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Abstract—In this paper, we investigate the delay-aware dy-
namic resource management problem for multi-service transnis-
sion in high-speed railway wireless communications, with #ocus
on resource allocation among the services and power control
along the time. By taking account of average delay requirems
and power constraints, the considered problem is formulate
into a stochastic optimization problem, rather than pursuing the
traditional convex optimization means. Inspired by Lyapunov op-
timization theory, the intractable stochastic optimization problem
is transformed into a tractable deterministic optimization prob-
lem, which is a mixed-integer resource management problem.
By exploiting the specific problem structure, the mixed-ineger
resource management problem is equivalently transformednito
a single variable problem, which can be effectively solvedybthe
golden section search method with guaranteed global optintiay.
Finally, we propose a dynamic resource management algorith
to solve the original stochastic optimization problem. Simlation
results show the advantage of the proposed dynamic algorith
and reveal that there exists a fundamental tradeoff betweerdelay
requirements and power consumption.

I. INTRODUCTION

introduce into HSR scenarios in order to increase the nétwor
throughput[[7]. However, when considering the multiple- ser

vices transmission between the train and the ground, mere in
vestigations on resource management are necessary terfurth
improve the transmission performance.

In HSR communications, many types of services need to be
transmitted between the train and the grourid [8]. In padicu
these HSR services are classified into four categdries.fQ], i
pure passenger internet, passenger comfort servicegjtgecu
related services and cost saving applications. The eftecti
transmission for these heterogenous services is a tethnica
challenge. First, the channel condition cannot remain at th
same level due to the fast-varying distance between the trai
and the ground, which causes that the power control along
the time has a large influence on transmission performance.
Second, there exist heterogeneous quality-of-serviceSjQo
requirements in HSR communications, especially the end-
to-end delay requirements since the security-relatedicesyv
should be delivered in time. The resource allocation plays a

For the last decade, high-speed railway (HSR) has becok®y role in enhancing the QoS performance by making full use

the future trend of railway transportation worldwide, andf the limited resources. Based on the above two aspects, the
attracted a lot of attentions as a fast, convenient and grg@mwer control along the time and resource allocation among

public transportation system. With the continuous comsibn  the delay-aware services in HSR wireless communicatioms ar

of HSR in recent years, the demand for mobile communicatistill interesting and challenging problems.

on high-speed trains is increasingly growing [1]. More and To the best of our knowledge, resource allocation and power
more services related with the railway controlling infotina control in HSR communications are usually considered as

need to be transmitted between the train and the groundseparate problems. In this paper, we jointly optimize them

order to guarantee the train moving safety. Meanwhile, tlier delay-aware multi-service transmission in HSR communi
passengers have an increasingly high demand on wirelestions. Specifically, the main contributions are sumneatiz
Internet services when they are onboard. To fulfill the highs follows.

demand for wireless data transmission, the study on effigien « A stochastic optimization framework for multi-service

of HSR communications is critical.

There have been some recent works to improve the trans-
mission performance in HSR communication systems. From
the network architecture perspective, a relay-assisted htS-
work architecture has been proposed_in [2] and [3], which can
provide better performance than direct transmission il cds
large penetration loss. To better utilize the network reses;

[4] and [E] considered control/data signaling decoupled an

cellular/infostation integrated HSR network architeetyrre- .

spectively. From the transmission technology perspectiwe
radio-over-fiber (RoF) technology for HSR communications
was proposed in [6], which can improve handover performance
effectively. Multi-input Multi-output technology (MIMOWwas

transmission in HSR communication systems is devel-
oped, which focuses on dynamic resource management
under the heterogeneous delay requirements and power
constraints. The proposed framework is based on a
cross-layer design to improve the efficiency of resource
management, which involves the interactions between
physical (PHY) layer and media access control (MAC)
layer.

Inspired by the stochastic network optimization approach,
the intractable stochastic optimization problem is trans-
formed into a tractable deterministic optimization prob-
lem. A static resource management algorithm is proposed
to solve it with guaranteed global optimality, by using
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the golden section search method. Based on the stajfound and the train, the total resource allocated to thecesy
algorithm, we propose a dynamic resource manageméntontrolled by the instantaneous transmit power. Thus it
algorithm to solve the original stochastic optimizatiomecessary to jointly consider the resource allocation amon
problem. the services and the power control along the time.

« The algorithm performance is evaluated by simulations
under realistic assumptions for HSR communication syB: Power Control

tem_s._ Simulation results show that compared with th? There are three unique features in HSR communications
traditional power control schemes, the proposed dyna

lqorith Hectively | del ‘ | 58], i.e., the deterministic moving direction, relatiyedteady
agqr_lt m can e _ectlve y Improve delay performance. oving speed and the accurate train location. The data-trans
addition, we notice there exists a fundamental trade

. ) ission rate is highly determined by the transmit power and

between delay requirements and power consumption. the distance between the ground and the train, thus these

