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Abstract: In this paper, we study the low-complexity 
channel reconstruction methods for downlink 
precoding in massive MIMO systems. When the user 
is allocated less streams than the number of its 
antennas, the BS or user usually utilizes the singular 
value decomposition (SVD) factorizations to get the 
effective channels, whose dimension is equal to the 
num of streams. This process is called channel 
reconstruction in BS for TDD mode. However, with 
the increasing of antennas in BS, the computation 
burden of SVD is becoming incredibly high. As a 
countermeasure, we propose a series of novel 
low-complexity channel reconstruction methods for 
downlink zero-forcing precoding (ZF). We adopt 
randomized algorithms to construct an approximate 
SVD, which could reduce the dimensions of the 
matrix, especially when approximating an input 
matrix with a low-rank element. Besides, this method 
could automatically modify the parameters to adapt 
arbitrary number demand of streams from users. The 
simulation results show that the proposed methods 
only cost less than 30% float computation than the 
traditional SVD-ZF method, while keeping nearly the 
same performance of 1Gbps with 128 BS antennas.  
Key words: Channel Reconstruction; SVD; 
3D-MIMO; Massive MIMO; 

I. INTRODUCTION 

Massive MIMO is one of the most importantly 
investigated subjects in the literature of coming 5G 
technologies due to the high potential it offers in 
improving not only the reliability but also the 
throughput of the system. Information theory has 
shown that the optimum capacity of MU-MIMO 
channels could be achieved through simple 
Zero-forcing (ZF) methods in large scale arrays [1].  

But subject to the actual physical space, the number 
of antennas aiding the BS cannot go to infinity. The 
use of active antenna systems (AAS) and uniform 
planar array (UPA) draw much attention and make 
practical massive MIMO possible. Some recent 
deployments have shown up to 30 percent gain in 
system capacity by taking advantage of elevation 
domain beams (e.g., [2, 3]) in UPA system. 

However, the deployment in realistic setup is 

hindered by several practical challenges that are not of 
concern in conventional MIMO systems. The 
computational complexity becomes a main concern 
when the number of antenna and user goes to be large 
or infinite. For example, the burden of matrix 
decomposition in channel reconstruction would be a 
big challenge. The traditional singular value 

decomposition (SVD) usually requires 2( )O Nt  float 

computations [4], where Nt  is the number of BS 
antennas. With Nt  increasing, this is an 
inconceivable challenge for hardware implementation.  

Much work has been completed in the face of such 
challenge. For example, [5] [6] give some iterative 
convergence algorithms to approximate matrix SVD, 
which is widely used in traditional MIMO systems. 
But with the BS antennas increasing, the convergence 
would not be guaranteed in limited iteration, which 
may lead to large matrix computation. What’s more, 
3GPP is actively developing the 3D channel model to 
enable the elevation beamforming. For this, [7][8] 
apply the 3D beamforming to massive MIMO, where 
the elevation and azimuth antennas make 
beamforming respectively, and the two beamforming 
vectors are transformed into precoding matrix by 
Kronecker product. But this method is limited by the 
special antennas structure with elevation array. 
Besides, [4] have summarized many fast and 
simplified methods for direct SVD computation, (e.g., 
Hestenes-Jacobi matrix theory and its extension). But 
Jacobi’s method is based on general setting for SVD 
and don’t fully utilize the special constraints in 
communication, e.g., streams constraints and 
correlation constraints among antennas. So the 
corresponding complexity is still very high.  

In this paper, we address the challenge of 
computation complexity caused by matrix SVD, and 
propose a series of new channel reconstruction 
methods based on randomized algorithms. From the 
simulation, the proposed methods could greatly reduce 
the complexity while keeping acceptable performance. 
The novelty mainly includes three parts:  
 Firstly, our methods utilize a random small-size 

matrix to construct the equivalent range of the 
target large matrix. And the matrix factorization 
in small equivalent range could approximate 



 

large dimensional SVD with less complexity. 
 Secondly, the methods directly eliminate the 

redundancy from the difference between the 
number of UE antennas and effective streams. It 
only considers the equivalent dimension matrix 
SVD with effective streams. Compared to some 
direct fast SVD methods based on Jacobi [4], the 
additional burden introduced by the number of 
UE antennas is greatly reduced by low dimension 
SVD. 

