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Abstract—This paper shows that the proposed Rician shad- transmitter and receiver sides, i.e. multiple-input nmdt
owed model for multi-antenna communications allows for the output (MIMO) systems, the statistical characterizatidn o
unification of a wide set of models, both for multiple-input 1 MmO systems is of extreme interest.

multiple output (MIMO) and single-input single output (SIS O) . . N .
communications. The MIMO Rayleigh and MIMO Rician can be The study of the impact of MIMO diversity in the capacity

deduced from the MIMO Rician shadowed, and so their SISO Of flat-fading Rayleigh channels was studied for a long while
counterparts. Other SISO models, besides the Rician shaded [8-10] and was finally analytically evaluated for spatially

proposed by Abdi et. al., are included in the model, such as correlated Rayleigh channels in [11]. The MIMO Rician was
the x-u defined by Yacoub, and its recent generalization, the also deeply studied in the literature [12-14], showing that

k-p shadowed model. Moreover, the SISQ)-u and Nakagamiq . L .
models can be seen as particular cases of the MIMO Rician its performance analysis is much more complicated than the

shadowed. The literature already presents the probabilitydensity MIMO Rayleigh case. Moreover, when trying to extend other
function (pdf) of the Rician shadowed Gram channel matrix types of models in order to be employed in MIMO commu-

in terms of the well-known gamma-Wishart distribution. We nications, we tackle some analytic problems. For instance,
here derive its moment generating function in a tractable fom. o MIMO Nakagamis model is still an open problem in
Closed-form expressions for the cumulative distribution tinction . : . . — =
and the pdf of the maximum eigenvalue are also carried out. the I.|terature, b_emg only partially characterized iin ['m']'
leading to comlicated and not very tractable expressiams. |
|. INTRODUCTION fact, random matrix models for fading channels other than
The Rician fading modell [1] was proposed in order t&ayleigh or Rician are scarce in the literature [15-18].
characterize scenarios where there is a dominant signah-of In this paper, we revisit the random matrix model for
times called line-of sight (LOS) signal, whose power is much Rician fading model with Gamma-variate average matrix
stronger than the power of the rest of the signals received dwesented in [17], which we here directly call MIMO Rician
to reflections, widely referred to as scattering waves. shadowed for the first time. We show that the versatility ef th
With the aim of also including the large-scale propagatiomodel has not been exploited yet to the full extent possible,
effects, a Rician shadowed model was then presented gigce this model allows for a wide unification: i) for MIMO
Loo, where the LOS signal suffers from a perturbation in th@ommunications, it unifies the MIMO Rayleigh and MIMO
amplitude which follows a log-normal distributionl [2]. Rician models, and ii) for SISO communications, it unifies th
Although the model presented by Loo is validated witbne-sided Gaussian, Rayleigh, NakagamiNakagamig and
channel measurements, the statistical characterizafisnalh Rician, together with their general counterparts, i.e, the
model is not simple since the probability density functipdfy and»-x [19], the Rician shadowed![3] and they shadowed
is given in an integral form. Instead, a new Rician shadowd4l, 5]. Moreover, like its univariate counterpart, this nebdan
model was proposed in/[3], where the shadowing amplitudde also used when its parameters takes non-integer values.
follows a Nakagamin distribution. In fact, this new fading Although the pdf of the Gram channel matrix can be
model can be easily characterized without compromising theund in [17], we here present for the first time the mo-
accuracy when fitting real channel measuremerts [3]. ment generating function (mgf) of such model in closed-
Recently, the Rician shadowed proposed!|in [3] was geform. Moreover, we derive the cumulative density function
eralized under the name afp shadowed fading model.[4] (cdf) and pdf of the maximum eigenvalue distribution for a
or shadowed:-1: [5], and exhibits excellent agreement wheishadowing power matrix with equals eigenvalues, which are
compared to measured underwater acoustic |[4, 6] and bdbg respective distributions of the outage probability #mel
centric communications fading channels|[5, 7]. maximum output SNR pdf of a maximum ratio combining
In the literature, the statistical characterization of diere- system[[20] 21].
mentioned channel models is usually tackled on a single-lin This paper is structured as follows. In Section I, we
fashion, i.e., for a single-input single-output (SISO) cow introduce some preliminary results needed in our following
nication system. derivations. In Section Ill, the MIMO Rician shadowed model
However, since modern communication systems like Wi-k again introduced and we derive the mgf of the Gram channel
standards or 4G always use several antennas at both rierix. In Section IV, we prove the wide unification that
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model allows. In Section V, the cdf and pdf of the maximurwhere 1ﬁ1(~; ;) is the complex confluent hypergeometric

