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Abstract—This paper shows that the proposed Rician shad-
owed model for multi-antenna communications allows for the
unification of a wide set of models, both for multiple-input
multiple output (MIMO) and single-input single output (SIS O)
communications. The MIMO Rayleigh and MIMO Rician can be
deduced from the MIMO Rician shadowed, and so their SISO
counterparts. Other SISO models, besides the Rician shadowed
proposed by Abdi et. al., are included in the model, such as
the κ-µ defined by Yacoub, and its recent generalization, the
κ-µ shadowed model. Moreover, the SISOη-µ and Nakagami-q
models can be seen as particular cases of the MIMO Rician
shadowed. The literature already presents the probabilitydensity
function (pdf) of the Rician shadowed Gram channel matrix
in terms of the well-known gamma-Wishart distribution. We
here derive its moment generating function in a tractable form.
Closed-form expressions for the cumulative distribution function
and the pdf of the maximum eigenvalue are also carried out.

I. I NTRODUCTION

The Rician fading model [1] was proposed in order to
characterize scenarios where there is a dominant signal, often-
times called line-of sight (LOS) signal, whose power is much
stronger than the power of the rest of the signals received due
to reflections, widely referred to as scattering waves.

With the aim of also including the large-scale propagation
effects, a Rician shadowed model was then presented by
Loo, where the LOS signal suffers from a perturbation in the
amplitude which follows a log-normal distribution [2].

Although the model presented by Loo is validated with
channel measurements, the statistical characterization of such
model is not simple since the probability density function (pdf)
is given in an integral form. Instead, a new Rician shadowed
model was proposed in [3], where the shadowing amplitude
follows a Nakagami-m distribution. In fact, this new fading
model can be easily characterized without compromising the
accuracy when fitting real channel measurements [3].

Recently, the Rician shadowed proposed in [3] was gen-
eralized under the name ofκ-µ shadowed fading model [4]
or shadowedκ-µ [5], and exhibits excellent agreement when
compared to measured underwater acoustic [4, 6] and body
centric communications fading channels [5, 7].

In the literature, the statistical characterization of theafore-
mentioned channel models is usually tackled on a single-link
fashion, i.e., for a single-input single-output (SISO) commu-
nication system.

However, since modern communication systems like Wi-Fi
standards or 4G always use several antennas at both the

transmitter and receiver sides, i.e. multiple-input multiple-
output (MIMO) systems, the statistical characterization of
MIMO systems is of extreme interest.

The study of the impact of MIMO diversity in the capacity
of flat-fading Rayleigh channels was studied for a long while
[8–10] and was finally analytically evaluated for spatially
correlated Rayleigh channels in [11]. The MIMO Rician was
also deeply studied in the literature [12–14], showing that
its performance analysis is much more complicated than the
MIMO Rayleigh case. Moreover, when trying to extend other
types of models in order to be employed in MIMO commu-
nications, we tackle some analytic problems. For instance,
the MIMO Nakagami-q model is still an open problem in
the literature, being only partially characterized in [15,16],
leading to comlicated and not very tractable expressions. In
fact, random matrix models for fading channels other than
Rayleigh or Rician are scarce in the literature [15–18].

In this paper, we revisit the random matrix model for
a Rician fading model with Gamma-variate average matrix
presented in [17], which we here directly call MIMO Rician
shadowed for the first time. We show that the versatility of the
model has not been exploited yet to the full extent possible,
since this model allows for a wide unification: i) for MIMO
communications, it unifies the MIMO Rayleigh and MIMO
Rician models, and ii) for SISO communications, it unifies the
one-sided Gaussian, Rayleigh, Nakagami-m, Nakagami-q and
Rician, together with their general counterparts, i.e, theκ-µ
andη-µ [19], the Rician shadowed [3] and theκ-µ shadowed
[4, 5]. Moreover, like its univariate counterpart, this model can
be also used when its parameters takes non-integer values.

Although the pdf of the Gram channel matrix can be
found in [17], we here present for the first time the mo-
ment generating function (mgf) of such model in closed-
form. Moreover, we derive the cumulative density function
(cdf) and pdf of the maximum eigenvalue distribution for a
shadowing power matrix with equals eigenvalues, which are
the respective distributions of the outage probability andthe
maximum output SNR pdf of a maximum ratio combining
system [20, 21].

