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Abstract

The recently announced Super Wi-Fi Network proposal in United States is aiming to enable Internet

access in a nation-wide area. As traditional cable-connected power supply system becomes impractical or

costly for a wide range wireless network, new infrastructure deployment for Super Wi-Fi is required. The

fast developing Energy Harvesting (EH) techniques receive global attentions for their potential of solving

the above power supply problem. It is a critical issue, from the user’s perspective, how to make efficient

network selection and access strategies. Unlike traditional wireless networks, the battery charge state and

tendency in EH based networks have to be taken into account when making network selection and access,

which has not been well investigated. In this paper, we propose a practical and efficient framework

for multiple base stations access strategy in an EH powered Super Wi-Fi network. We consider the

access strategy from the user’s perspective, who exploits downlink transmission opportunities from

one base station. To formulate the problem, we used Partially Observable Markov Decision Process

(POMDP) to model users’ observations on the base stations’ battery situation and decisions on the base

station selection and access. Simulation results show that our methods are efficacious and significantly

outperform the traditional widely used CSMA method.

I. INTRODUCTION

In order to expand the coverage area of wireless network, many algorithms and implemen-

tations have been proposed. Recently, the Federal Communications Commission published the

Super Wi-Fi proposal, aiming to make use of lower-frequency white spaces between television

channel frequencies and create a nationwide wireless network. However, the ambitious task of

http://arxiv.org/abs/1701.00241v3
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building a countrywide network is confronted with many obstacles. An inevitable problem is

how to deploy practical backhaul and power supply system. Specifically, traditional cable-based

systems may be not appropriate, considering the cost of deploying and maintaining the network.

Despite all the above difficulties, many successful experimental deployments of Super Wi-Fi

system are accomplished accordingly. Wireless backhual has been proven to be effective as

a replacement of cable backhaul [1]. Meanwhile, the fast developing energy harvesting (EH)

technology provides an ideal power supply mode, which could make use of a wide range of

ambient energy including piezoelectric, thermal, solar energy, etc.

Given that the deployment of EH network is just emerging, new wireless protocols and

modification are required, as some preliminary studies pointed out in [2]. Specifically, from

users’ perspective, when confronted with EH powered network, how to make efficient network

selection and access strategies is a practical and important problem. Different from traditional

networks, a prominent issue in EH powered networks is that the energy state and tendency

of one base station (BS) has to be taken into account when making BS selection and access

strategies. In the literature, the access strategy problem in traditional wireless networks has been

studied extensively, among which Markov Decision Process was used, with some challenges

and solutions summarized in [3]. Access process among different users was deemed as a typical

game process, and thus game theory, summarized in [4] as well as pricing theory investigated in

[5], can be applied, respectively. In [6], the access strategy towards multiple base stations with

negative externality was considered. Recently, a POMDP MAC layer opportunistic access was

proposed by Dr. Zhao in [7], and a learning based approach to access between packet bursts

was studied in [8].

However, all the aforementioned studies on users’ access strategy did not consider the energy

harvesting situation. In this paper, we propose a user access strategy for the fast booming Super

Wi-Fi network, focusing on the influence of BS’s battery states. As long time transmission is

not guaranteed in EH network, the leaving and arriving of users are more frequent. Instead

of using a static system model, we consider a model where both the number of accessing

users and the charge of the BS’s battery are dynamic. Moreover, a new stochastic process for

formulating users’ arrival and departure processes, as well as a battery state transition based

on a quasi-static formulation are combined to describe the system state transition. Considering

that in EH powered wireless network, where the full knowledge of the system is unrealistic, we
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build a Partially Observable Markov Decision Process (POMDP) model to formulate the access

strategy problem, i.e., users make the network access strategy by using the partially observed

BSs’ battery states’ information. It is worth to mention that although our work focuses on solar

energy harvesting, the conclusion and the algorithm could be generalized to any access problems

in EH powered network.

The rest of this paper is organized as follows. We describe the system model in Section II. In

Section III, the POMDP access strategy is presented. Furthermore, we explain how to formulate

the POMDP states model in order to obtain the optimal access strategy. Also a suboptimal

strategy is proposed for simplifying the calculation. In Section IV, we evaluate the performance

of our proposed approach in contrast to several famous traditional algorithms, followed by our

conclusion in Section V.