eigenvalue distribution of the random matrix model arevasti function of matrix argument [22].

for an shadowing with equals eigenvalues. In Section VI, we

present some numerical results. Finally, conclusions el
Throughout this paper, matrices are denoted in bold upper-

case. The matriX, symbolizes the x p identity matrix, while The MIMO Rician shadowed fading model for multi-

0, is thep xp null matrix. When the operatdr| is used around gntenna communications was presented_in [17] with the fol-
a matrix, it indicates the determinant of that square mat”?bwing channel matrix model

otherwise, it is the complex modulus. The mata is the
expectation matrix ofA. The conditional matrixA|B means H-H+= (5)
the matrix A given matrix B. The operator {r) represents ’

the matrix trace while etr) is the exponential of the matrix \yhere I ~ CN(0,1, ® X), andE*E ~ T, (m, M); matrix

—

trace. The super-inde¥ means the conjugate transpose angy represents the scattered componeBtss the LOS which

the symbol~ expressestatistically distributed aslf H is @ gyfers from shadowing andI takes into account the spatial

p x n matrix, we refer toH™H as its Gram matrix. Finally, ¢qrefation of the shadowing at the receiver side, since the

V() is the Vandermonde determinant aid > 0 indicates nymper of receiver antennas is lower than the number of

that matrix A is positive definite. transmit antennas. Notice that this does not imply any loss of
Il. PRELIMINARIES generality, since every Gram matrix will hawex n elements,

Definition 1: Noncentral Complex Wishart Matrix. with n = min(p, n), but we take this assumption for the sake

Then x n matrix W is a honcentral complex Wishart matrixof notational simplicity. _
with p degrees of freedomp(> n), covariance matri® and ~_1he pdf of the Gram channel matri¥/ :.HHH’ can be
noncentrality matrix®, i.e., W ~ W, (p, =, ©), if its pdf is  givenin terms of the well known_gamma—W}shart distribution
given by [22, eq. (99)] such asy ~ FWn(m_,]_o, 3, M) [17, Proposm.on 1].. Next, the
. pen mgf of the MIMO Rician shadowed model is derived.
:etr(—{J W)W Lemma 1Let Y ~ I'W,(m,p, X, M); then, its mgf is
Ly (p)[Z[P (1) given by
x etl(—@)oF (p; OX "W,

Ill. SYSTEM MODEL DEFINITION

fw(W)

- . o _ My (S) £ Eletr(YS)]
whereT',,(p) is the complex multivariate gamma function[22, S+ x-1-p MM
eq. (83)], andy Fi(+; -) is the complex Bessel hypergeometric _I-8+ M

function of matrix argument_[22]. Notice that the first line [B[P[E + M .
expression of the eq. (1) corresponds to the pdf of a central XL, == (=T M) IR (=S 2T T
complex Wishart matrix [22, eq. (94)]. (6)

Definition 2: Complex Gamma-variate Matrix. ) ) )
Then x n Hermitian positive-definite matriB is a complex Proof: The mgf is calculated from the next integration over

gamma-variate matrix, with scalar parameter(3 > n) the space of Hermitian positive definite matrices
and matrix parametef}, if B follows the complex gamma

distributionT",, (3, Q) [23, p. 254, p. 356], i.e, My (S) = / et(YS) - f(Y)(dY) @)
Bl e’ e
fB(B) = I, (B) eu(—1B). 2) wheref+ (Y) is the pdf of the matrixY, which depends on

the hypergeometri@ﬁl(-; ;). Eq. [@) is carried out with the
Felp of [23, eq. (6.1.20)], when expressing the hypergenmet
unction in series forml[22, eq. (87)]. Thus, a Binomial
hypergeometric function Fy(-;-) is obtained and expressed
in turn as a determinant [22, eq. (90)]. This result is new in
the literature to the best of our knowledge.