This paper is structured as follows. In Section II, we
introduce some preliminary results needed in our following
derivations. In Section III, the MIMO Rician shadowed model
is again introduced and we derive the mgf of the Gram channel
matrix. In Section IV, we prove the wide unification that
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model allows. In Section V, the cdf and pdf of the maximum
eigenvalue distribution of the random matrix model are derived
for an shadowing with equals eigenvalues. In Section VI, we
present some numerical results. Finally, conclusions are drawn.

Throughout this paper, matrices are denoted in bold upper-
case. The matrixIp symbolizes thep×p identity matrix, while
0p is thep×p null matrix. When the operator|·| is used around
a matrix, it indicates the determinant of that square matrix;
otherwise, it is the complex modulus. The matrix̄A is the
expectation matrix ofA. The conditional matrixA|B means
the matrixA given matrixB. The operator tr(·) represents
the matrix trace while etr(·) is the exponential of the matrix
trace. The super-indexH means the conjugate transpose and
the symbol∼ expressesstatistically distributed as. If H is a
p× n matrix, we refer toHH

H as its Gram matrix. Finally,
V(·) is the Vandermonde determinant andA > 0 indicates
that matrixA is positive definite.

II. PRELIMINARIES

Definition 1: Noncentral Complex Wishart Matrix.
Then× n matrix W is a noncentral complex Wishart matrix
with p degrees of freedom (p ≥ n), covariance matrixΣ and
noncentrality matrixΘ, i.e.,W ∼ Wn(p,Σ,Θ), if its pdf is
given by [22, eq. (99)]

fW(W) =
etr(−Σ

−1
W)|W|p−n

Γ̃n(p)|Σ|p

× etr(−Θ)0F̃1(p;ΘΣ
−1

W),

(1)

whereΓ̃n(p) is the complex multivariate gamma function [22,
eq. (83)], and0F̃1(·; ·) is the complex Bessel hypergeometric
function of matrix argument [22]. Notice that the first line
expression of the eq. (1) corresponds to the pdf of a central
complex Wishart matrix [22, eq. (94)].

Definition 2: Complex Gamma-variate Matrix.
Then× n Hermitian positive-definite matrixB is a complex
gamma-variate matrix, with scalar parameterβ (β ≥ n)
and matrix parameterΩ, if B follows the complex gamma
distributionΓn(β,Ω) [23, p. 254, p. 356], i.e,

fB(B) =
|B|β−n|Ω|β

Γ̃n(β)
etr(−ΩB). (2)

Notice that the complex gamma distributionΓn(β,Ω) can be
seen as the continuous extension of the central Wishart distri-
bution when its scalar parameter takes real positive values.

Definition 3: Complex Gamma-Wishart Matrix.
Assume to have aq × n (q ≥ n) matrix,H, defined as

H = Ĥ+ H̄ (3)

whereĤ ∼ CN (0, Iq⊗Σ) andH̄H
H̄ ∼ Γn(α,Ω) are statisti-

cally independent. Then the Gram matrixA = H
H
H follows

the gamma-Wishart distributionΓWn(α, q,Σ,Ω) given by
[17, 18]

fA(A) =
etr(−Σ

−1
A)|A|q−n|Ω|α

Γ̃n(q)|Σ|q |Σ−1 +Ω|α

× 1F̃1(α; q;Σ
−1(Σ−1 +Ω)−1

Σ
−1

A),

(4)

where 1F̃1(·; ·; ·) is the complex confluent hypergeometric
function of matrix argument [22].

III. SYSTEM MODEL DEFINITION

The MIMO Rician shadowed fading model for multi-
antenna communications was presented in [17] with the fol-
lowing channel matrix model

H = Ĥ+Ξ, (5)

whereĤ ∼ CN (0, Ip ⊗Σ), andΞH
Ξ ∼ Γn(m,M); matrix

Ĥ represents the scattered components,Ξ is the LOS which
suffers from shadowing andM takes into account the spatial
correlation of the shadowing at the receiver side, since the
number of receiver antennas is lower than the number of
transmit antennasp. Notice that this does not imply any loss of
generality, since every Gram matrix will haven×n elements,
with n = min(p, n), but we take this assumption for the sake
of notational simplicity.

