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Abstract—Future mobile networks are converging toward het-
erogeneous multi-tier networks, where various classes of base
stations (BS) are deployed based on user demand. So it is quite
necessary to utilize the BSs resources rationally when BSs are
sufficient. In this paper, we develop a more realistic model that
fully considering the inter-tier dependence and the dependence
between users and BSs, where the macro base stations (MBSs)
are distributed according to a homogeneous Poisson point process
(PPP) and the small base stations (SBSs) follows a Matern cluster
process (MCP) whose parent points are located in the positions
of the MBSs in order to offload the users from the over-loaded
MBSs. We also assume the users are just randomly located in the
circles centered at the MBSs. Under this model, we derive the
association probability and the average ergodic rate by stochastic
geometry. An interesting result that the density of MBS and the
radius of the clusters jointly affect the association probabilities in
a joint form is obtained. We also observe that using the clustered
SBSs results in aggressive offloading compared with previous
cellular networks.

Index Terms—Heterogeneous cellular networks, cell associa-
tion, offloading, Matern cluster process, stochastic geometry.

I. INTRODUCTION

The fact that wireless mobile networks are facing explosive

data traffics, especially video streams, pushes us to find

complementary alternatives to ease the pressure of MBSs.

Under this background, heterogeneous network came into

being with the deployment of multiple classes of BSs that

differ in terms of maximum transmit power, physical size,

ease-of-deployment and cost [1]. The deployment of multi-

class BSs can not only compensate for the coverage loopholes

of the macroBSs, but also transfer the over-load traffic from

MBSs to other low-power BSs, named cellular offloading, in

order to relieve the macro BSs’ service pressure coming from

the increasing user demands [2]. From the perspective of users

in such heterogeneous network, user association plays a pivotal

role in cellular offloading and enhancing the load balancing,

the spectrum efficiency, and the energy efficiency of networks

[3][4][5].

Recently, many works have been done to analyze perfor-

mance metrics (such as SINR distribution, the coverage/outage

probability and average rate) in HetNet using the typical user

methodology in stochastic geometry [6-10] in comparison with

traditional cellular network. Further, researchers derive the

association probability in HetNet, a key metric on offloading

[6], [9] representing the probability that a typical user is

associated with a certain tier. Specifically, literature [1], [6],

[9] derived different performance metrics (e.g., the coverage

probability, average rate) under their respective system model.

There are subtle differences among these models, but they

all assume that the locations of BS follow a homogeneous

Poisson point process(PPP) for single-tier network, or mul-

tiple tiers of mutually independent PPPs for heterogeneous

cellular networks (HCNs). In addiction, independent of the

BSs’ deployment, the users distribution also follow HPPP.

Practically, human activities are hardly completely random

and trend to be clustered. Although the assumption of PPP

makes the analysis tractable, it dose not seem realistic in

the case of non-uniform user distributions. And the network

operators trend to deploy the SBSs at where more people

aggregate (in order to offload the pressure of MBS), we

expect that the locations of SBSs to be clustered. Several

models of cluster process are described in detail in [8]. Poisson

cluster processes (PCP) result from homogeneous independent

clustering applied to a homogeneous Poisson process. The

parent points form a homogeneous Poisson process while

the daughter points of a representative cluster are random in

number and are scattered independently with identical spatial

probability density around the origin. We further focus on

one of more specific models for the representative cluster,

namely Matern cluster processes (MCP). In MCP, the number

of points in the representative cluster has a Poisson distribution

with the mean c. The points of the representative cluster

are independently uniformly scattered in the ball where R
is the radius. So the fact that BS deployment is strongly

associated with user activities leads to dependence between

MBSs and SBSs and dependence between the BSs and the

users. In [10], it proposes a HCN model in which the MBSs

and the SBSs following a PPP and an independent Matern

cluster process respectively, aiming at increasing capacity in

hotspots. Although the model considers the clustering property

of SBSs, but doesn’t take the dependence between MBSs and

SBSs into consideration. Literature [11] further extends the

model by using Poisson cluster process (PCP) but PCPs are

independent in different tiers without considering intra-tier

dependence. Moreover, nearly all works assume that the users

are uniformly distributed in the whole region, so they do not

consider the dependence between the users and the BSs either.

Thus, the inter-tier dependence (between MBSs and SBSs) and

the dependence between BSs and users have not been studied

intensively. However, we know that the original purpose of
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HetNet is to satisfy the non-uniform user demand, the two

kinds of dependence above mentioned shouldn’t be neglected.