The remainder of the paper is structured as follows. In Sefeatures make it necessary and feasible to implement power
tion[[[l we review the related works. Sectibnl Il describks t control a|0ng the time. Under the total power constraint,
SyStem model. The prOblem formulation and tranSformatime] presented four power allocation schemes to achieve
are provided in Section IV. We propose a dynamic resourggferent design objectives. As an extensiadn,| [20] ingstd
management algorithm in Sectigd V. Numerical results anfle utility-based resource allocation problem, which figin
discussions are shown in Sectio] VI. Finally, some conohssi considers the power allocation along the time and packet all
are drawn in Section V. cation among the services. The delay-aware power allatatio

Notations: In this paper[-] denotes expectatioriz] = policy has been proposed i _]21] under the assumption of
max{n € Zln < z}. [r] = min{n € Z|n > z}. R, Z andN  constant-rate data arrival. Moreovér, [22] ahd[23] stddhe
denote the sets of real numbers, all integers and all pesiténergy-efficient data transmission problem in HSR commu-

integers, respectively. nications, with the purpose of minimizing the total trantmi
power. However, these above works only take account of the
Il. RELATED WORK time-varying channel state while do not consider the dysami
A. Resource Allocation characteristics of the service or packet arrivals, whialsea

that the above power control schemes are not practical.

Resource allocation plays an important role in enhancing . . ;
T 2 . : Dynamic power control is necessary to improve the perfor-
the data transmission efficiency and improving the QoS per- L .
. . mance of HSR communication systems, where the transmit
formance. In the literature, the resource allocation probl

in HSR communications has attracted great research inter85" C" should be adaptive to. the.t|me—\_/ary|ng C*.‘?””e' St"?“e
. . . .- and queue state. The work [24] investigated a joint admis-
For example, [[10] and[[11] investigated rate maximization . ) .
X - sion control and resource allocation problem, which aims to
resource allocation problem under the limited resource con_ . . ) . "
. : - . maximize the system utility while stabilizing all transisiizn
straint. Different energy-efficiency resource allocatathods . - : .
) : o gueues. Different from[[24], our work in this paper focuses
were developed in [12] and [L3] to minimize the total transm| = !
. o s 9P the delay-aware dynamic resource allocation and power
power while satisfy QoS requirements. However, a typlc%ontrol roblem under bower constraints
assumption in these works is the infinite backlog and theydela P P '
insensitive services. As a result, these works focus only on
optimizing the PHY layer performance metrics such as sum
throughput and total transmit power, and the resultantne®o  As shown in Fig[l, we consider a HSR communication
allocation schemes are adaptive to the channel conditibn ometwork consisting of a linear cellular network and a baciéo
In practical HSR communications, it is important to focusetwork. The linear cellular network deployed near the rail
on cross-layer optimization design, which considers ramddine can provide data transmission between the ground and th
bursty arrivals and delay performance metrics in addition train. In the backbone network, the distributed contentessr
the PHY layer performance metrics. There is also plen{€Ss) are deployed in order to offload data trafficl [25] and a
of literature on cross-layer resource optimization in HSBentral controller (CC) is responsible for resource manege
communications.[[5] and_[14] investigated the resource 4B]. The base stations (BSs) in the cellular network are
location problem for delivering multiple on-demand seegic connected to the CSs via wireline links, thus BSs and CSs
while considering their deadline constraints. A crossfaycan communicate with a negligible delay. Considering the
design approach was proposed [n[[15] to improve videtmwnlink transmission from the ground to the train, the data
transmission quality by jointly optimizing applicatioayler packets of the requested services are first delivered fram th
parameters and handoff decisions. In addition] [16] and [1ZSs to the vehicle station via the BSs, and then the vehicle
studied the downlink resource allocation problem with thgtation installed on the train transfers these data padkets
delay constraint and packet delivery ratio requiremenglay- the users on the train. Since the communication between the
assisted HSR communications. All the above works treat tgeound and the vehicle station suffers from the fast-vayyin
resource allocation problem with the assumption of a conistavireless channel and may become the bottleneck in this

transmit power. When delivering multiple services betwen network architecture. Therefore, this paper mainly cosrsd

Il. SYSTEM MODEL



the multi-service downlink transmission from the BSs to thehere B is the system bandwidth), is the noise power
vehicle station. spectral densityw is the pathloss exponent, an (¢) is
defined asV (t) £ BNyd®(t) for brevity.

Based on the SNR expressi@nh (1), the downlink transmission
rate at slott is expressed by

B P(t) .
R(t) = Blog, (1 + W) bits/s. (2)
Suppose that a packet is the transmission unit, hence tke lin
capacity at slot can be denoted as the maximum number of
packets, which can be expressed by

o[22 e (58 0

where L is the packet size in bits; = T%B > 0, and T,

is a slot duration. Based ofi](3), we can see that the link

capacityC(t) is determined by transmit powé?(¢). Although

the equal packet size and equal time duration at each slot are
The deterministic train trajectory in HSR communicatiogonsidered, the results presented herein can be extentleel to

systems is a unique feature, which represents the traitidoca unequal scenarios.

at a specific timel[5]. The train trajectory information cad b e consider the erasure coding based service transmission

obtained accurately due to the following two reasons. Firsh PHY layer, which has been adopted fin [5].][17] to simplify

since the train moves on a predetermined rail line and thg protocol design for HSR communications. The advantage

velocity is relatively steady. Second, many train posifign is that no recovery scheme is required for the transmission

techniques are applied into railway communications, sieh @ror or loss of specific packets due to highly dynamic wasle
the global positioning system (GPS) and digital track map$annels.