Notice that the complex gamma distributidn (8, ©2) can be

seen as the continuous extension of the central Wishart-dis

bution when its scalar parameter takes real positive values
Definition 3: Complex Gamma-Wishart Matrix.

Assume to have @ x n (¢ > n) matrix, H, defined as

H=H+H (3)
whereH ~ CN(0,1,0%) andH*H ~ T, («, ) are statisti- 1V. UNIFICATION OF POPULAR FADING MODELS THROUGH
cally independent. Then the Gram matdAx= H*H follows THE MIMO RICIAN SHADOWED
the gamma-Wishart distributiofW, (o, g, 3, €2) given by
[17,[18] In this section, we first show that the MIMO Rician shad-

et~ 31 A)|A 7" | owed model unifies a wide set of SISO models, ar_ld then

= we also show what MIMO models are included therein. The
Ln(g)|X]7|E-1 + Q[ (4)  MIMO Rician shadowed model parameters are underlined for
X 1F; S (ST + Q)7 IR TA), the sake of clarity.

fa(A)




TABLE | . .
THE CHANNELS DERIVED FROMMIMO RICIAN SHADOWED MODEL argument|[22, eq. (87)], where the first term has the unitevalu

and the rest of the terms depend on the eigenvalues of the
MIMO Channels (Distributions)| MIMO Rician Shadowed Parameters matrix arg‘_im?”t' which become zero whaf — 0,,. The
eq. [9), which is usually referred to as the Kummer relatimn f

MIMO Rayleigh M~ — 0, scalar confluent hypergeometric functions, is derived bggis
(Central Wishart) m=p the integral representation of the hypergeometric fumdas,
e eq. (6.2.4)].
MIMO R
IClén m — 0o On the other hand, the MIMO Rician case is derived by
(Noncentral Wishart) using the following limits

lim 1y (a;b;éX) — R (b;X) (10)

A. Unifying models for SISO communication 1
In the following lemma, we prove that the: shadowed, — lim [L, + EE_IM_”_’” =etr(-x'M') (11)

originally prqppsed by.[4], can be seen as a particular caseéh' [1I0) can be proved by expressing the hypergeometric
the MIMO Rician shadowed case. function in series|[22, eq. (87)]. The constant of the zonal
Lem;na 2 Let ;Y ~ FWn(mvp’z’M);ylf n =1, then . omial argument can be then extracted from it, so that
¥ ooy, M=oy andY — y. Lety =757, with 5 =ED]  the complex Pochhammer symbol vanishes when taking the
andy = E[yl,cheng follows a -y shadowed distribution it '£q . (17) can be derived by expressing the determinant
with = mo,r /(uos,) andp = p. as the eigenvalue produ§{;_, (1+ -1 X;)™"™, so that each

. _ H H 2 —1~—1
P_r200f- |sz1— 1, we can identifyoy® = mr™" 537 (1 + k), product component tends to the exponential function.
o =y (1 4+ k), p=p andm = m in the Gamma-

Wishart distribution and so we obtain thep shadowed V. MAXIMUM EIGENVALUE DISTRIBUTION
distribution originally presented irl|[4, eq. (4)]. Noticés@  The study of the maximum eigenvalue distribution depends
that eq. [(6) becomes|[4, eq. (5)]. on the eigenvalues of the matrixI. For a matrix M with

Very recently, thes-1 shadowed has been presented as tistinct eigenvalues, we find the resultlin/[17]. For a malvix
model which unifies the-x andn-p distributions [[24]. There- with two or more eigenvalues equals, it is not possible to use
fore, the MIMO Rician shadowed includes theu shadowed, the result in[17], since we have an indeterminate farm.

k-i, n-p, Nakagamim, Nakagamig, Rician, Rayleigh and Instead we should derive a new result thanks to the Lemma 2
one-sided Gaussian. in [25], which is based on applying multiple times L'Hopita
theorem.