The pdf of the Gram channel matrix,Y = H
H
H, can be

given in terms of the well known gamma-Wishart distribution,
such asY ∼ ΓWn(m, p,Σ,M) [17, Proposition 1]. Next, the
mgf of the MIMO Rician shadowed model is derived.

Lemma 1: Let Y ∼ ΓWn(m, p,Σ,M); then, its mgf is
given by

MY(S) , E [etr(YS)]

=
|−S+Σ

−1|−p|M|m

|Σ|p|Σ−1 +M|m

×|In −Σ
−1(Σ−1 +M)−1

Σ
−1(−S+Σ

−1)−1|−m.
(6)

Proof: The mgf is calculated from the next integration over
the space of Hermitian positive definite matrices

MY(S) =

∫

YH=Y>0
etr(YS) · f

Y
(Y)(dY) (7)

wheref
Y
(Y) is the pdf of the matrixY, which depends on

the hypergeometric1F̃1(·; ·; ·). Eq. (7) is carried out with the
help of [23, eq. (6.1.20)], when expressing the hypergeometric
function in series form [22, eq. (87)]. Thus, a Binomial
hypergeometric function1F̃0(·; ·) is obtained and expressed
in turn as a determinant [22, eq. (90)]. This result is new in
the literature to the best of our knowledge.

IV. U NIFICATION OF POPULAR FADING MODELS THROUGH

THE MIMO R ICIAN SHADOWED

In this section, we first show that the MIMO Rician shad-
owed model unifies a wide set of SISO models, and then
we also show what MIMO models are included therein. The
MIMO Rician shadowed model parameters are underlined for
the sake of clarity.



TABLE I
THE CHANNELS DERIVED FROMMIMO R ICIAN SHADOWED MODEL

MIMO Channels (Distributions) MIMO Rician Shadowed Parameters

MIMO Rayleigh M
¯
−1

→ 0n

(Central Wishart) m
¯
= p

¯
MIMO Rician

(Noncentral Wishart)
m
¯
→ ∞

A. Unifying models for SISO communication

In the following lemma, we prove that theκ-µ shadowed,
originally proposed by [4], can be seen as a particular case of
the MIMO Rician shadowed case.

Lemma 2: Let Y ∼ ΓWn(m, p,Σ,M). If n = 1, then
Σ → σ2

Σ, M → σ2
M andY → y. Let γ = γ̄ y

ȳ
, with γ̄ = E[γ]

and ȳ = E[y], then γ follows a κ-µ shadowed distribution
with κ = mσ−2

M /(µσ2
Σ) andµ = p.

Proof: If n = 1, we can identifyσM
2 = mκ−1γ̄−1(1+κ),

σΣ
−2 = µγ̄−1(1 + κ), p = µ andm = m in the Gamma-

Wishart distribution and so we obtain theκ-µ shadowed
distribution originally presented in [4, eq. (4)]. Notice also
that eq. (6) becomes [4, eq. (5)].

Very recently, theκ-µ shadowed has been presented as the
model which unifies theκ-µ andη-µ distributions [24]. There-
fore, the MIMO Rician shadowed includes theκ-µ shadowed,
κ-µ, η-µ, Nakagami-m, Nakagami-q, Rician, Rayleigh and
one-sided Gaussian.

B. Unifying models for MIMO communication

The MIMO Rayleigh and MIMO Rician can be deduced
from the MIMO Rician shadowed fading model when its
parameters are set to specific values and/or taken to limit.
Table I summarizes these MIMO fading derivations. Notice
that considering a MIMOκ-µ or a MIMO κ-µ shadowed does
not give a different distribution when compared to the MIMO
Rician or MIMO Rician shadowed, respectively, since the sum
of noncentral Wishart gives another noncentral Wishart with
more degree of freedom. While a unification similar to the
SISO case under the umbrella of the MIMO Rician shadowed
model could be inferred for the Nakagami-q [24], such con-
nection is not possible whenn > 1. Therefore, exploring this
possibility is indeed an interesting and challenging problem.