[26].

In this_ paper, we de\_/e_lop a tir_ne-di_stance mapping fgnctiqﬂ MAC Layer Model
to describe the deterministic train trajectory. As showifrig.
[, we consider a train travels from the origin station to the A set K = {1,..., K} of delay-constrained services are
destination station within the time duratith 7 at a constant supported over the trip. We assume th@$, is equipped
speedv. The whole time duration is partitioned into slots ofvith a buffer and can provide servide Thus, we can see
equal durationi7,. The distance which the train has traveledd delay-constrained queues in MAC layer, as shown in Fig.
until slot¢ is s(¢) = vt and the train location between two addl. The maximum size of each buff€},.x is assumed to be
jacent BSs iss(t) mod 2R, whereR is the cell radius. Define sufficiently large. LetQ(¢) = (Q1(?),...,Qk(t)) represent
a time-distance mapping functiaf{t) : [0,T] — [do, dmax), th€ current queue backlogs vector, whé}g(t) denotes the
where dyax = /R2 +dZ and d, is the distance betweennumber of packets at the beginning of sloin the queue
each BS and the rail line. With the help of the train trajegtorof CSy.. Let A(t) = (A1 (t),..., Ax(t)) represent the packet
information, the distance(t) at slot¢ can be obtained basedarrival vector, whereA,(t¢) denotes the number of packets
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Fig. 1. System model

A. Deterministic Train Trajectory

on the geometry knowledge. arriving into the buffer ofCS, at slott. Suppose in general,
Ay (t) follows Poisson distribution with average packet arrival
B. PHY Layer Model rate \;, for servicek.

) ) . The MAC layer is responsible for the resource allocation
The newly-built HSR routes are mainly composed of Wldgmong the services. Lai(t) = (u1(t), ..., ux(t)) be the

plain and viaduct, which yield a free space with few refleGagoyrce allocation action vector at slgt where (¢ is
tors or scatterers. Most of the time, only the direct signgle number of packets allocated to serviceSince the total
path between BS and vehicle station is available, which wa§mpner of allocated packets can not exceed the link capacity

confirmed by engineering measurements [27]] [28]. SimBar {he resource allocation at each slohust satisfy the constraint
[19], [21], [29], we assume that the channel condition w&ia , S, k() < C(t). In addition, the dynamics for all
results only from the time-varying distance between BS a%gues gre give_n by
train. Given the transmit powe?(t) and the distancé(t), the
received signal-to-noise ratio (SNR) at stotan be denoted Qu(t+1) = Qu(t) — uu(t) + Ax(t), VE € K. (4)
by

pP@)d—*(t) _ P(t)

SNR(t) = BNy~ N’ (1)

Since the arrival packets at slotan only be transmitted after
slot ¢, we haved < p(t) < Qx(t), Yk € K.




IV. PROBLEM FORMULATION AND TRANSFORMATION Based on the definitio (5}, and P are denoted as average

In this section, we first present a detailed description ef tilueue packlog for queul and average power consumption,
delay-aware multi-service transmission from the perspecf respectively.
cross-layer design. The average delay constraint and gevera For the erasure coding based service delivery, the average
power constraint are formulated in terms of long-term tim@elay constraint is considered since the decoding delaly wil
average. Then auxiliary variables are introduced to taansf Pe closely related to all encoded packets. Mathematidaiéy,
these long-term average constraints into the queue syabifiverage delay constraint for queliecan be expressed by
constraints. Based on the Lyapunov drift theory, we forreula Wi < W2, (6)
the delay-aware resource allocation and power controllenob o -
as a stochastic optimization problem. Finally, the inwhte WwherelV;, andW;" represent the average delay and maximum
stochastic optimization problem is transformed into atable average delay for queue respectively. Based on Little's law,
deterministic optimization problem. the average delay can be obtained by, = %. Thus, the

A. Problem Satement constraint[(B) is equal to

This paper considers the delay-aware multi-service trans- Qp < WX . (7)

mission in HSR communication systems, with a focus on o : .
: : The data transmission between the train and ground is sub-
dynamic resource allocation and power control problemeBas. : . : . .
ct to the transmit power constraints, including the maxim

on the model in Secti Il, the problem can be stated as fé? ) g .
onl P power constraint and average power constraint. Mathemati-

lows: During a trip, considering system dynamic charasteri ) . .
g b g sy y s cally, the maximum power constraint at any stots given

tics, i.e., the random packet arrivals and time-varyingeleiss .
P . s yinge . by P(t) < Pmnax and the average power constraint can be
channels, how to dynamically optimize resource allocatiod expressed by

power control to satisfy the heterogenous delay requirésnen =
; ; . . P < P, 8)