Therefore, we focus on the association and offloading in

the two-tier dependent HetNet to ease the pressure of heavily

loaded MBSs. The contribution of this paper can be summa-

rized as:

1. A novel analytical two-tier HetNet model is proposed

where MBSs follow a homogeneous PPP and SBSs follow

a Matern cluster process whose parent points are exactly the

locations of MBS. The users follow uneven distribution in

the whole study region, but they are uniformly distributed in

the circles centered at MBSs. Under this model, we derive

the association probability and the average ergodic rate using

stochastic geometry. Our difficulty lies in the distribution of

desired distance between the clustered SBSs and the typical

user constraint in the union of the clusters compared with

the previous works. Furthermore, we obtain some interesting

results by experiment evaluation.

2. On the above basis, we propose a clustering offloading

scheme by deploying SBSs around the heavily loaded MBSs.

We also interestingly discover that the density of MBS and

the radius of the cluster can jointly control the association

probabilities.

II. SYSTEM MODEL

The system model in this paper considers up to a two-tier

deployment of the BSs. The locations of the first-tier MBSs

follow a homogeneous PPP Φm = {x1, x2, · · ·} ⊂ R2 of

density λm, and the locations of the second-tier SBSs follow a

Matern cluster process (MCP) Φs = {y1, y2, · · ·} ⊂ R2 whose

parent point process is exactly the first-tier homogeneous PPP

Φm, and the daughter points are uniformly scattered on the

ball of radius R centered at each parent point, assuming that

the average numbers of SBS in each cluster is c, then the

density of the SBSs in the whole plane is λs = λmc. Each

tier has a different transmit power Pi, i = m or s.

For the user distribution, the users in the network are

assumed to be distributed with density λu within the circles

of radius R centered at each location of the MBSs and with

density λu
′ outside the circles λu > λu

′. But we just focus

on the users in the circles. Without loss of generality, we

randomly choose a typical user located in the origin.

For the notational simplicity, we denote k ∈ {m, s} as the

index of the tier with which a typical user associated. The

downlink desired and interference signals both experience path

loss, and each tier we allow different path loss exponents

{αj}j=m,s,α > 2, and Rayleigh fading characterize the

channel fading, i.e.,hi,j ∼ exp(1). Every BS in the same

tier uses the same transmit power. We thus denote Xk as

the distance between the serving BS and the typical user. We

denote {Dj}j=m,s as the distance of the typical user from the

nearest BS in the jth tier. In the scenario, a user is allowed

to access any tier’s BSs because of open access. We consider

a cell association policy based on maximum averaged biased

received power(ABRP), with Bj denoting the association bias

corresponding to the jth tier. A user will associate with the

BS that results in the highest biased averaged received signal

strength. As the BSs belonging to the same tier have the

same transmit power, it means a user will choose its closest

MBS or SBS as its serving BS. Then we will use association

probability to measure the traffic offloading.

Fig. 1. Example of the two-tier HetNet comprising a mixture of macro and
small BSs: a high-power MBS is overlaid with denser and lower power SBSs
(black dot). The radius of the cluster is R and the black square represent the
typical user.

III. ANALYSIS PROCESS

As mentioned above, we consider a cell association based

on maximum biased-received-power, where a mobile user is

associated with the strongest BS providing the highest long-

term averaged biased received power at the user. The ABRP

is

Pr,j = P j(Dj)
−αjBj (1)

This is a long-term averaged result and fading is averaged out,

so the formula (1) doesn’t contain fading h . However, note

that the SINR model of the user associated with a BS includes

fading and it will effect the distribution function of the SINR.

Therefore the SINR of a typical user at a random distance x
from the serving BS in kth-tier is

SINRk(x) =
Pkhkx

−αk

I +N0

I =
∑

i=m,s

Ii =
∑

i=m,s

∑

j∈Φi\BSk

Pjhj |Yji|
−αj (2)

Where |Yji| is the distance from the BS in tier i to the origin.

N0 is the thermal noise which is usually a constant and it can

be neglected compared with the aggregated interference in the

interference limited system.