 Thirdly, our methods could cope with the 
demands of different number of user’s streams. 
These parameters in these methods could be 
freely changed according to the realistic setting, 
with the constraints, such as the number of 
effective channel rank and BS/user’s antennas, 
capacity performance and complexity. 

The 3D channel model under 3D-UMi scenario 
calibrated by 3GPP [9] is adopted. In MU-MIMO 
system, the link-level performance of the proposed 
SVD-ZF methods and the complexity are analyzed 
and compared. The rest of this paper is organized as 
follows. Section II describes the problem formulation. 
The proposed low-complexity channel reconstruction 
methods are presented in Section III. Besides, it 
outlines complexity analysis. The simulation is 
performed in Section V. And the last Section gives the 
conclusion. 

Notation: Bold letters are utilized to denote the 
matrix or the vector. KI is the identity matrix of 

K K . ( , )CN Rm denotes the circular symmetric 

complex Gaussian distribution with mean m and 
covariance matrix R . The superscripts T, H denote 
the transpose and conjugate transpose, respectively. 
The Kronecker product is denoted by . 

II. SYSTEM MODEL AND PROBLEM 

FORMULATION  

2.1 3D channel model  

Relative to the traditional 2D SCM channel model, the 
3D channel model considers the radio propagation in 
the elevation dimension. Here the 3D channel model 
calibrated by the 3GPP is recommended [9].  

The generation of the large scale parameters can be 
referred to [9]. The small-scale channel coefficient is 
generated by summing the contribution of some rays. 
Assume that one ray is composed of LM  sub-paths. 

The coordinate system for 3D channel model can be 
seen from Fig.1. m,nray means the m-th sub-path in the 

n-th ray. The global coordinate system defines the 
zenith angle ZoD/ZoA  and the azimuth angle 

AoD/AoA . 0
ZoD/ZoA 90   points to the horizontal 

direction and ZoD 0   points to the zenith 

direction[9]. n̂ is the given direction of m,nray . 

̂ and ̂ are the spherical basis vectors. 

The channel coefficient from transmitter element s 
to receiver element u for the n-th ray is modeled as: 

For NLOS path, 
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For LOS path,  
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Fig.1 The coordinate system for 3D channel model 

 

where , ,rx uF   and , ,rx uF   are the antenna radiation 

patterns for element u in the direction of the spherical 

basis vectors, ̂ and ̂ respectively. t ,s,xF   and 

t , ,x sF  are the antenna radiation patterns for element s 

in the direction of the spherical basis vectors, ̂ and 
̂ respectively. 
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is the unit vector about the azimuth of arrival 
angle(AoA)ϕn,m,AOA and the zenith of arrival 
angle(ZoA)θn,m,ZOA. And also , ,t̂x n mr  is the counterpart 

at the transmit side; ,rx ud and ,tx sd are the location 

vectors of the transmit and receive elements, 

respectively;  , , , ,, , ,n m n m n m n m
       are the random 

initial phases for sub-path m of ray n; 0  is the 

wavelength of the carrier frequency; RK is the Ricean 

K-factor; ,n mv is the Doppler frequency component. 

More detailed description about the generation of 3D 
channel model can be referred to [9]. 

2.2 3D-MIMO system model 

The BS in each cell is equipped with 2D planar 
cross-polarized antenna array. The number of antenna 
elements in azimuth direction and elevation direction 
is AN and EN respectively. And the total number of 

antennas is 2A ENt N N   .The configuration of 

antenna array is presented in Fig.2. Each user is 
equipped with M  antennas. 