of multiple services under power constraints along the time

To enhance the efficiency of resource utilization and inwhereP,, and P,,., denote the maximum average power and
prove delay performance of service transmission, it is leCé@he maximum instantaneous power, respectively.
sary to dynamically control resource in a cross-layer way. F  The objective of this paper is to investigate the dynamic re-
presents an illustration of cross-layer resource managgm source allocation and power control problem under the @eera
which involves the interactions between the PHY layer ard tidelay constraint§(6), the average power constraint (8)tiaad
MAC layer. At the PHY layer, the channel state informatiomaximum power constraint. In order to better charactetiee t
(CSI) allows an observation of good transmission oppotyuniconsidered problem, we consider the constraint transfiioma
At the MAC layer, the queue state information (QSI) provides the following subsection.
the urgency of data packets. The control actions, includin
power control actionP and resource allocation action vecto
i, should be taken dynamically based on the PHY layer To facilitate satisfaction of the constraifi (7), we define a
CSI and the MAC layer QSI. Specifically, the power controlirtual queueXy(t) for eachk with the update equation
action decides the link capacity, i.e., the total allocgtadkets. av
The resource allocation apctior): decides how mangigackets areXk(t 1) = max{Xi(t) = WA, 0]+ Q(t +1) - (9)
allocated for each service. whereQy(t + 1) is defined in[(#) and the initial condition is
assumedy;;(0) = 0 for all k. Intuitively, Qx (t+1) andW2v X

. Congtraint Transformation

MAC State m=—0 —e «— A can be viewed as the “arrivals” and the “offered service” of
Resource .
. i ; ; queueXy(t), respectively.
ER— pr ——0O —TT%x +— X Lemma 1: If the virtual queueXy(t) is rate stable, i.e.,
Resource Control Actions MAC Layer satisfieslim Xelt) — , thenW;, < W7 holds and the queue
Management —00
Contgroller P Qk (t) is stable.
Proof: From (9), we haveX;, (1+1) > X (1) =W A\, +
Fower Control PHY Layer Qr(t+1),ie, Xp(t+1) = Xp(7) > Qu(t+1) = WA
PHY State for any 7. Summing the above over € {0,...,t — 1}

yields Xp(t) — Xz(0) > SU0(Qu(r + 1) — W)
Dividing by ¢ and taking limit ast — oo, we can get
limy—yo0 Xi(t)/t > Qp — WA, Thus, if limy— 0o Xy (t)/t

Fig. 2. Cross-layer design for dynamic resource management

B. Constraint Formulation = 0, then @, < W\, holds, which implies the queue
We define the following notation for the long-term time?k(t) is stable. In addition, based on Little’s law, we have
average expectation of any quantity Q= MWy and Wy, < W for k € K. =

i1 The intuition behind Lemm@l 1 is that if the excess backlog
Z2 lim EZE[ZU(T)], (5) ip the virtual queue is s_tapilized, it must be the case that th
tmoo b = time average arrival rat@,, is not larger than the service rate



W \. Based on the Lemm@al 1, the constraint (6) can @ndG(t) is defined as

transformed into a single queue stability problem.
Similarly, for the constrain{{8), we define the virtual qeeu
Yy (t) for eachk with the update equation

Vit +1) = max[Yi(t) — Pay,0] + P(¢).  (10)

Thus, stabilizingYy(t) ensuresP < P,,.

D. Problem Formulation

DefineX(¢) andY (t) as a vector of all virtual queues; ()
and Y (t), respectively. We denot®(¢) as the combined
vector of all virtual queues®(t) £ [X(t), Y (t)]. Define the
guadratic Lyapunov functior_[30]

) , (1)

S OXk(t) +w Y Vi(t)?

ke keKx

L) 2 5 (

where w > 0 represents the weight on how much we

emphasize the average power constraint.

A

OEDD [Xk(t)(Qk(t) — () + Ag(t) = AWR)

ke

+wYi()(P() — Pav)] . (16)

Proof: By squaring the equatiof](9), we have
Xi(t+1)? — X5 (1)?
= (max[Xp(t) — MW, 0] + Qr(t + 1))* — Xy (t)?

< Qr(t+ 1)+ (M WE)? + 2Xe (1) (Qr(t + 1) — N WR)
(17)

where we use the fact that for amyy > 0, (max[z, 0])? < 22

andmax[z — y,0] < z in the inequality.
Similarly, it can be shown for ang € K

Yi(t+1)>=Y5(t)* < P(t)* + P2, +2Yi(t)(P(t)— Pay) (18)
Based on[(12),[(17) and {118), we have

Next, A(©(t)) is defined as the one-slot conditional Lyan(@(¢)

punov drift at slott

A(G(@1) =E[L(O({+1) - LO@®)Oe®)], (12

which can help to ensure that the virtual queues are stable

and the desired constraints are met. At each slobserving
the virtual queue vecto®(t) and real queue vectd)(¢), the
resource allocation action vecta(t) and power control action
P(t) should be jointly decided to minimize the driff{12).
Thus, the resource management problem at:skformulated
as

Py 2O (132)
St 0< P(t) < Prax (13b)
0 < pu(t) < Qr(t), me(t) €N, Vb (13c)
D m(t) <C(t) (13d)
kex

The problem [(I8) is a stochastic optimization problem
[30], but it cannot be solved efficiently since the difficulty
from the form of the objective functiod (13a). In order to
better characterize the problen]13) and develop an efticien

algorithm to solve it, we consider the problem transfororati
in the following subsection.

