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Abstract—The driving behavior at urban intersections is
very complex. It is thus crucial for autonomous vehicles to
comprehensively understand challenging urban traffic scenes
in order to navigate intersections and prevent accidents. In
this paper, we introduce a stereo vision and 3D digital map
based approach to spatially and temporally analyze the traffic
situation at urban intersections. Stereo vision is used to detect,
classify and track obstacles, while a 3D digital map is used to
improve ego-localization and provide context in terms of road-
layout information. A probabilistic approach that temporally
integrates these geometric, semantic, dynamic and contextual
cues is presented. We qualitatively and quantitatively evaluate
our proposed technique on real traffic data collected at an urban
canyon in Tokyo to demonstrate the efficacy of the system in
providing comprehensive awareness of the traffic surroundings.

Index Terms—autonomous driving, scene understanding,
stereo vision, digital map, environment perception, localization

I. Introduction

Autonomous driving has gathered attention and tremendous
interest in the past few decades, with their implementation in
commercial cars seeming imminent. Generally, autonomous
driving on highways has been demonstrably successful till
now. But urban environments because of their complexity, still
pose a challenging problem. Challenges include narrow lanes,
sharp turns, congested intersections, obstacles, occlusions,
blocked streets, parked vehicles, pedestrians, bicyclists and
other moving vehicles. Traffic intersections are particularly
crucial in this regard. Intersections are called ‘accident-hot-
spots’ since misjudging the speed or intent of the surrounding
vehicles can easily lead to disastrous collisions. Thus in order
to ensure safe operation an autonomous vehicle should be able
to continuously and reliably perceive its environment from its
sensory inputs. For this purpose, it is evident that it is not
just enough to detect the surrounding obstacles across each
time step in isolation. The scene has to also be understood
by the driving system in reference to the road-lane structure,
ego-position, temporal context, as well as the driving task to
be performed.

Contribution: To achieve this aim, a vision and map-
based approach is proposed in this paper to comprehensively
understand the traffic situation at urban intersections. The
surrounding traffic participants are detected, tracked, lane
localized, while their spatial orientation and temporal behavior
are integrated with the road-lane structure.

Fig. 1. Understanding a typical urban traffic scene

Fig. 1 shows a typical example of traffic scene understanding
at an urban intersection in Tokyo. The figure illustrates stereo-
based free-space and vehicle detection and integration of their
trajectory with the road structure information included in the
3D digital map of the surrounding. The corresponding flow
diagram of the approach is shown in Fig. 2. The stereo
camera input images are utilized to generate Semantic Stixels
[1], which is basically a way to compactly represent the
obstacles present in a 3D scene with rectangles. An initial
ego-position estimate is obtained using [2], which is then
refined by matching 3D building map data with the 3D
stereo input evidence. Map matching also produces a heading
direction estimate of the ego-vehicle, which is important to
accurately localize surrounding vehicle trajectories. Once the
obstacles have been identified and clustered, their dynamics
are measured. Finally the Semantic Stixels clusters and their
dynamic cues are probabilistically integrated with the map
structure and ego-context to provide a 3D understanding of
the traffic scene.

II. Related Work

Recently, many research works have utilized vision systems
for comprehensive traffic situational awareness. A method
proposed in [3] detects and tracks surrounding vehicles while
assigning them to their corresponding lanes, and also identifies
a leader vehicle which is subsequently used for path planning.
However this approach does not make special allowances for
complex urban intersections as illustrated in Fig. 1. Another
mid-level scene understanding platform is provided by [4],
which uses stereo vision and models and tracks obstacles
as rectangles with a fixed pixel width. Since they can be
clustered together and tracked to impart the notion of objects,
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Fig. 2. Flowchart of the Proposed Approach

applications like [5] uses this approach to recognize dangerous
situations at roundabouts.
However, it cannot reason about the scene comprehensively

owing to a lack of context. An approach in [6] discusses
the scene understanding problem from the point of using
visual cues like semantic labels, scene flow and occupancy
grids to infer the scene geometry and traffic activities, but do
not accommodate prior map knowledge into their model. A
generative model is proposed in [7] to reason about high-level
scene semantics by stressing that there are limited, finite type
of traffic patterns in the real-world situations and they can be
learned. But the parameters learnt for a particular intersection
may not be easily translatable to other intersections. Our
approach builds on an extension of [1] and incorporates prior
map structure to reason effectively about the 3D scene.