The received signal 1kSk C x of the k-th user in 
MU-MIMO can be expressed as: 

( ) ( ) ( ) ( 1)
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where M , Nt , kS  are the num of user antennas, BS 

antennas and the allocated streams for k-th user, 

respectively. 
1,

K k k l l
fl l k


  E H W s represents the 

interferences from the other users. ( )
k
M NtH  is the k-th 

downlink channel matrix, K is the number of users, 

( )k

k
Nt SW is the k-th precoding matrix. ( )k

k
S ME  is the 

k-th estimating matrix. ( 1)k

k
S s is transmitted signal for 

the k-th user. 2~ ( , )
k kk S SCN  v 0 I  is the noise. Here 

we consider ZF precoding method, and 
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Fig.2 The set of 2D planar cross-polarized antenna array, 

with 2A ENt N N    antennas and dual-polarized (0/+90). 

2.3 Problem formulation 

In conventional LTE systems, the users are usually 
equipped with M  antennas (e.g., 2, 4, 8 or else), and 
allocated S  layers (e.g., 1, 2 or else), which means 
that BS has to extract *S Nt  effective channels from 

*M Nt  estimated user channels before downlink 
precoding. In fact, the number of effective data steams 
is usually less than of user’s antennas ( M S ) in 
order to maintain the high performance. The whole 
process is shown in Fig.3. In TDD-MIMO systems, 
the users send sounding reference signals (SRS) to the 
BS in the uplink, and then, the BS estimates these 
SRS and gets the channels M NtH for each user in step 

1. But how does the BS get the effective user channels 
from *M Nt  channel matrix to S  streams? The 
measure is to make channel reconstruction by the 
SVD in M NtH , which is to get S main singular-vectors 

for S NtH . Next, BS gets downlink effective 

channel S NtH  by TDD reciprocity and makes the 

downlink precoding. Therefore, our focus is the Step: 
2 ( M Nt S Nt H H ). 

III. SVD FACTORIZATION METHODS  

3.1 Traditional channel reconstruction method 

After estimating the SRS in TDD-LTE uplink, BS gets 
the realistic user’s MIMO channel M NtH , where 

M and Nt  are the number of antennas per user and 
per BS, respectively. In downlink precoding, we 



 

usually define the precoding unit (PU) for once 
precoding. And PU could be a resource block (RB), or 
many RBs, or across the whole bandwidth. If we set 

one PU includes RBN  RBs, and one RB is with SCN  

marked subcarriers, there are RB SCN N  subcarriers, 

corresponding to the same granularity with SRS and 

M NtH . That is to say that there are RB SCN N SRS and 

M NtH  in all for PU, and the channel reconstruction 

should be made from RB SCN N  MIMO channel 

M NtH  to get one S NtH  for once PU. 

M Nt S Nt H H
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Fig.3 Illustration of the downlink precoding process. For 

TDD systems, after the users’ SRS in uplink, BS estimates 
SRS and gets the uplink channel M NtH  corresponding to 

each user’ M antennas, and extracts effective channel 

S NtH  for downlink precoding in step-2. Next is to process 

ZF precoding and to send data by S NtH . 

 
The traditional method is eigen-beamforming 

(EBF), which calculates the correlation matrix and 
proceeds with the SVD, and here we call it Direct 
SVD. (Note that, here, SVD could be replaced by 
eigenvalue decomposition (EVD), as both of them 
hold the same process in nature and produce similar 
computation complexity.) 

 
Direct SVD 
S-1: Calculate the average correlation 

matrix R based on RB SCN N  channels per PU. 
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S-2: Get the main singular-vectors and reconstruct 
the channel. 
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In S-2, the core part is the EVD manipulation, which 
would produce large computation with Nt  increasing. 
In order to cut the computation, one potential solution 

is to reduce the matrix dimension in factorization, and 
another way is to design fast algorithms [4]. 