E. Problem Transformation

—E|; D [XR(t+1)% = Xk(t)? + wYi(t + 1)* — wYi(t)’]|©(1)

5 ke
1 av
E lz ;;c [Qult+ 1% + W) 4+ w(P()? + P2)

+2X5(1)(Qr () — pr(t) + Ar(t) — M WY)

] |@<t>]

+ 2wYk (t)(P(t) — Pay)

<D+E[G@)|O1)] (19)

whereG(t) is defined by[(16) and the last inequality can be

obtained by

E| D Qult+ 1%+ W) +w(P()? + P2)|[0()

ke

|

<E [ S (@ + OWIVE)? (P P2) |®<t>]
kel
= 3 @ W)+ (PR + PR)] =D (20)

ke

where the inequality holds based @h.(t + 1) < Qmax and

P(t) < Pnax, and the equality holds since the constant in the

square bracket is independent®{t). [ |
Based on Lemma&l2, the problefn]13) can be simplified

To make the objective functiori (I3a) easily handled, W% minimize the drift upper bound, i.e., the right-handesid

have the following lemma.
Lemma 2: Under anyu(t), P(t) and®(t), we have

1
A(G(1) < 5D +EGO)IO()], (14)
where D is a finite constant defined as

D=3 QR+ W) +
ke

2
Pmax

+P)]. s

of inequality [14). We notice that the control actions are
independent of the first term and only affect the second term o
the right-hand-side of the inequalify_{14). Thus, the otijec
turns to the minimization of the expressiBiG(¢)|© (t)]. This
conditional expectation is with respect to the virtual qeleu
vector ®(t) and the possible control actions. Then, using the
concept of opportunistically minimizing an expectatio],3
the control actions are chosen to minimizét) by observing



O(t) and Q(t) at each slot. Next, isolatingu(t) and P(t) Based on [(24), the constraifi (22b) is equivalentOto<

in (I8) leads to the following expression C < Crmax, WhereCrax = Llog, (1 + £2=). From the above
analysis, the link capacitﬁ‘ should satisfy
> [Wr®PE) - Xe@u()]- (21)
ek 0 <C <min <Z Qs C’max> . (25)
Therefore, the intractable stochastic optimization peob[13) kek

can be transformed into a deterministic optimization pgabl  Then, the problem{22) can be transformed into a single

at each slot, which is expressed by variable problem as shown below
_ M(C) & M (C) — My(C 26a
I%,B;LLX ,;C [Xk,uk kaP} (22a) max (€) 1(C) 2(C) (26a)
s.t. 26b
st. 0< P < Puax (22b) o (25) (260)
0< jux < Qr, px €N, Vk (22¢) where M;(C) is given by
1 P M;(C) £ max Z Xk (27a)
<C=|= il
gcﬂk <c L? log, (1 + N)J (22d) A
st 0< g <Qp, €N, VE€ K, (27b)
Note that the time index is omitted in problem}22) for brevit _c 27
Let pu* = (uj,...,u}) and P* denote the optimal resource Z“’“ - (27¢)
allocation action vector and the optimal power control @cti o kek
for problem [22), respectively. and M, (C) is given by
a _ c
V. DYNAMIC RESOURCEMANAGEMENT ALGORITHM My(C) = Z wheP =f (2n B 1) ’ (28)
kek

The problem ([22) is a mixed integer programming (MIP),, oo vss v

problem. A common way of solving it is to relax the intege ) .
constraints and then the problem becomes a convex optimizal—‘emma 3: Problems[(22) a.nd]IG) are equivalent. —
Proof: We prove the equivalence from both the objective

tion problem, which can be solved by CVX [31]. In addmor:f nction and the constraints. On one hand, we can observe

the optimization solvers, such as CPLEX and LINDO, ha - .

been psuccessfully applied to MIP problems. However, tﬁ at the objective functions O.f pr_oblem2_2) and problém (26
above methods often have a high computational complexiI r'edi\?sjn;g'iright?;ghp;?ti ?%egg;a)fu;ﬁ%gfgf g?%tﬁlot(ﬁg
Thus, to overcome this disadvantage, we consider the probl nd, as for the constraints on the variaple the constraint

transformation and then propose a static resource manage : :
algorithm to effectively solve probler (22). Finally, a dymic )) :z (tahii\?zgr?t ?os[(gac)cgzzggtzhlb)n::gs;g? c:onns(;:;\gnt
resource management algorithm is proposed to solve iy optimal(iqty [23). As for the constraints on the va)rliatﬂb
original problem [T5). based on the expressidn124), the constrdift P < P,y in
(220) is equivalent td) < C < Crax in (28). From the above
analysis, we can conclude that probldm](22) is equivalent to
In this subsection, the problerh {22) is equivalently trangyophlem [28). -
formed into a single variable problem, which will be dis®ts = Thys, we can solve the problel[26) instead[ofl (22). Let
below. First, we focus on analyzing the constraints in probl o+ denote the optimal solution of the problefi](26). Before
(22). Specifically, we notice that the optimal solution willsg|ying the problem[{26), we first focus on the subproblem
always achieve the equality in constrainf (22d), which can g7 with any givenC. It is worth noting that the maximum

