}) , j ∈ Ac, (13)

and whenCSE
j is fixed,

Uj

({

λSE
j

})

= sup
λi

Uj ({λi}) , j ∈ Ac. (14)

Next we analyze the Stackelberg Equilibrium of our proposed
SPG from two aspects, i.e.,

1) The buyer’s (RC’s) aspect:As the buyer, the RC is aware
of the fact that the sellers, i.e., the RPs, will choose theirbest
response to its strategy. From the previous analysis, the RC
maximizes its own utility via buying the optimal volume of
SRCs based on the best responses of the followers.

Based onDefinition 1, differentiateUc with respect toCj

whenλSE
j is fixed, we can obtain

∂Uc

∂Cj
= − V

Cc

∂β0

∂Cj
− λj

= V

Cc

(

1+
∑

j∈Ac

V Rc,jCj
SCcCj+V CcRc,j

)

2 ·
V 2CcR

2
c,j

(SCcCj+V CcRc,j)
2 − λj

=
β2
0V

3R2
c,j

(SCcCj+V CcRc,j)
2 − λj

(15)and

∂2Uc

∂C2
j

=
2β0

∂β0
∂Cj

V 3R2
c,j(SCcCj+V CcRc,j)−2β2

0V
3R2

c,j

(SCcCj+V CcRc,j)
3 < 0 .

(16)
It can be obviously concluded from (15) and (16) that the
utility function is concave. Therefore, by setting (15) to zero
we can derive the optimal solutionC∗

j as

C∗
j = uj

√

1/λj − vj , (17)



where

uj =
V Rc,j

√
V

SCc + V Rc,j + SCcwj

vj =
V CcRc,j (1 + wj)

SCc + V Rc,j + SCcwj

wj =
∑

i∈Ac,i6=j

V Rc,iCi

SCcCi + V CcRc,i

. (18)

Finally, due to the boundary conditions in (11), the optimal
amount of SCRs bought from thej-th RP can be expressed
as

C∗
j = min

(

C∗
j , Cj

)

(19)

2) The Seller’s (RPs’) aspect:The RPs’ goal is to maximize
their profits via setting the optimal unit price for the SCR. By
differentiating the RPs’ utility functions with respect toλj and
setting it to zero, we get

∂Uj

∂λj

=
(

C
∗
j

)bj + λjbj
(

C
∗
j

)bj−1 ∂C
∗
j

∂λj

− ηjbj
(

C
∗
j

)bj−1 ∂C
∗
j

∂λj

= 0.

(20)
By deriving the above equation, we obtain

(

C∗
j

)bj−1
(

C∗
j + bj

∂C∗
j

∂λj

(λj − ηj)

)

= 0 (21)

From (21), following conclusion can be achieved:C∗
j = 0,

which indicates that the consumer won’t buy any SCR from
the j-th RP. Otherwise,

C∗
j + bj

∂C∗
j

∂λj

(λj − ηj) = 0, (22)

which has a unique solution, i.e.,

λ∗
j = ηj −

C∗
j

bj∂C
∗
j

/

λ∗
j

(23)

C. Solution of Stackelberg Equilibrium

In this subsection, a iteration algorithm is employed to
obtain the optimal price and shared resource amount. Let
λ = {λj}j∈Ac

be the price vector andFi (λ) represent the
updating function, i.e.,

λj = Fi (λ) = ηj −
C∗

j

bj∂C
∗
j

/

∂λj

. (24)

The updating function can be rewritten in a vector form as

λ (t+ 1) = F (λ (t)) , (25)

whereF = {Fj}j∈Ac
and t denotes the iteration time. The

solution of the SPG can be divided into four steps, which are
described inAlgorithm 1 .

IV. SIMULATION RESULTS AND ANALYSIS

We consider the proxy-based mobile grid in the simulation
and the scenario is described as follows. A number of mobile
devices which act as the RPs, spread over a square room. the
RC is a computation node in the wired domain. The wireless
AP is located at the center of the room, by which the RC
and RPs can communicate with each other. For simplicity,
we suppose that the meanSNR from AP to the farthest RP

Algorithm 1 The Solution of SPG
Step 1 - Initialization

For RPs, initialize the price vectorλ (0) = {λj (0)}j∈Ac

and inform it to the RC. For the RC, initialize its optimal amount
of bought SRCs, i.e.,Cj (0). Set the iteration indext = 1.
Step 2 - RC’s update

Useλ (t) to obtain the optimal amount of SCRs for each RP
according to (17), getC (t+ 1) =

{

C∗
j (t+ 1)

}

j∈Ac
.