Due to space constraints, we only outline the proofs which
are required to obtain the results in Table I. On the one
hand, the derivation for the MIMO Rayleigh fading model is
carried out thanks to the next properties of the hypergeometric
functions. When the caseM−1 → 0n is considered, we apply

lim
c→0

pF̃q (a1 . . . ap; b1 . . . bq; cX) = 1. (8)

Whenm = p, we use

1F̃1 (a; a;X) = etr(X)1F̃1 (a− a; a;−X) = etr(X). (9)

In fact, the eq. (8) can be handled by simply exploiting the
series expression of the hypergeometric function of matrix

argument [22, eq. (87)], where the first term has the unit value
and the rest of the terms depend on the eigenvalues of the
matrix argument, which become zero whenM → 0n. The
eq. (9), which is usually referred to as the Kummer relation for
scalar confluent hypergeometric functions, is derived by using
the integral representation of the hypergeometric function [23,
eq. (6.2.4)].

On the other hand, the MIMO Rician case is derived by
using the following limits

lim
a→∞

1F̃1

(
a; b;

1

a
X

)
= 0F̃1

(
b;X

)
(10)

lim
m→∞

|In +
1

m
Σ

−1
M

−1|−m = etr
(
−Σ

−1
M

−1
)

(11)

Eq. (10) can be proved by expressing the hypergeometric
function in series [22, eq. (87)]. The constant of the zonal
polynomial argument can be then extracted from it, so that
the complex Pochhammer symbol vanishes when taking the
limit. Eq. (11) can be derived by expressing the determinant
as the eigenvalue product

∏n

i=1

(
1 + 1

m
λi

)−m
, so that each

product component tends to the exponential function.

V. M AXIMUM EIGENVALUE DISTRIBUTION

The study of the maximum eigenvalue distribution depends
on the eigenvalues of the matrixM. For a matrixM with
distinct eigenvalues, we find the result in [17]. For a matrixM

with two or more eigenvalues equals, it is not possible to use
the result in [17], since we have an indeterminate form0/0.
Instead we should derive a new result thanks to the Lemma 2
in [25], which is based on applying multiple times L’Hôpital
theorem.

However, we are going to focus here in the simplest case
where all the eigenvalues ofM are equals. For that case, we
suppose thatM is a diagonal matrix with equals elements.
This does not imply any loss of generality since the solution
depends on the eigenvalues ofM and not necessarily the
shadowing has to be spatially uncorrelated, i.e,M has not
to be a diagonal matrix.

Corollary 1: The joint distribution of the ordered eigen-
valuesφ1 < φ2 < . . . < φn of Y ∼ ΓWn(m, p,Σ,M),
whenΣ = σ2

ΣIn andM = σ2
MIn is given by

fΦ(Φ) =
πn(n−1)

∏n
i<j(φi − φj)

2

σ2pn
Σ Γ̃n(n)Γ̃n(p)

(
1 + σ−2

Σ σ−2
M

)nm

× |Φ|p−netr(−σ−2
Σ Φ)1F̃1

(
m; p;

σ−2
Σ Φ

1 + σ2
Σσ

2
M

)
,

(12)

where the confluent hypergeometric function is of one matrix
argument andΦ = diag(φi).

Proof: Applying [22, eq. (88)], the integration over the
space of unitary matrices of the pdf ofY leads to the result.
Next, the cdf of the maximum eigenvalue is derived.

Lemma 3: Let τ = p+n, the cdf of the maximum eigenvalue
of Y ∼ ΓWn(m, p,Σ,M), whenΣ = σ2

ΣIn andM = σ2
MIn,

can be expressed as

Fφn
(φn) = C|Υ(φn)|, (13)



where the constantC can be expressed as

C =
πn(n−1)

[
σ2
Σ

(
1 + σ2

Σσ
2
M

)]n(n−1)
2

σ2pn
Σ Γ̃n(n)Γ̃n(p)

(
1 + σ−2

Σ σ−2
M

)nm . (14)

Whenm < p, the entries of then×n matrixΥ(x) are given by
the eq. (15) at the bottom of the page, where2F1 is the Gauss
hypergeometric function of scalar argument [26, eq. (15.1.1)],
Φ1(·, ·, ·, ·) is the confluent hypergeometric function of two
scalar variables [27, eq. (9.261.1)], andΓ(a) is the univariate
gamma function. Whenm > p, no closed-form expression
is obtained, so we give the entries ofΥ(x) in the following
integral form

{Υ(x)}i,j =
[
σ2
Σ

(
1 + σ2

Σσ
2
M

)]i−n{∫ x

0

yτ−i−je−σ
−2
Σ y

×1 F1

(
m− i+ 1; p− i+ 1;

σ−2
Σ y

1 + σ2
Σσ

2
M

)
dy

}
.