A. Satic Resource Management Algorithm

given by value of M;(C) can always be achieved by allocating link
Z e =C = llogg (1 + f) (23) capacityC’ to the services_ in the descending ordevqf. For
Ui N convenience, all the services are sorted in descending ofde

kek
) ) X, with the set{k1, ko, . . ., kx }. Mathematically, the optimal
Otherwise we can reduce the value®fso as to increase thesolution to the subprobleni(27) is given by

objective value without any violation of the constraint@Ifp

and [22t). Based on the first equality in(23) and the comstrai ) e

(228), the link capacityC' should satisfy0 < C' < 3, Q;. ~ Hhn = W {max {C - ka’o} ’Q’%}’ vn, (29)

In addition, since the link capacity' is the sum of integers, m=0

it is also an integer, i.e( € N. From the second equality in WhereQx, = 0.

@3), there exists a one-to-one relationship betwBeand C. After solving the subprobleri (27), we f0<_:us on how to solve

Thus, the power consumptioR can be expressed by the problem((26). We rela&’ € N to C' € R in problem [26),
and then the property of the objective functidfi(C') will be

P=N(2"9 —1). (24) exploited in the following lemma.



Lemma 4: M (C) is concave ove[O,Zfl:O Q.. |- based on Lemmal 4/(C) h
Proof: On one hand, for a sufficiently small> 0, since |C/. Thus,M(LCJ) > M(]|

AM;(C) = My(C +6) = Mi(C) = 6Xy, for 320~ Qy,, < we haveM ([CT) = M([CT
C <> _oQk..Vn € [1,K], AM;(C) is a non-increasing non-positive slope of\/(C)
function of C'. On the other hand, sinc&M,(C') = M2(C'+  integer value ofC' is either
§) — Mo(C) = B27¢(2"° — 1), AM,(C) is a monotonically can be obtained by
increasing function of”. Therefore AM(C) = AM;(C) — .
AM,(C) is a monotonically decreasing function ©f which c" = ij%ﬁg” M(C). (30)
implies thatM (C) is concave ovef0, 25:0 Q.| | ] o ) )

Based on[[32], ifM(C) is concave, themM/(C) is uni- Finally, the optimal solutlonsP_* and p* can be obtained in
modal. SinceM(C) is an unimodal function ofC' over Step 15 and step 16, respectively.

[0, o @k, the golden section search method [33] is ver, Dynamic Resource Management Algorithm
suitable for searching without derivative for the maximum
In this subsection, we propose a dynamic resource man-

of objective functionM (C) W'.th un!modal Then the static ?ﬁement algorithm to solve the original problem](13) based
resource management algorithm is proposed based on
the static resource management algorithm. Specifically,

golden section search method, as described in Algoithm lby observing the queue states at each slot, the dynamic

algorithm is designed to choose control actions via solving
problem [[26). The detailed steps are described in Algorithm

a non-negative slope @t=

¢) for 0 < e < C. Similarly,

for0<e<Cduetothe
[C]. Thus, the optimal

1as
g=
+
at C = [C
r|C| or [C]. Mathematically, it

)
C
]

Algorithm 1 Static Resource Management Algorithm

Input: Xy, Qk, B, the golden ratlop ‘f 2. All system parameters should be initialized before the
1: Initialize two endpoints, ie..C = 0 and C = transmission process begins. At the beginning of each slot,
min{ Crmax, Zm 0@k, 1 the problem[(Z26) is solved by calling Algorithimh 1. At the end
2: Determine two intermediate points; and C; such that of each slot, the queuegy,(t + 1), Xy (t + 1), andY(t +1)
C,=C+ cp(C’ C)andCy = C — o(C - O); are updated according tbl (4} (9) ahd1(10), respectivelyg Th
3: while ¢ = C > ¢ do algorithm will be repeated until all service transmissi@ne
4:  Obtain M;(Cy) and M;(C5) by solving [2T), respec- finished.
tively;
5: CorrsllputeMg(C’l) and M(C,) based on[{28); Algorithm 2 Dynamic Resource Management Algorithm
6: M(Cl) = Ml(C’l) — MQ(Cl), M(CQ) = Ml(CQ) — 1: Initialize T, B, Ny, w, 7, Qk(O) = Xk(O) = Yk(O) =0
M5 (Cy); for all &;
7. if M(C1) > M(C2) then 2: Obtain the trajectory informatiod(t);
8: Ci=Cy, Oy =4, Cy 1= C + o(C = O, 3: for t =0to T do
9: else 4:  Calculates(t), N(t), and Cmax(t);
10: C =), Cp:=Cy, Cy:=C+p(C - O); 5. Obtain P(t) and u(t) by calling Algorithm[1;
11:  end if 6: UpdateQy(t+ 1), Xx(t+ 1), andY;(t + 1) according
12: end while to (4), (9), and[(T0), respectively;
13: C:= L(C+ C); 7: end for
14: ObtainC* by solving [30);
15: CalculateP* by (24) whenC = C*;
16: Obtainy; by (29) whenC = C*; VI. SIMULATION RESULTS ANDDISCUSSIONS
Output: P*, p* A. Smulation Setup