. . However, we are going to focus here in the simplest case
The MIMO Rayleigh and MIMO Rician can be deduceqhere gl the eigenvalues & are equals. For that case, we

from the MIMO Rician shadowed fading model when itg,nose thaM is a diagonal matrix with equals elements.

parameters are set to specific values and/or taken to limfyig goes not imply any loss of generality since the solution
Table | summarizes these MIMO fading derivations. NOt'CSepends on the eigenvalues Bf and not necessarily the

that considering a MIMO:-4. or @ MIMO r-u shadowed does gaqowing has to be spatially uncorrelated, M, has not
not give a different distribution when compared to the MIMQ, pe a diagonal matrix.
Rician or MIMO Rician shadowed, respectively, since the sum Corollary 1: The joint distribution of the ordered eigen-
of noncentral Wishart gives another noncentral Wisharhwi(,a|ues¢1 <y < .. < bp OFY ~ TW,(m,p, S, M),
more degree of freedom. While a unification similar to thghens — 021, andM = 02,1, is given by

SISO case under the umbrella of the MIMO Rician shadowed S — )

model could be inferred for the Nakagami24], such con- fo(®) = f _ [Tic;(di — ¢5) __

. . ) . . a(P) =
nection is not possible whem > 1. Therefore, exploring this gg’”rn(n)rn(p) (1 4 0520&2)

B. Unifying models for MIMO communication

possibility is indeed an interesting and challenging peatl _ o2
Due to space constraints, we only outline the proofs which x [P "etr(—og @)1 Fy (m;p; %),
are required to obtain the results in Table I. On the one TSN

hand, the derivation for the MIMO Rayleigh fading model is (12)
carried out thanks to the next properties of the hypergedgenetvhere the confluent hypergeometric function is of one matrix
functions. When the casel~* — 0,, is considered, we apply argument andp = diag(¢; ).
] ~ Proof: Applying [22, eq. (88)], the integration over the
2{% pFy(ar.. . ap;by...bg;cX) =1. (8) space of unitary matrices of the pdf &f leads to the result.
Next, the cdf of the maximum eigenvalue is derived.
~ _ Lemma 3Let 7 = p+n, the cdf of the maximum eigenvalue
171 (a;0;X) = etr(X)1 Fy (a — a;0; —=X) = etr(X).  (9) of Y ~ W, (m,p, ¥, M), whenX = 631, andM = o3, 1L,,

In fact, the eq.[(8) can be handled by simply exploiting the?n be expressed as
series expression of the hypergeometric function of matrix Fy, (¢n) = CIX(é0)], (13)

Whenm = p, we use



where the constar@’ can be expressed as 0% PRt Ll

n(n{n 0.8
qn(n—1) [cr% (1 + 0'%0']2\/[)}

U%pnfn (n)fn (p) (1 + 0520&2

0.6 -

)nm' (14) """"" n:2,m:2,o;,2:8,0%:1

F, bn (é'n )
=
=~

T

----n:3,m:3,:7;12:8,:7%:1 -
Whenm < p, the entries of the xn matrix X (z) are given by —mn=2m=20,7=40,0% =1
the eq.[(Ib) at the bottom of the page, wheFg is the Gauss %2 . nedm e
hypergeometric function of scalar argument [26, eq. (15]1. 0 Liok o Monertarle : :
®,(-,-,-,-) is the confluent hypergeometric function of two 020 40 60 80 100 120 140 160 180
scalar variables [27, eq. (9.261.1)], af¢h) is the univariate on

gamma function. Whemn > p, no closed-form expression _

) btained . h ies in the followi Fig. 1. Comparison of the analytical and simulated cdf of mha@ximum
IS obtained, so we give the entries (:c) In the tollowing eigenvalue of the MIMO Rician shadowed model for differerdtrix dimen-