II. SYSTEM MODEL

As shown in Fig. 1, in an EH network with multiple BSs, where each BS is supplied by EH

devices and connected to the server by wireless backhaul. In each time slot, the BS harvests a

certain quantity of solar energy, denoted as EH , and stores it into its battery. At the same time,

to serve the users connected to the BS, energy ET is consumed for transmission. We denote

the battery quantity of the BS as QB, which can be any value from 0 to the battery volume

BM . In every times slot, the BSs could serve multiple users, the number of which is denoted

as SU = i, i = 0, 1, . . . , NU − 1, where NU is the maximum number of users the BS could

serve simultaneously due to limited spectrum and coding ability. Note that different BSs in the

network could have different battery volume BM and maximum serving users NU .

At the start of each time slot, users with new service demand could decide either to access or

sense one of the BSs within its range. We denote the action as Φ = Φi
a for accessing the ith BS,

and Φ = Φi
s for sensing. In the case of sensing, the BS will respond to the user by sending its next-

time-slot system state in a short message which requires negligible energy consumption. In the

case of accessing, the user sends a request to the chosen BS. When the request is achievable, the

BS activates user’s transmission immediately. Otherwise, the BS declines the request and informs

the user its next-time-slot system state, again with a low energy consuming short message. In the

above process, the short message could be used as observation by a user to update his/her belief

of the BS state (e.g., battery state, number of users in the system). Therefore, the user’s action
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Fig. 1. A schematic map of Super Wi-Fi system.

has to be carefully chosen. On one hand, the users are intent to maximize their utility by making

enough access attempts. On the other hand, sensing is necessary, as the lack of information will

result in useless attempts, causing energy waste and access failures.

From the BSs’ perspective, certain protections are needed, as malicious users could keep

accessing one BS and use up all the energy. To focus our work on formulation from the users’

perspective and not to be distracted by protection details, a simple protection is used in our

work. If a BS is currently not serving any users and the battery is low, the BS would reserve the

last quantity of energy that could serve a user for one time slot and forbid new users from using

it. Meanwhile, in our work, we consider rational users who could observe multiple BSs and

chooses an action in every time slot to maximize the number of successful access. The number

of the observed BSs by the user is denoted as NA.

III. POMDP BS ACCESS STRATEGY

As POMDP could solve decision making problems of different decision horizon lengths under

uncertainty, it perfectly depicts the above EH Super Wi-Fi model. In order to formulate the

problem, two key components in the system model, user number and battery, are carefully

considered.
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A. User Model

As in traditional wireless network, the users arrive and leave the BS with certain probability

[6]. Between adjacent time slots, new users may arrive and old users may leave or be forced

to leave when battery is insufficient. A revised birth and death process that considers forced

leaving are proposed as follow,

ζ (S ′

U |SU , QB,Φ) =














































λ, if QB is enough and S ′

U = SU + 1,

µSU , if QB is enough and S ′

U = SU − 1,

I0 (S
′

U) , if QB is insufficient,

0, otherwise.

(1)

In the above equation, λ is the arriving rate and the µ′ = µSU is the leaving rate of users. The

forced leaving is formulated by the indicator function I0 (S
′

U), which indicates that S ′

U next time

slot is sure to be 0. Energy depletion happens when QB − ET ≤ 0.

B. Battery Formulation

The harvested energy ET is determined by the environmental parameters. Gaussian models

have been proven effective in predicting solar intensity [9], [10]. The harvest model assumes that

the solar intensity in a long time period are Gaussian distributed, and the solar intensity during

one single time slot, the length of which denoted as TL, remains unchanged. Thus, the solar

intensity We could be formulated as Gaussian distributed N (x;µS, σS) with average intensity

µS and variance σ2
S . In current devices, the harvesting power per reference solar intensity is

EH = WeJopVopΩSTLη, where the Jop and Vop is the optimal operating point, the ΩS is the

number of solar cells and the η is the efficiency [11].

The transmitting power is set by BSs to provide enough SINR for the receiving users.

Current power adjustment algorithms that use feedback are not valid, as the system state are

fast changing between time slots. Therefore here a static power management is implemented,

where the BS sacrifices some energy to insure a successful transmission every time slot. The

power consumption in a BS is determined by the number of accessing users, which is de-

noted as ET = ΥT (SU , QB,Φ). As wide range telecommunication has negligible between-

user interference, we assume the transmission power is proportional to the number of serving
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users, i.e., ΥT (SU , QB,Φ) = PT (SU +Θ(SU , QB,Φa)), where PT is the transmission power for

single user. Θ(SU , QB,Φa) is 1 if the rational user could successfully access, otherwise it is 0.