We consider a real train schedule based on the Huhang
From step 1 to step 13, the golden section search methodhigh-speed railway_ |5])[14]. The simulations in this papes

used to get the optimal solution while relaxitgas a positive built on the train G7302 and the train trajectory is genetate
real number in probleni (26). Specifically, two endpoints aratcording to the mobility model proposed in [34]. The other
two intermediate points in the search region are determinpdrameters are summarized in Table I.
in step 1 and step 2, respectively. The iterative calcutatib For the purpose of comparison, we evaluate two related
the golden section search is implemented from step 3 to s&ptic power allocation schemes as reference benchmagks, i
12 until ¢ — C < ¢, wheree is the iterative accuracy. In constant power allocation (CPA) scheme and water filling
each iteration, M (Cy) and M (C) are calculated from step power allocation (WFPA) schemé [19]. In the static CPA
4 to step 6 and then are evaluated from step 7 to step $theme, BS maintains a constant transmit power at all times,
The endpoints and intermediate points are updated during tfe., P(t) = P,,. In the static WFPA scheme, the water filling
evaluation. When the iteration converges, the optimaltgmiu method is used to maximize the total throughput along the
C after relaxation is obtained in step 13. In step 14, the ogitintime. Since the power allocation in these two static schemes
solution of problem[(26) is obtained by considering thegete determined in advance, we modify them to the corresponding
nature of optimal variabl€'. Due to the concavity o/ (C') dynamic schemes in order to adapt to the variations of data
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Fig. 3. The dynamic performance along the time, whige= 20 packets/slotW ¥ = 15 slots, Pmax = 50 W andw = 0.8.
TABLE | . . . .
SIMULATION PARAMETERS Fig. [3(b) and[B(c) show the instantaneous link capacity
and average queue backlog of services for the three dynamic
Parameter ~ Description Value schemes, respectively. It can be observed in Eig. 3(b) that
i 4
Pry maximum average power 36 W wher_1 the traln_mqvgs at the cell center (fronto 10%th _slot),
B system bandwidth 5 MHz the link capacity is just around the total packet arrival® 12
:LF pla‘t:kgt S'tz_e %40 bits packets/slot for all schemes, which results in a small queue
s Slot duration ms . . . .
o pathloss exponent 1 backlog s_hown in Figld3(c). Thl_s_ re_sult can be explained as
No noise power spectral density  -174 dBm/Hz follows: Since the channel condition is good at the cell egnt
v COHSta(;‘_t moving speed 31605 ‘:(m/h little power will be consumed shown in Figl 3(a). Thus, the
cell raaius . m . . . .
do distance between BS and rail 50 m packets can pe t.rans.m|tted immediately once they arrive at
K number of services 6 the buffer, which implies that the queue backlog is small. As

the train moves far from the cell center, the channel cooliti
turns bad and much power will be consumed for transmitting
the dynamic schem@3€ packet. The link _capacit.y decreases for_ all schemes due
to the power constraint, which causes the increasing queue
Joacklog. As shown in Fid.13(b), when the train locates near
4he cell edge, the link capacity in the proposed algorithm is
more than that in the other two dynamic schemes due to the
different power allocations in Fidl 3(a). The differencetfie

link capacity results in different queue backlogs amongé¢he
_ ) _ dynamic schemes. Furthermore, we can see froniFig. 3(b) that
_F|g. [ shows the dyf‘am'c performance along the time f e three curves suddenly drop after steady increasinghwhi
different power allocation schemes. Eor th? sake of perf_qfﬁplies the queue backlogs have been emptied. Compared with
mance comparison, we only plot the simulation results durigy & ciher two schemes, less time will be spent on emptying

a time period When the train moves from the center of OQﬁJeue backlogs and less buffer size is needed in the proposed
cell to that of adjacent cell. algorithm

Fig.[3(a) shows the power allocation along the travel time

for different schemes. We can see that the predeterminedrig.[4 shows the average power consumption and average
power allocation results in the static CPA scheme and statielay performance with different packet arrival ratespees
WFPA scheme are independent of random packet arrivaisely. As expected, the average power consumption in all
Considering the packet arrival process, the transmit powe schemes increases with the average packet arrival rates
changes dynamically in the three dynamic schemes. Spedifansmitting more packets with the same delay requirement
ically, when the train moves towards the cell edge, the poweill lead to more power consumption. However, the increment
consumption increases in all dynamic schemes since thethe proposed algorithm is large while that in the other two
wireless link quality degrades. When the train moves at #fle cschemes is small. This is because that the power consuraption
edge (froml x 10%th slot to2 x 10%th slot), nearly maximum in the dynamic CPA scheme and dynamic WFPA scheme
transmit power is consumed in the proposed algorithm, whige limited by the predetermined power allocation. From Fig
the power consumptions in the dynamic CPA scheme adb), we can see that the average delay in all the schemes
dynamic WFPA scheme are limited by the predeterminediso increases with the average packet arrival rates. Wheen t
power allocation. packet arrival rate increases, the queue backlog getsrlarge

traffic and channel state. Specifically,
can be obtained by replacing the maximum pov&fy in
proposed dynamic algorithm with the static power alloaati
results. The resultant dynamic schemes are denoted as @yn
CPA scheme and dynamic WFPA scheme, respectively.