III. Framework Of The Scene Understanding Approach
We formulate an approach to probabilistically understand

the 3D traffic scene at an intersection. The semantic and
geometric cues are obtained from stereo disparity generation
algorithms and deep learning based methods. The contextual
cues comprise of ego-position and heading direction estima-
tion which are facilitated by the particle filter based integration
of various input sensor data. The dynamic cues are obtained
from optical flow estimation techniques. These input evidences
are discussed in Section (III-A). Section (III-B) provides the
framework to fuse these measurements in order to gain a
higher-level understanding of the scene in terms of spatial
orientation and temporal behavior of the surrounding traffic
participants.

A. Input Evidence
1) Geometric and Semantic Cues of Obstacles: Firstly the

dense disparity images are estimated using DispNet [8]. In the
next step, a state-of-the-art and publicly available region-based
fully convolutional network (R-FCN) [9] is used to generate
pixel level probability scores for different semantic labels. To
integrate the geometric disparity cues with semantic labels,
a scene model presented in [1] is used to produce a set of
Semantic Stixels S𝑡 at time-step 𝑡. A single Stixel s ∈ S𝑡 is
defined by a five-dimensional vector s = [𝑢, 𝑣𝑏 , 𝑣𝑡 , 𝑑, 𝑙] . Here,
𝑢 is the image column and 𝑣𝑏 and 𝑣𝑡 mark the base and top

point of the Stixel in image coordinates. The disparity value
of the Stixel is 𝑑 and semantic class is 𝑙. Finally, the Semantic
Stixels are grouped together in order to join every Stixel with
a similar depth and semantic class into the same obstacle.
Density-based spatial clustering of applications with noise
(DBSCAN) [10] algorithm is chosen by our approach for Stixel
clustering since it does not require the predetermination of
the number of clusters and can discover clusters with arbitrary
shapes. This process assigns a cluster-id 𝑘 ∈ 1, ..., 𝐶 to each
Stixel in the current scene, where 𝐶 is the number of obstacles
at time 𝑡. An obstacle o ∈ O𝑡 contains a set of Stixels with the
same cluster-id and is defined as o = [{𝑠𝑖} : cluster-id(𝑖) = 𝑘].
The process of integrating semantic and geometric cues from
stereo image input data by Semantic Stixels and clustering
them to detect obstacles is illustrated in Fig. 3.

2) Vehicle Self-Localization and Context: Accurate vehicle
self-localization extremely important for scene understanding,
and is the key to motion planning and vehicle cooperation.
Positioning by Global Navigation Satellite Systems (GNSS)
suffer from NLOS propagation and multi-path effects in the ur-
ban canyon, while inertial sensors increasingly drift with time.
An integrated self-localization system, comprising of GNSS
receivers, onboard-cameras and inertial sensors, is proposed
in [2] for challenging urban city scenario. This method is
modified in this work to include heading-direction correction
of the ego-vehicle. In this paper, there are four main sources
of positioning, namely Global Navigation Satellite System
(GNSS), Inertial Navigation Sensor (INS), stereo-vision and
3D building map. The 3D building map construction has been
discussed in [2].
The construction of the 3D map requires the 2-dimensional

building footprint, which is provided by Japan Geospatial
Information authority, and the Digital Surface Model (DSM)
data, acquired from the Aero Asahi Corporation. The height
information of the building is included in the DSM data. The
2D map on the other hand, is generated from high resolution
aerial images provided by NTT-geospace. Particle filtering is