Correspondingly, we assume the battery volume BM = ρPTTL, where ρ is an integer. Note that

for the nonlinear transmission power function, our method could still work by setting different

battery levels in the below sections. When the required battery is more than the BS’s remaining

battery, the BS will provide a best effort service. Users with the higher priority are served. In

our case, the rational user has the lowest priority. Given the EH , ET , the battery in the next

time slot could be calculated as,

Q′

B = min{QB + EH −ET , BM}. (2)

In EH powered BSs, the battery is a continuous value. But in a POMDP, the states have to be

discrete. Intuitively, we could use more battery states to approximate continuous value, but this

brings much increase in the complexity of the algorithm. Luckily, a certain number of discrete

levels could provide enough information during the decision making. We could set battery levels

according to the possible energy consumption in each time slot TLΥT (SU , QB,Φ). In the case

of linear power function, the levels are set as SB = ⌊QB/ (PTTL)⌋. And the number of battery

states is NB = BM/ (PTTL) + 1 = ρ + 1. Thus, by knowing the battery states, the user would

know whether the battery is sufficient for transmission.

The prediction of future battery states are based on transition probability between battery states.

In order to calculate the transition probability, we assume the fluctuate of discrete battery state is

quasi-static. i.e., the residue energy QB − SBPTTL is uniformly distributed between [0, PTTL).

Although errors are brought by this assumption, the quasi-static assumption is proven to be

effective after a large number of time slots [10]. We denote the change of battery state between

time slot as ∆B = S ′

B−SB . Event ξj represents that the real battery quantity change EH −ET is

equivalent to more than j but less than j +1 battery state change, namely ξj := {j ≤ EH−ET

PT TL
≤

j + 1}. Then the probability that the battery state will change by ∆B given EH and user action

can be computed as follows

Pr (∆B = i|Φ, EH , ξj)
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=































(EH−ET )
PTTL

− j, i = j + 1,

(j + 1)− (EH−ET )
PTTL

, i = j,

0, otherwise.

(3)

In the equation, as mentioned in previous section, ET = ΥT (SU , QB,Φ). When EH − ET ≤ 0,

the probability could be calculated the same way. The battery transition can be written as

Pr (∆B = i|Φ) =
∫ (i+1)ǫT+ET

iǫT+ET

Pr (∆B = i|Φ, EH , ξi)N (EH ; µ̄S, σ̄S) dEH+

∫ iǫT+ET

(i−1)ǫT+ET

Pr (∆B = i|Φ, EH , ξi−1)N (EH ; µ̄S, σ̄S) dEH .

(4)

In the equation, ǫT = PTTL and µ̄S, σ̄S are scaled from µS, σS after the multiplication with

harvesting device coefficients.

C. System Transition Probability

The POMDP state is the overall system state, which combines all the BSs’ system state. To

make the following math more readable and flexible, the system state S and SD = {S1
B, S

1
U , . . . , S

NA

B , SNA

U }

are equivalent and used simultaneously. We have S = 1, 2, . . . NS , where NS = (NBNU)
NA .

We first calculate the transition probability for a single BS. From conditionally independence

we have

P (S ′

U , S
′

B|SU , SB,Φ) = ζ (S ′

U |SU , SB,Φ) δ (S
′

B|SU , SB,Φ) . (5)

The ζ (S ′

U |SU , SB,Φ) is given in equation (1). And the battery transition is calculated based on

the equation (4) as follows

δ (S ′

B|SU , SB,Φ)

=















Pr (∆B = S ′

B − SB|Φ) , if S ′

B ≤ NB − 1,

∑∆B=∆Max
B

∆B=S′

B
−SB

Pr (∆B|Φ) , if S ′

B = NB − 1.

(6)

When the battery is fully charged, S ′

B = NB − 1, all the extra harvested battery is abandoned.

Note that we truncate the probability for ∆B > ∆Max
B as they are as small as zero by 4 decimals.