(16)

Finally, whenm = p, Y follows a central Wishart distribution,
so that its extreme eigenvalue distributions are given in [28].

Proof: The cdf of the maximum eigenvalue is derived by
integrating the joint eigenvalue distribution in eq. (15) multiple
times, such as indicated in [29, Appendix A]. As shown in [30,
eq. (2.9)], the hypergeometric function of one matrix argument
in eq. (12) can be expressed by a division of determinants,
which gives a product of two determinants in eq. (12). Since
the multiple integrals of a product of two determinants can be
expressed as a determinant of a single integral [31], we finally
obtain the integral form of eq. (16), which can be expressed
as a finite sum of confluent hypergeometric functions of two
scalar variables whenm < p.

Lemma 4: Let τ = p+n, the pdf of the maximum eigenvalue
Y ∼ ΓWn(m, p,Σ,M), whenΣ = σ2

ΣIn andM = σ2
MIn,

can be expressed as

fφn
(φn) =C|Υ(φn)|

× tr
{
Υ

−1(φn)J(φn)
}

U(φn).
(17)

where the U(·) is the unit step function and the entries of the
n× n matrix J(x) are given by the derivatives of the entries
of Υ(x) with respect tox, i.e., by removing the integral in
eq. (16).

Proof: The proof is straightforward by using the derivative
formula of a determinant given by [32, eq. (9)]. Notice that
this can be also applied in the case of distinct eigenvalues
presented by [17] to obtain the other case pdf of the maximum
eigenvalue.
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Fig. 1. Comparison of the analytical and simulated cdf of themaximum
eigenvalue of the MIMO Rician shadowed model for different matrix dimen-
sions and various parameters. For all the casesp = 4.

VI. N UMERICAL RESULTS

In order to validate our analytical results, we compare
them with Monte-Carlo simulations. Fig. 1 shows different
simulated and theoretical curves of the cdf of the maximum
eigenvalue when the shadowing has equals eigenvalues. We
appreciate a perfect match between simulated and theoretical
values. In turn, Fig. 2 allows to validate our theoretical
expression for the pdf of the maximum eigenvalue.

Interestingly, the MIMO Rician shadowed model is more
flexible than other existing MIMO models. Fig. 3 shows
the evolution of the pdf of the maximum eigenvalue as the
parameterm grows, which prove that, whenm → ∞, the
MIMO Rician shadowed maximum eigenvalue distribution
tends to the MIMO Rician one, which was presented in [29].
We can also observe that we have a wide set of possible pdf
of the maximum eigenvalue, which lay between the MIMO
Rician case and the Rayleigh case form ≥ p. Also, when
m < p, we obtain pdfs which correspond to channels that
present a fading more severe than the Rayleigh case, often
called hyper-Rayleigh channels [33].

VII. C ONCLUSIONS

We have shown that the MIMO Rician shadowed model
exhibits a powerful unification, since it includes the MIMO
Rayleigh and MIMO Rician, together with the SISOκ-
µ shadowed,κ-µ, η-µ, Nakagami-m, Nakagami-q, Rician,
Rayleigh and one-sided Gaussian. Therefore, it gives more
flexibility to model any channel affected by different prop-
agation conditions with a tractable statistic characterization
than existing alternatives. Furthermore, the mgf of the Gram
channel matrix and the cdf and pdf of its maximum eigenvalue
for a shadowing with equal eigenvalues have been obtained in
closed-form.

{Υ(x)}i,j = σ2p−2j+2
Σ

(
1 + σ2

Σσ
2
M

)i−n

Γ(τ − i− j + 1)
[

2F1

(
τ − i− j + 1,m− i+ 1; p− i+ 1;

1

1 + σ2
Σσ

2
M

)

− e−σ
−2
Σ x

τ−i−j∑

k=0

(σ−2
Σ x)k

k!
Φ1

(
m− i+ 1, τ − i− j − k + 1, p− i+ 1,

1

1 + σ2
Σσ

2
M

,
σ−2
Σ x

1 + σ2
Σσ

2
M

)] (15)
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