Fig. 3. Integration of Semantic and Geometric Cues for Obstacle Detection



Fig. 4. Estimation of ego-position and orientation. Initial ego-position estimate is found by particle filtering. 3D Building matching calculates orientation.

used to integrate multiple sensor information from GNSS,
INSS, vision and 3D map.
INS describes motion of vehicle via the velocity and the

heading direction. This information is used for particle propa-
gation in the fusion algorithm. GNSS gives global localization
measurement, which can estimate probability of particles.
Vision based lane detection perceives the relative distance
from the center of vehicle to left white line and right white
line. This distance is used to refine the weight of the particles.
In the particle filter, the system state is represented through a

set of samples in the inertial frame {x𝑡 = (𝑥𝑡north, 𝑥
𝑡
east)} 𝑗=1,..𝑛.

Suppose that a set of 𝑛 random samples from the posterior
probability distribution function 𝑝(G𝑡−1,V𝑡−1 |x 𝑗

𝑡 ) is available.
GNSS positioning result is G𝑡−1 and V𝑡−1 is the lane detection
result at time 𝑡 − 1 respectively. Then the weighted average of
all particles decides the localization result x𝑡−1 for the time
𝑡 − 1. The particle weights are ascertained by equations 1-2
and shown in Fig. 4, where N represents a normal distribution.
𝜎2
𝑙𝑎𝑛𝑒

and 𝜎2
𝐺𝑁𝑆𝑆

are empirically chosen.

𝑝(V𝑡 |x 𝑗
𝑡 ) = N(𝐷 𝑗

𝑡 ,left, 𝜎
2
lane) · N (𝐷 𝑗

𝑡 ,right, 𝜎
2
lane) (1)

𝑝(Glateral |x 𝑗
𝑡 ) = N(𝐷𝑡

GNSS,lateral, 𝜎
2
GNSS)

𝑝(Glongitudinal |x 𝑗
𝑡 ) = N(𝐷𝑡

GNSS,longitudinal, 𝜎
2
GNSS)

(2)

The joint posterior probability from which samples are
drawn is represented as equation 3 where, is the credibility
for GNSS measurement along the lateral direction. With the
particle states and positioning result at 𝑡 − 1, the particle filter
will exclude low-weighted particles, and recursively estimate
the localization result x𝑡 for the ego-vehicle at time 𝑡.

𝑝(G𝑡−1,V𝑡−1 |x 𝑗
𝑡 ) = {𝛾 · 𝑝(G𝑡 ,lateral |x 𝑗

𝑡 )+

(1 − 𝛾) · 𝑝(V𝑡 |x 𝑗
𝑡 )} · 𝑝(G𝑡 ,longitudinal |x 𝑗

𝑡 )
(3)

For estimating the heading direction \ of the ego-vehicle,
Normal Distributions Transform (NDT) [11] based map match-

ing is used. Equation 4 represents the spatial matching of the
building points from the digital map (shown in green color in
Fig. 4) and 3D Stixel representations of buildings (shown in
red color in Fig. 4). The idea is to probabilistically align these
two spatial vectors in order to recover the parameter \.
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𝑚east

ª®¬ = ©«
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𝑠𝑖𝑛\ 𝑐𝑜𝑠\

ª®¬ ©«
𝑏north

𝑏east

ª®¬ (4)

The mechanism of position and orientation estimation of the
ego-vehicle with respect to the 3D digital map by using
GNSS, INS, and stereo-vision information is illustrated in
Fig. 4. The black star-shaped symbol denotes the calculated
2D ego-position on the map and a red-dotted line emanating
from it represents its heading angle. This provides contextual
information for localizing other traffic participants on the map.

3) Dynamic Cues of Traffic Participants: Optical flow
provides strong cues for temporal scene understanding. In
this paper, the popular Lucas-Kanade method [12] is used to
calculate the optical flow vectors U𝑡−1,𝑡 for obstacles o ∈ O𝑡 ,
which was obtained in Section (III-A-1).