Thus the POMDP state transition is computed as

T (S ′|S,Φ) =
i=NA
∏

i=1

P
(

Si,′

B , Si,′

U |Si
U , S

i
B,Φ

)

. (7)
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D. Observation Function and POMDP Iteration Algorithm

In POMDP formulation, the user only has the partial knowledge of the system. As mentioned

above, the user could get the target BS’s next-time-slot system state SO
B and SO

U at the end of

each time slot. We use observation O to represent SO
B , S

O
U . The observation probability function

given the system state in the next time slot is

Z (O|S ′,Φ) = Pr

(

O

∣

∣

∣

∣

St,′

U , St,′

B

)

= I
S
t,′

U
,S

t,′

B

(

SO
U , S

O
B

)

. (8)

St,′

B and St,′

U are the system state of the target BS next time slot. The indicator function is 1

when St,′

U = SO
U , S

t,′

B = SO
B or 0 otherwise.

The reward is define as R = 1 if the access succeeds, else R = 0. Then the value function of

a single state is

V Φ
t (S) = R (S,Φ) + γ

∑

S′

T (S ′|S,Φ) V π
t−1 (S

′) , (9)

where π denotes the optimal action in that state. As no full knowledge is held for the user, we use

a belief vector to denote the user’s system state belief β = [β (S = 1) , β (S = 2) , . . . , β (S = NS)].

Then the particular value function with a certain belief β is given by

V Φ
t (β) =

∑

S

R (S,Φ) β (S) +

γ
∑

S

∑

S′

β (S)T (S ′|S,Φ) V π
t−1 (S

′) .
(10)

For simplicity, if we already know all the value function of at the time t−1 during iterations, an

alpha value vector αΦ
t = [αΦ

t (S = 1) , αΦ
t (S = 2) , . . . , αΦ

t (S = NS)] could be used to simplify

the value function as V Φ
t (β) =

∑

β (S)αΦ
t (S). Thus, the optimal action can be given by

π (β) = argmax
αΦ

t

∑

S

β (S)αΦ
t . (11)

The corresponding value function V Φ
t (β) could be calculated using action π (β). However, the

corresponding optimal policy is not as easy as it seems to be, as the β has a continuous value,

and even for the same Φ and t, there are still multiple possible α vectors during iterations. But

fortunately, the Vt could be regarded as the function value of β in a hyper coordinate system,

the axes of which are the components of β. As each set of αt vector could be regarded as a set

of parameters of a hyper linear function, there is a dominated hyperplane structure in the model.

The continuous belief space is divided by several α-vector-dominated hyperplanes into several

partitions. The partitions of belief space in time t could be calculated given all the dominating
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αt−1. The details of algorithm for solving the partitions could be find in a well written tutorial

[12].

After obtaining the optimal action, the user could act accordingly, and update its belief vector

after receiving the observation by using the following formula.

β ′ (S ′|Φ, O) =

∑

O Z (O|S ′,Φ)
∑

S T (S ′|S,Φ)β (S)
∑

S′

∑

O Z (O|S ′,Φ)
∑

S T (S ′|S,Φ) β (S)
. (12)

E. Suboptimal Access Policy

The optimal POMDP solution could be calculated off-line within seconds when the number

of states is small. However, the use of POMDP method is limited when NA is massive, and

when the environment parameters, like solar coefficients µS, σ, the birth rate λ and death rate

µ of users, change quickly.

The POMDP formulation will maximize success access ratio ηA = NS/NT , where NS is number

of success access and NT is the number of the time slots. We propose a dual perspective of

solving the problem by focusing on the harvested energy. We name it Energy Based (EB) Method.

The problem is reformulated as,

max
Φt,t=0, ..., NT−1

∑NT

t=1
E
[

H
(

βt,Φt

) ]

, (13)

where the expectation function E[·] considers the probability of receiving different observations

and thus having different belief vector βt, and H (βt,Φt) is the overall harvesting energy in all

the BSs as follows

H
(

βt,ΦT

)

=
∑

βt (S)
NA
∑

i=1

min
(

Ei
H , E

i
T +BM −Qi

B

)

(14)

In such a case, a suboptimal could be proposed by maximizing the system’s next-time-slot

harvested energy, i.e.,

Φ
(

βt
)

= argmax E
[

H(βt+1,Φt)
]

, (15)

When BS sensing is the optimal action, the user will choose to sense the BS that is not sensed for

the longest time. Due to the limited space, some key rationality of the EB method is summarized.