3.2 Proposed randomized method 

Regarding to this problem, we all know that the EVD 
for R is equivalent to the SVD for H . Here, we wish 
to construct an approximate SVD of a very large 
matrix M Nt  matrix H . This can be achieved by 
getting randomized equivalent matrix and computing 
the SVD of the ‘small’ randomized matrix, as shown 
in Method I. 
 
Method I 

S-1: Calculate the average channel matrix
k

H based on 

RB SCN N  channels per PU. 

 ,
( ) ( )

1 RB SCN N
Hk n k

Nt M M Nt
nRB SCN N

  H H  

where ,
( )
n k
M NtH is the channel matrix of the k-th user at the n-th 

subcarrier per PU. 
S-2: Calculate the equivalent random matrix approximation 

Sample a random matrix ( )
k
M LG with independent mean-zero, 

unit-variance Gaussian entries. 

( )
k k

t L
k

N   HY G  

Construct Nt LQ  with columns forming an orthonormal 

basis for the range of Y . 

For example,  ( )
k k
Nt L qr Q Y  

S-3: Calculate the SVD approximation 
Get the matrix  L MC  

 
H

L

k

M  Q HC  

Calculate the singular-vector by SVD 


( ) ( ) ( )
H

L L L M M M  C U Σ V  

Get the effective channel ( )
k
S NtH  

 (( ))) (L SN

Tk
S tN Lt   Q UH  

where U is the S vectors corresponding to the most S eigen 

values in Σ . 

and the approximate SVD of 
k

H is displayed as  


(( ) )( ) ( ) ( )

H
L

k
LNt L L MNt M M M   Q U Σ VH  

 
The algorithm is simple to understand: 

( )
k k

t L
k

N   HY G is an approximation of the range 
k

H ; 

We therefore project the columns of 
k

H onto this 
approximate range by means of the orthogonal 

projector HQQ  and hope that 
k kHH QQ H . Next, 

in S-3, the point here of course is that the matrix 

( )
H

L M C Q H  is L M - we typically have 

L M Nt  - the computation cost of forming its SVD 

is on the order of  2O L M  flops and fairly minimal. 

Compared to Direct SVD, the method cuts the 



 

computation of the correlation matrix R , which 
reduces large amount of multiplication manipulation. 
Besides, the SVD in S-3 is only limited to L  and 
M , and the increasing of Nt  doesn’t affect the 
complexity of the SVD. Although the QR 
factorization is used to construct Q  in S-2, many 

simple implementation methods could replace QR 
factorization. So the complexity of constructing Q  

could be negligible. 
This method requires M L S  . And the selection 

of L  needs the balance between the performance and 
the complexity. On the one hand, L  is involved into 
the QR and SVD factorization and directly affects the 
complexity. So little L  saves much complexity. On 

the other hand, the approximation matrix ( )
k
Nt LY  with 

larger L  could save more information in ,
( )
n k
M NtH . 

That is to say, larger L  could be with better 
performance. 

Next, for this method, the natural interest is the 
accuracy of this procedure: how large is the size of the 
approximate residual? Specially, how large is 


2

H

F
QUΣVH . This value could be proved by the 

following theorem.  

Theorem 1. Let H  be an Nt M  matrix, 

L d p  , H HQ H UΣV and let i  be the ith singular 

value of H , Then  


2

21
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i
F

i d

H d

p
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

 
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 
 QUΣH V  

Proof: See Appendix A  
  In the theorem, there is a limited approximation 
error in the Frobenius sense with different d  and p . 

If we set 0d  , the upper bound is the sum of 
singular value and the approximation error is heavily 

affected by the spectrum of the matrix H . If we 
set d L , with L  increasing, then the upper bound is 
reduced and the gap becomes small. When d L M  , 

we can get 2 0i
i d




 , the proposed method 

approaching the Direct SVD. This ensures an 
acceptable performance in theory. 