B. Integration

This section presents a probabilistic fusion technique to
temporally combine the semantic, geometric, contextual and
dynamic cues and output the digital map position and tracked
object-id for all surrounding traffic participants across different
time-steps to produce a holistic understanding of the traffic
scene.
The position state X́𝑡 of obstacle o with respect to the camera
frame of reference is defined as (X́north, X́east)𝑇 . In order to
obtain an analytic solution to the state, the state transition
model is assumed to be linear-Gaussian and is given by
equations 5-6. The initial velocity of all objects is set to around
6 𝑚/𝑠 empirically. For the consecutive frames, B𝑡 = B𝑡−1.
The measurement model is non-linear and is given by 7. The



process and measurement noise vectors ω and ν are assumed
to be Gaussian white noise.

X́𝑡 = A𝑡 X́𝑡−1 + B𝑡 +ω𝑡 (5)

A𝑡 =


1 0

0 1

 ,B𝑡 =


Δ𝑡 · 𝑣north,𝑡
Δ𝑡 · 𝑣east,𝑡

 (6)

𝑝(Z𝑡 |X𝑡 ) = 𝑝(O𝑡 ,U𝑡−1,𝑡 , x𝑡 |X𝑡 ) (7)

An obstacle o ∈ O𝑡 at time-step 𝑡, is assigned the measured
image coordinates (𝑢center, 𝑣𝑇 ,center)𝑡 and disparity value 𝑑center
from its Stixel cluster. Equation 8 relates the measured obstacle
positions at time step 𝑡 and 𝑡 − 1 with the optical flow.

(𝑢center, 𝑣𝑇 ,center)𝑡 = (𝑢center, 𝑣𝑇 ,center)𝑡−1 + U𝑡−1,𝑡 (8)

Assuming a pin-hole camera model with baseline 𝑏′ and focal
length 𝑓𝑢 [13], the equation for the measurement update at
time 𝑡 is: 

𝑢center

𝑑center

 𝑡 = ©« 1
𝑋 ′
north


𝑋 ′
east · 𝑓𝑢
𝑏′ · 𝑓𝑢

ª®¬𝑡 + ν (9)

An Extended Kalman Filter (EKF) [14] is used to obtain
X́𝑡 , the filtered position of o ∈ O𝑡 . The final position of the
surrounding traffic participants on the digital map is obtained
according to the following equation:

X́𝑡 = R𝑦 (\)X́𝑡 + x𝑡 (10)

Here R𝑦 represents the rotation matrix around 𝑦-axis. The
temporal association of observation Z𝑡 to an object o at time 𝑡−
1 is based on scoring the Euclidean distance to the prediction.

IV. Experimental Evaluation
The purpose of the experiment is to evaluate our presented

approach on real traffic data collected at an urban intersection
in Tokyo. In order to evaluate the 3D scene understanding
achieved by our proposed technique, we select single-object
based tasks as well as a final total scene understanding task that
integrates everything. Average accuracy of object detection,
semantic labeling, and self-localization are some popular tasks
considered for evaluation. We also measure motion states,
trajectory, lane information and positioning information of

Fig. 5. Experimental setup to collect real traffic data

TABLE I
QUANTITATIVE EVALUATION

Object Detection Detection Rate False Positive
Frames with
False Positive

Stixel World [4] +
DBSCAN Clustering 87.2% 21.6% 114

Our Method 92.4% 0.05% 27

Object Tracking MT ML

Our Method 42.1% 10.3%

Self-Localization
Lane-Localization Rate of

Surrounding Traffic

Without building matching [2] 77.3%

Our Method 94%

surrounding traffic participants from the ego-vehicle. The
final task is to integrate both object detection and road map
layout to recognize and localize all objects in the road structure
across different time frames.