First of all, when the solar intensity is strong, we could assume few users will be forced to leave

and thus the consumed energy by them are stable. As the transmission power is proportional to

number of users, we could deduce that the more energy the system harvests, the more utility
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Fig. 2. Illustration of the convergence of the POMDP iteration algorithm

the rational user could achieve. Besides, the EB method is an unselfish method, which would

sacrifice some reward, but tends to protect overall utility. And EB method could use learning

algorithm to adjust to quick environmental changes.

IV. SIMULATION RESULTS

In this section, the convergence and effectiveness of the algorithm are illustrated. Fig. 2

shows the convergence of the POMDP iteration algorithm, where the y-axis means a user’s

value difference between two adjacent iterations and the discount factor is γ = 0.9. A Bellman

stopping criteria is used to determine the stop of iteration. In the figure, the α vector error shows

the convergence of the iteration algorithm. The POMDP simulation tool is provided by [12].

As we can see from the results, our proposed POMDP algorithm converges exponentially under

various parameter settings.

The effectiveness of the algorithms is validated by comparing the ηA under the overall time

slots NT = 10000. In the simulation, parameters are used as follow. The reference benchmark

solar intensity is given as We = 1kW/m2, which is the average intensity on the surface of Earth

[13]. We use the data from work [14], where the optimal power per benchmark solar intensity

We is PH = JopVop = 1.32mW/We, with a efficiency η = 75%. And there are ΩS = 40 cells

in one harvesting device. The time slot length is TL = 200ms. Transmission power for serving

one user is PT = 40mW.

In order to show the efficiency, several algorithms are implemented as comparisons. includ-
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Fig. 3. Single BS with SU = 0, 1, 2, 3, NB = 8

ing Carrier Sensing Multiple Access/Collision Avoidance, Collision Detection (CSMA/CA and

CSMA/CD). Note that here the “carrier sensing” means that one user senses the BSs, i.e., receives

the short message from one BS, instead of the physical carrier. The CSMA/CD method stops

new request when detecting a failure, and then an exponential back-off algorithm is used. After c

failures, a random number of sleeping time slot between 0 and 2c−1 is chosen. The CSMA/CD

method would access the BS after the user senses the BS in the last time slot and knew that a

successful service is available. In random access algorithm, the user simply chooses action with
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Fig. 4. Two BS with UN = 0, 1, NB = 3

equal probability.

In Fig. 3, we consider single BS with possible number of users from 0 to 3, NB = 8,

and the leaving rate µ = 0.05. In Fig. 3-(a), the µS = 1 and σS = 0.5, while in Fig. 3-(b),

the arrival rate λ = 0.4. As shown in the figure, the performance of proposed POMDP is

significantly higher, with the EM method’s overall performance following at the second place,

which validates the efficiency of our algorithms. From Fig. 3-(a), we can see that the CSMA/CD

has a good performance when the system is not busy, but the performance deteriorates quickly
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with the increasing arrival rate of users. In Fig. 3-(b), one prominent point is that even when

the solar intensity is strong, the utilities of the traditional algorithms’ are saturated, failing to

further enhance users’ utility, due to the reason that those algorithms are not able to make use

of the EH information of the system. It is also worth mentioning that, as we predicted, when

the solar intensity is strong, the suboptimal EB method will approach the proposed POMDP

method, which can decrease the complexity to a large extent.

In Fig. 4, multiple BSs are considered, with possible number of user from 0 to 1, NB = 3,

and the leaving rate µ = 0.05. In the figure, we find that when the possible serving positions

is limited, the crowded system makes the CSMA/CD method almost useless. In (b), a simple

analysis of the CSMA/CD performance could be given. When the solar intensity is small, the

utility of CSMA/CD increases with intensity due to more available sources. But when the solar

intensity is strong, as the more users are staying in the BS, the user has less chances of being

served, and the utility decreases. Also, in (b), the suboptimal EB method could outperform

POMDP method when the intensity is strong, which is mainly brought by the approximation in

the POMDP formulation, such as using the quasi-static approximation.

V. CONCLUSION

In this paper, we proposed a powerful POMDP algorithm to solve the access problem in EH

powered network, which is promising and instructive in building a national range Super Wi-Fi

network. The framework given in this paper is adjustable to EH problems other than the Solar

EH one. To reduce complexity and adjust to environmental changes, a suboptimal EB method

is proposed as well. The effect of solar intensity, user arriving rate, leaving rate and many other

features are considered, proving our work reliable and effective. Future work of this paper could

focus on the prediction of system parameters and multiuser accessing scenario.
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