Step 3 - RPs’ update
Based onC (t+ 1) obtained in Step 2, calculated the

optimal priceλ∗
j for each RP according to (24), which are denoted

as λ (t+ 1). Then update the load scheduling decisionβj and
update the iteration indext by t+ 1.
Step 4

RepeatStep 2andStep 3until bothλ (t) andC (t) do not
change any longer or the differential value between two successive
iteration is smaller than a predefined threshold. Take the final
Stackelberg Equilibrium as the solution to the SPG.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Room size 10m× 10m
SP number 3 to 12

Distance between devices 3 to 10 m
Pathloss model P (d) = Pd−α

α 4
Bandwidth 10 MHz

Carrier frequency 2 GHz
Scheduling slot length 1 ms

(located at the room edge) equals to 0 dB. The Adaptive
Coding and Modulation (AMC) and 16 Modulation and of
Coding Schemes (MCSs) [16] are adopted. The channel fading
coefficient is i.i.d. over scheduling slots. Main parameter
values in the simulation are listed in TABLE I.

First the convergence performance of the proposed SPG
algorithm is evaluated. When there are 5 RPs in the system,
Fig. 2 (a) shows the changing process of each SP’s price for
one unit SCR versus the iteration time. Each SP’s SCR price
converges to one of the 5 different values with the same initial
value 0.1. The higher price is dealed for higher service quality,
e.g., higher transmission rate. Similarly, Fig. 2 (b) showsthe
convergence process of the SCR amount the RC bought from
each RP. From Fig. 3 (a) and (b), we can conclude that the
proposed algorithm has a good convergence performance, i.e.,
converges within 15 iteration time under 5-SP scenario.

In the simulation, we evaluate the time gain by realizing
the mobile grid computing. Two representative scheduling
schemes, i.e., the Round Robin (RR) scheduling and the
MaxWeight scheduling [15], are adopted to determine the
allocation policy of the wireless transmission resources,i.e.,
wireless resource blocks. Fig. 4 illustrates the reductionratio
of the task makespan versus the available SP number, and indi-
cates that the adopted wireless resource scheduling schemecan
effect the performance of the SPG-based algorithm. Therefore,
the proposed computation load scheduling algorithm should
cooperate with advanced wireless resource allocation schemes
to achieve further performance improvement.

Additionally, we consider another simple and straightfor-
ward computation load scheduling policy for comparision,
i.e., the SC borrowing equal amount (denoted asa) of SCRs
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from each RP. We refer this policy as the ESE algorithm
and a is equal to the mean value of the borrowed SCR
amount determined by the SPG-based algorithm under same
simulation parameters. From Fig. 4 we can see that with
the increase of RP number, the time gain by realizing the
grid computing is also increasing, and the proposed SPG-
based algorithm outperforms the ESE algorithm. When the
SP number grows to 12, the ratio of saved time under the
proposed algorithm can be up to 80% compared with the
makespan in the nonparallel case. Therefore, we can conclude
that the proposed computation load scheduling algorithm can
significantly improve the computing efficiency in mobile grid
systems.

V. CONCLUSION

In this paper, we consider the divisible computation load
scheduling problem in grid systems where the mobile devices
can share their idle resources for parallel processing. Two
main computing scenarios are considered, i.e., the proxy-based
mobile grid and the mobile ad hoc grid. The task sponsor
want to borrow as much resource as possible to reduce the
task makespan, while the resource providers are not willing
to share their resources unless there are satisfactory returns.
Based on this, a buyer-seller model is designed and a SPG-
based algorithm is proposed to obtain the optimal unit price

and shared amount of the computing resources. For perfor-
mance evaluation, a system simulation is conducted and the
results indicate that the proposed SPG-based load scheduling
algorithm can significantly improve the computing efficiency
in mobile grid systems (80% reduction on the makespan when
SP number is 12) as well as a excellent convergence speed
(within 15 iteration times when SP number is 5).
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