A. Experimental Setup
The experimental setup is shown in Fig. 5. U-blox EVK-

M8 GNSS model was used to receive the GPS signals and
was mounted on top of the vehicle. Stereo camera is made
up of two Point Grey monocular cameras with the baseline of
400mm and set on top of the vehicle facing towards the front.
The baseline of the camera is flexible from 300mm to 900mm.
For urban city scene, the baseline is set to be 400mm in order
to detect both near and far objects. One point grey monocular
camera is set inside the vehicle as front view camera to record
the ground truth trajectory. CAN data and MEMS-gyroscope
data are taken from inertial sensors installed in the vehicle.
The stereo data obtained has resolution 15fps, 1024 × 768
pixel.

B. Experimental Location
The experiment is performed in Hitotsubashi area of Tokyo,

where the density and height of buildings is typical for an
urban canyon.

C. Quantitative Evaluation
In order to quantitatively evaluate our approach, an 800

frame video at the intersection is chosen, comprising of 80
vehicle sequences. Obstacle detection rate, surrounding vehicle
localization rate and tracking metrics Mostly Tracked (MT)
and Mostly Lost (ML) [15] are computed as shown in Table
I. In the absence of exact ground truth trajectory, we calculate
the lane-localization rate of the surrounding obstacles detected
in order to estimate the ego-positioning accuracy.
We compare our results to two techniques: results of the

DBSCAN clustered Stixel World approach described in [4]
and the particle filter based positioning method described in
[2] without 3D map matching.
Our results show that object detection based on clustering

semantic stixels together with digital map reduces the frames



Fig. 6. Qualitative results of the evaluated method. Integration of object segmentation and road map layout for spatial and temporal 3D scene understanding
from ego-vehicle platform is demonstrated. The top row shows the obstacle semantic segmentation. The second row localizes the trajectory of the detected
obstacles over tine on a map. The third row plots their velocities with respect to the age of their corresponding trajectories.

with false positives (FP) drastically. Our comparison also
shows that the use of digital map for heading direction estima-
tion helps to reduce the lane-localization error of surrounding
vehicles, making the understanding of the system more robust.
Tracking results are also presented to describe the temporal
correspondence accuracy. We conclude that 3D digital maps
help to considerably enhance the scene understanding capabil-
ities of a purely vision based system.

D. Qualitative Evaluation
Fig. 6 illustrates the qualitative results of the proposed

method on four example sequences. The top row shows the
Semantic Stixel segmentation results of the input images.
Accurate and compact representation of the surrounding traffic
participants is obtained. The second row shows the integrated
spatial and temporal states of the detected obstacles, while
their corresponding trajectories are localized on the digital
map. The self-localized ego-vehicle is depicted in black.
For most sequences the vehicles are assigned to the correct
lanes. The vehicle-to-trajectory correspondences are correctly
maintained over time. The measured motion state of the
surrounding traffic with respect to the age of the trajectory is
shown in the third column. This velocity profile is important
for the ego-vehicle in order to distinguish between passing and
turning cars at the intersection. Overall, an effective perception
of the surrounding traffic environment is achieved by this
approach.

V. Conclusion

In this work, we presented a stereo vision and digital map
based framework for robust self-localization and accurate 3D
urban traffic scene perception. Additionally a probabilistic
fusion of geometric, semantic, dynamic and contextual cues
is presented to reason about the scene at a higher level and
account for uncertainty in sensor information. Furthermore,
precise heading direction estimation of ego- vehicle at turning-
intersections and their influence on surrounding traffic lo-
calization is addressed. The proposed approach can be used
at an urban intersection to answer questions such as: where
the ego-vehicle is located on a given digital map; where the
surrounding vehicles are located; which car is driving on
which street; what their trajectory history is and what the
current traffic states are.
Low-cost, close-to-production sensors are leveraged to

tackle the challenging accident-prone urban intersection sce-
nario. We quantitatively evaluate surrounding obstacle detec-
tion, positioning and temporal correspondence on real urban
traffic data and achieve high performance. Qualitative evalua-
tion depicts the integration of the detected obstacles with the
road map layout and is shown to provide comprehensive situ-
ational awareness. In the future, we plan to use the measured
velocity information and lane context of the detected traffic
participants to probabilistically infer their intent and predict
their maneuver.