3.3 Complexity analysis 

In this section, we analyze the computation 
complexity of the proposed method and compare it 
with the complexity of the classical SVD (used in 
Direct SVD). We express the computation complexity 
in terms of the number of floating point operations 
(FLOPs). In the following, each scalar complex 
addition or multiplication is counted as one FLOP. For 
the sake of simplicity, we do not distinguish between 
real-valued and complex-valued multiplications and 
neglect the computation complexity of common parts 

among these methods. Note that, although it cannot 
characterize the true computation complexity, FLOP 
counting captures the order of the computation load, 
so suffices for the purpose of the complexity analysis.  
Note that the exact number of calculation depends on 
the difference between implementation methods. Here, 
we take some popular calculation rules in [4] [10], 
which are widely used in methods analysis. Note that, 
considering that comparisons with other recent 
contributions or some fast methods for this model, 
which would provide a better justification and relative 
benefit of this proposed scheme, Jacobi algorithms 
may be a good choice in [4].  
The following table gives the necessary calculation 

conclusion of typical processes. Here, M NA  , 
M NC  ,

N LB   are arbitrary matrices. U , 

Σ , V are the corresponding decomposition matrix of 

 , , ( )svdU Σ V A . Q is the orthogonal matrix of A  

by QR decomposition. 
 
Table I Float computation of traditional matrix model 

 

Matrix-Matrix Prod of HAA  2 ( )
2 2

M M
M N M N    

Matrix-Matrix Prod of AB  2MNL ML  

Matrix Scaling of A  MN
 

Matrix-Matrix Sum of A C  MN
 

QR Matrix decomposition 
for A , required Q  

3
2 24( )

3

N
M N MN   

SVD Matrix decomposition 

for A ,required , U  

2 34 13M N N [4] 

SVD Matrix decomposition 

for A ,required , V  

2 32 13MN N [4] 

 
For both of the two methods, the matrix 

decomposition occupies most of the float 
computations. Meanwhile, the complexity order 
mainly depends on the dimension of the matrix, the 
times and the styles of decomposition method. Further, 
we give an accurate float computation results, 
including matrix decomposition, addition and 
multiplication. Note that, the common part of float 
computation and the manipulation beyond the 
discrimination in Direct SVD, Method I are ignored. 
Method I requires 1 SVD. And for constructing Q , 

we consider QR factorization, which is thought as the 
upper bound of complexity in this step. In the 
following simulation, we set the 2S  , the first 
parameter of RO(*,*) is antennas of user M  and the 
second is the parameter L . The other parameters are 
based on Table II. 

Fig.4 shows that, with the BS antennas Nt  
increasing, both produce more float manipulations. 
Compared to Direct SVD, Method I only requires less 



 

than 10% float computations when the number of 
antennas is near 200 antennas with RO(8,2). Larger 
Nt  could enlarge the dual between Method I and 
Direct SVD.  
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Fig.4 Complexity comparison between proposed Method 

I and Direct SVD, and the simulation parameters are based 
on the following Table II. 

 
 In Method I, the SVD is on basis of M  and L , 

so with L  increasing, RO (*,*) results in different 
complexities. Larger L  causes more computation. 
What’s more, the construction in Q is with Nt  and 
L . So with Nt increasing, the complexity also 
increases. 

IV. SIMULATION RESULTS 

In this section, we provide some numerical results to 
evaluate our proposed low-complexity channel 
reconstruction methods. The system model considered 
is in Section II with a BS employing a 8 16  UPA 
with 7 users, each having 8 antennas. The 
3D-MIMO-UMi channels are modeled as [9]. Table II 
lists the detailed simulation parameters. 

Table II 3D-MIMO simulation parameters 

Parameters Settings 
Scenario 3D-MIMO-UMi 
User antenna configuration 8Rx, dual-polarized (0/+90)  
BS antenna 

configuration ( )H V   

Dual-polarized 8 8H V  
(128 antennas) 

Bandwidth 20MHz (100 RBs)  
Antenna element interval  0.5 carrier wave length both in 

horizontal and vertical direction 

Carrier frequency 2GHz 

Number of users 7 

Number of streams per user 2 

MCS Fixed, 64QAM 

User distribution Referred to [11] 

User speed 3km/h 

Traffic model Full buffer 

Channel estimation Ideal 

Receiver MMSE-IRC  

 
Considering the link simulation with MU-MIMO 

systems, Fig.5 exhibits the performance of the 
proposed methods with different random matrix 
dimensions ( 2,4,6,8L   ) in 8M  , 2S  , 128Nt  . 