B. Performance Comparison



which further results in longer queue delay. Furthermore,
we observe that as for the same packet arrival rate, the
average delay in the proposed algorithm is much lower than
the other two schemes. Specifically, when the packet arrival
rate is 25 packets/slot, the average delay in the proposed
algorithm can respectively be &3and 22.% of that in

the other two schemes, which demonstrates that the proposed
algorithm outperforms the other two schemes in term of delay
performance.

Average power consumption (W)

37F

36f

35f

25

—&— Average delay
—&— Average power consumptign

(0.41, 36)

=
Averageuaelay (slot)

10

50 feasible region
—e— Proposed algorithm g
—~ 451 | —&— Dynamic CPA scheme i 34 . . . I . . L
\;_/ Dynamic WFPA schem 02 03 04 O.SW 06 07 08 09 1
c
'%_ 40r 7 Fig. 5. Average power consumption and average delay undtaratit
g weights, where\,, = 23 packets/slotiW v = 15 slots, andPmax = 100 W.
%]
5 35 .
o} . . .
£ 30 : w leads to more weight putting on average power consumption
® constraint and hence less power is utilized for transngittin
[o)] . .
g 25- buffered packets, which results in longer queue delay. Thus
Z we can see that plays a key role in balancing the average
204 delay and average power consumption. Furthermore, tdysatis
the average delay constraint and average power constraint
1 ‘ ‘ ‘ ‘ ‘ simultaneously, it is necessary to find the reasonable range
20 21 22 23 24 25 26 T ) ) o .
Packet arrival rate (packets/slot) of w, which is called as “feasible region”. As shown in Hig. 5,
@ we can find the feasible region af is [0.41,0.53] such that
both the average delay constraint and average power citstra
70 can be satisfied simultaneously.
—e— Proposed algorithm
600r | —=— Dynamic CPA scheme 1 D. Effects of the Maximum Transmit Power
D ic WFPA sch . .
2 500 ynamic scheme | We evaluate how the maximum transmit powsy.,, effects
o the delay performance and power consumption in the proposed
2 200 | algorithm. Fig[ 6(d) shows average power consumption and av
3 erage delay with different maximum transmit powers, respec
% 300t 1 tively. As shown in Fig[ 6(a), the average power consumption
o increases with the maximum transmit power while the average
< 200 delay decreases with the maximum transmit power. This can
be explained by the observation in Hig. §(b). As the maximum
100- transmit power gets larger, more power is consumed when the
i train moves at the cell edge, resulting that the bufferedetac

0 o1 22 23 o4 25 26 can be transmitted as soon as possible.

Packet arrival rate (packets/slot)
(b)

Fig. 4. Average power consumption and average delay unfferetit packet

VII. CONCLUSIONS

In this paper, we investigate the delay-aware dynamic re-

arrival rates, where, — 20 packets/SIOtIV2Y = 15 SIots, Py — 100 17 SOUICe allocation and power control problem in HSR wireless
andw = 0.8. communications. The problem is formulated into a stochasti
optimization problem, rather than pursuing the traditlona

C. Effects of the Parameter w

convex optimization means. A dynamic resource management
algorithm is proposed to solve the intractable stochagtic o

We show the effects of the weight on the power con- timization problem. The novelty of the proposed dynamic
sumption and delay performance in the proposed algorithalgorithm lies in the applications of stochastic networki-op
Fig.[3 plots the average power consumption and average defaigation approach and the ideas such as the virtual queue-
versus the weightv. It can be seen that the average powdrased constraint transformation and opportunisticallyimi
consumption decreases with increasingwhile the average mizing an expectation. Simulation results are presented to
delay increases with increasing The reason is that increasingshow that the proposed dynamic algorithm can reasonably
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Fig. 6. Power consumption and delay performance undereiffenaximum
transmit powers, wherg; = 23 packets/slot/V*V = 15 slots andw = 0.6.

[14]
[15]

use the limited resource and significantly improve the delgs)
performance under power constraints in HSR communications

In the future, we plan to broaden and deepen this worf,
in several directions. First, we attempt to investigateagel
aware cross-layer design for multi-service transmissidatin w 18]
more practical assumptions in HSR communication systems,
e.g., multi-service resource management problem undee mor
practical HSR channel model and more realistic packetarri®!
model. Second, since the weight parameter plays a key role
in balancing the queue delay and power consumption, \i2g]
plan to analyze theoretically how to obtain the feasibléaeg
of the weight parameter. Third, to address the issue that
delay requirement and power constraint can not be satisfied
simultaneously, we would like to design a dynamic admission
control scheme for supporting multi-service transmissiéin [22]
nally, as for the safety-related services transmission $8RH
communications, we also plan to propose a new multi-service
transmission scheme, which can take full consideration i8]
different priorities and strict delay requirements.
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