—n:3,m:3,:7;12:8,g22:4

integral form sions and various parameters. For all the cases4.
i—n z o P
(Y@} = [o2 (14 atot,)] { [ ey
0 VI. NUMERICAL RESULTS
—2
x1 F1 (m—z‘+1;p—z’+1;027‘)dy}. In order to validate our analytical results, we compare
1+ o503, them with Monte-Carlo simulations. Fig. 1 shows different

(16) simulated and theoretical curves of the cdf of the maximum

Finally, whenm = p, Y follows a central Wishart distribution, €19€nvalue when the shadowing has equals eigenvalues. We
so that its extreme eigenvalue distributions are giver ].[2 @PPreciate a perfect match between simulated and thealretic
Proof: The cdf of the maximum eigenvalue is derived b alues. _In turn, Fig. 2 allows to vahdgte our theoretical
integrating the joint eigenvalue distribution in eq. (15)ltiple  €XPr€SSION for the pdf of the.maxmum eigenvalue. .
times, such as indicated in [29, Appendix A]. As showrlid [30, 'nterestingly, the MIMO Rician shadowed model is more
eq. (2.9)], the hypergeometric function of one matrix argain flexible th_an other existing MIMO _models_. Fig. 3 shows
in eq. [12) can be expressed by a division of determinan@? evolution of the pdf of the maximum eigenvalue as the
which gives a product of two determinants in dg (12). Sind@rametenn grows, which prove that, whem — oo, the
the multiple integrals of a product of two determinants can (MIMO Rician shadO\_N(_ad maximum eigenvalue d|str|.but|on
expressed as a determinant of a single interal [31], welyinal€nds to the MIMO Rician one, which was presented_in [29)].
obtain the integral form of eql{16), which can be expressé(ge can also observe that we have a wide set of possible pdf

as a finite sum of confluent hypergeometric functions of W@ the maximum eigenvalue, which lay between the MIMO
scalar variables whem < p. Rician case and the Rayleigh case far> p. Also, when

Lemma 4Let T = p+n, the pdf of the maximum eigenvalue”” < p, we obtain pdfs which correspond to channels that

Y ~ TW,(m,p, =, M), whenX = 021, andM = 02,1 present a fading more severe than the Rayleigh case, often
can be e;pregs’ed’as ’ = M= called hyper-Rayleigh channels [33].

o (dn) =CX(60)] . VII. CONCLUSIONS- _
% tr{T_1(¢n)J(¢n)} U(en). (17) V\(e_ have shown tha_t.the_ MIM.O RIF:IQH shadowed model
exhibits a powerful unification, since it includes the MIMO

where the U-) is the unit step function and the entries of th®ayleigh and MIMO Rician, together with the SIS®
n x n matrix J(z) are given by the derivatives of the entrieg: shadowed,s-;, n-p, Nakagamim, Nakagamig, Rician,
of Y (x) with respect toz, i.e., by removing the integral in Rayleigh and one-sided Gaussian. Therefore, it gives more
eq. [16). flexibility to model any channel affected by different prop-

Proof: The proof is straightforward by using the derivativeagation conditions with a tractable statistic charactiin
formula of a determinant given by [32, eq. (9)]. Notice thahan existing alternatives. Furthermore, the mgf of thenGra
this can be also applied in the case of distinct eigenvalugsannel matrix and the cdf and pdf of its maximum eigenvalue
presented by [17] to obtain the other case pdf of the maximuor a shadowing with equal eigenvalues have been obtained in
eigenvalue. closed-form.

{Y(z)}:; = 0§p72j+2(1+0%012w) - F(T—i—j—i—l){Qfl(T—i—j+1,m—i+1;p—i+1;ﬁ)
1+o50y,
2 (15)

1 oy w )}
’1+U%0]2\4’1+0%012\4

T—1—]

B -2 \k
—e e > %@1(771—2'4-1,7—2'—]'—k—i—l,p—i—i—l
k=0 ’
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maximum eigenvalue for the last case of Fig. 1.
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Fig. 3. Evolution of the pdf of the MIMO Rician shadowed maxim
eigenvalue whenn grows. The other parameters are fixednte= 2, p = 4
and U% =1, withm - U;f = 40.
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