When SNR=40dB and 4L  in RO(8, L ), Method I 
could achieve beyond 1Gbps. 8L  in RO(8, L ) 
could totally match the Direct SVD at SNR>10dB. 
Note that, with SNR increasing, the gap is enlarging 
between Direct SVD and Method I with less L , e.g., 

2L   in RO(8, L ). 
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Fig.5 Achievable throughput using the proposed method 
compared with the ideal Direct SVD, with different 

randomized matrix dimensions. 
 

If we consider the gap between Method I and Direct 
SVD in Fig.6, the metric is defined as RO/Direct SVD 
(%), which displaces the percent over Direct SVD. 
When 6L  in RO(8, L ), it displays excellent 
performance and approaches to the ideal Direct SVD. 
And 8L  gets the best performance. 
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Fig.6 Achievable throughput using Method I, with 

different random matrix dimension RO(M,L) on 
SNR=40dB. 

 
Based on the analysis and simulation results, we 



 

can conclude that the complexity and throughput are 
opposed to each other. Less L  leads to less float 
computation, but the throughput also gets less. In 
future 5G, while meeting the performance 
requirements, a reasonable complexity is necessary. 
And referring to the simulation, the random matrix 
dimension needs to be revised. From the above two 
figures, this parameter optimization is necessary with 
the demands of the performance and the computation 
complexity. The simulation results match our 
traditional expectation: the higher complexity method 
gets better performance. And the simulation is based 
on realistic parameters in 3D-MIMO, and the results 
could be considered as a valuable performance target. 

V. CONCLUSIONS 

This paper proposes a series of low-complexity 
channel reconstruction methods for TDD massive 
MIMO systems. These methods fully explore the 
characters of low-rank channel matrix from BS to 
each user, and transform the large redundant range 
into small approximating range by sampling a random 
matrix. Compared to the existing method, they could 
largely reduce the computation complexity, especially 
with large-scale antennas. The complexity analysis 
shows that the proposed methods only require less 
than 30% float computations, while the performance 
could kept around 1Gbps by downlink ZF precoding. 
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Appendix 

A. Proof for Theorem 1 

Before the proof, let M dD  be the diagonal matrix of 

dimension M d  equal to 1 2( , , , )d d Mdiag       

and define    :, Hf  IG - QQH H . So,  



   

2 2

22

,

a

FF

F F

H H

H f

  

 

QUΣV QQ

I - HQQ

H H H

H G

 

The equation ‘a’ is from H HQ H UΣV . In [12, 

Theorem 1.4], the worst case error for matrices with 
such singular values is equal to the random variable  

   
2

1
2 1,M d M d M d

F
W f 

  
   D D X X I  

Here, 1X and 2X  are respectively  M d d  and 

 M d p   matrices with i.i.d. (0,1)CN entries, 

Σ is a d d diagonal matrix with the singular values 

of a  p d d   Gaussian matrix with i.i.d. 

(0,1)CN entries, and M dI is the identity matrix. 

Furthermore, 1X , 2X and Σ  are all independent (and 

independent from G ) . 
 So, 

   
2

1
2 1

2 2 21
1 1
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, ,M d M d
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b c

M d M d M d M d FF
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 
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The inequality ‘b’ follows from the fact for any 

orthogonal projector P , 
2 2

F F
PH H , and the 

equation ‘c’ is Pythagoras’ identify. Now a simple 
calculation we omit gives  

2 221 1
1M d M d FF F

 
     D X D  

So we can get the final expression by 
22

iM
d

d F
i




D  and 
21

1F

d
p

  


[12, Corollary 

1.3]. 
 