References
[1] Lukas Schneider, Marius Cordts, Timo Rehfeld, David Pfeiffer, Markus
Enzweiler, Uwe Franke, Marc Pollefeys, and Stefan Roth, “Semantic
stixels: Depth is not enough,” in 2016 IEEE Intelligent Vehicles
Symposium (IV), 2016, pp. 110–117.

[2] Yanlei Gu, Li-Ta Hsu, and Shunsuke Kamĳo, “Passive sensor integration
for vehicle self-localization in urban traffic environment,” Sensors
(Basel, Switzerland), vol. 15, pp. 30199–30220, 12 2015.

[3] Chunzhao Guo, Kiyosumi Kidono, and Masaru Ogawa, “Vision-based
identification and application of the leader vehicle in urban environ-
ment,” in 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, 2015, pp. 968–974.

[4] David Pfeiffer and Uwe Franke, “Modeling dynamic 3d environments
by means of the stixel world,” IEEE Intell. Transport. Syst. Mag., vol.
3, pp. 24–36, 09 2011.

[5] Maximilian Muffert, Timo Milbich, David Pfeiffer, and Uwe Franke,
“May i enter the roundabout? a time-to-contact computation based on
stereo-vision,” in 2012 IEEE Intelligent Vehicles Symposium, 2012, pp.
565–570.

[6] Andreas Geiger, Martin Lauer, Christian Wojek, Christoph Stiller, and
Raquel Urtasun, “3d traffic scene understanding from movable plat-
forms,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 36, no. 5, pp. 1012–1025, 2014.

[7] Hongyi Zhang, Andreas Geiger, and Raquel Urtasun, “Understanding
high-level semantics by modeling traffic patterns,” in 2013 IEEE
International Conference on Computer Vision, 2013, pp. 3056–3063.

[8] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel
Cremers, Alexey Dosovitskiy, and Thomas Brox, “A large dataset to
train convolutional networks for disparity, optical flow, and scene flow
estimation,” 06 2016, pp. 4040–4048.

[9] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster r-
cnn: Towards real-time object detection with region proposal networks,”
in Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds. 2015, vol. 28,
Curran Associates, Inc.

[10] Soomok Lee, Daejin Hyeon, Gikwang Park, Il-joo Baek, Seong-Woo
Kim, and Seung-Woo Seo, “Directional-dbscan: Parking-slot detection
using a clustering method in around-view monitoring system,” in 2016
IEEE Intelligent Vehicles Symposium (IV), 2016, pp. 349–354.

[11] Peter Biber and Wolfgang Straßer, “The normal distributions transform:
A new approach to laser scan matching,” 11 2003, vol. 3, pp. 2743 –
2748 vol.3.

[12] Steven Beauchemin and John Barron, “The computation of optical
flow.,” ACM Computing Surveys (CSUR), vol. 27, pp. 433–466, 09
1995.

[13] Zhencheng Hu, F. Lamosa, and K. Uchimura, “A complete u-v-disparity
study for stereovision based 3d driving environment analysis,” in
Fifth International Conference on 3-D Digital Imaging and Modeling
(3DIM’05), 2005, pp. 204–211.

[14] Uwe Franke, Clemens Rabe, Hernán Badino, and Stefan Gehrig, “6d-
vision: Fusion of stereo and motion for robust environment perception,”
08 2005, vol. 3663, pp. 216–223.

[15] Yu Xiang, Alexandre Alahi, and Silvio Savarese, “Learning to track:
Online multi-object tracking by decision making,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), December
2015.


	I Introduction
	II Related Work
	III Framework Of The Scene Understanding Approach
	III-A Input Evidence
	III-A1 Geometric and Semantic Cues of Obstacles
	III-A2 Vehicle Self-Localization and Context
	III-A3 Dynamic Cues of Traffic Participants

	III-B Integration

	IV Experimental Evaluation 
	IV-A Experimental Setup
	IV-B Experimental Location
	IV-C Quantitative Evaluation
	IV-D Qualitative Evaluation

	V Conclusion
	References