A. Distribution of the Desired Distance

When the location of the typical user is randomly chosen

from the entire plane, the CCDF of the desired distance of an

MCP was presented in [11] as

P[Ds > r] = exp(−πλpcr
2) (3)



The CCDF of the desired distance in a PPP with the density

λm is given by

P[Dm > r] = exp(−πλmr2) (4)

While in the model we proposed, the location of the typical

user is randomly chosen from the union regions of the balls of

radius R centered at the parent points of the MCP. Therefore,

we should calculate the CCDF of the desired distance condi-

tioning on the event that the typical user is located within the

union regions of the balls. First, the probability that the typical

user is in the circles is as following based on Null Probability

Theorem:

P[Dm ≤ R]

= 1−P[Dm > R] = 1− exp(−πλmR2)
(5)

And the conditioned CCDF of the desired distance in the first-

tier PPP is

P[Dm > r |Dm ≤ R ] =
P[r < Dm ≤ R]

P[Dm ≤ R]

=
1− exp(−πλm(R2 − r2))

1− exp(−πλmR2)

(6)

The PDF and CDF of the distance between any two points in

a circle are [12]

fL(l) =
2l

R2
(
2

π
cos−1(

l

2R
)−

l

πR

√

1−
l2

4R2
), 0 < l < 2R

FL(l) = 1 +
2

π
(
l2

R2
− 1)cos−1(

l

2R
)

−
l

πR
(1 +

l2

2R2
)

√

1−
l2

4R2

The nearest distance between two points in a circle can be

expressed as

Lmin = min(L1, L2, · · · , LN−1)

Moreover, the CDF of the minimum values of multiple inde-

pendent identically distributed random variables is

FLmin
= 1− [1− FL(l)]

N−1

Then taking the derivative of FLmin
, we can obtain PDF of

Lmin

fLmin
= (N − 1)[1− FL(l)]

N−2fL(l) (7)

In our proposed model, there are c + 1 points scattering

in a cluster uniformly. So the mapping relation is N =
c + 1, Lmin = Ds, l = r. Therefore, PDF of the desired

distance is derived as following:

fDm(r) =
d{1− P[Dm > r |Dm ≤ R ]}

dr

=
2πλmr exp(−πλm(R2 − r2))

1− exp(−πλmR2)

(8)

fDs(r) = c 2r
R2 (

2
π cos

−1( r
2R )− r

πR

√

1− r2

4R2 )×

[ r
πR (1 + r2

2R2 )
√

1− r2

4R2 − 2
π (

r2

R2 − 1)cos−1( r
2R )]c−1

(9)

B. Association Probability

Based on our assumption,each user will connect to the BS

that provides the highest ABRP.

Lemma 1. The macro-tier association probability can be

expressed as

Am = P
{

Pm(Dm)
−αmBm > Ps(Ds)

−αsBs

}

= EDm [P{Pm(Dm)−αmBm > Ps(Ds)
−αsBs}]

= EDm [P{Ds > (Pm

Ps
· Bm

Bs
)−

1

αs · (Dm)
αm
αs }]

=
∫ R

0 P
{

Ds > (Pm

Ps
· Bm

Bs
)
− 1

αs · r
αm
αs

}

·fDm(r)dr

= 2πλm

1−exp(−πλmR2)×
∫ R

0 r exp{−πλpc(
Pm

Ps
· Bm

Bs
)
− 2

αs · r
2αm
αs − πλm(R2 − r2)}dr

= 2πλm exp(−πλmR2)
1−exp(−πλmR2) ×

∫ R

0
r exp{−πλpc(

Pm

Ps
· Bm

Bs
)
− 2

αs · r
2αm
αs + πλmr2)}dr

(10)

As = P
{

Ps(Ds)
−αsBs > Pm(Dm)−αmBm

}

=

∫

2R

0

P

{

Dm > (
Ps

Pm

·
Bs

Bm

)
−

1

αm
· r

αs
αm

}

·fDs(r)dr

= c

∫

2R

0

exp{−πλm(
Ps

Pm

·
Bs

Bm

)
−

2

αm
· r

2αs
αm }×

[
r

πR
(1 +

r2

2R2
)

√

1−
r2

4R2
−

2

π
(
r2

R2
− 1)cos−1(

r

2R
)]c−1

×
2r

R2
(
2

π
cos−1(

r

2R
)−

r

πR

√

1−
r2

4R2
)dr

(11)

If {αm, αs} = α, the association probability of macro-tier
and smallBS-tier is simplified to

Am =
{1− exp[−πλmR2(c(Pm

Ps
· Bm

Bs
)
−

2

α−1)]} · exp(−πλmR2)

[c(Pm
Ps

· Bm
Bs

)
−

2

α−1] · [1− exp(−πλmR2)]
(12)

As = c
∫

2R

0
exp{−πλm( Ps

Pm
· Bs
Bm

)
−

2

α · r2}

×[ r

πR
(1 + r

2

2R2 )

√

1− r2

4R2 − 2

π
( r

2

R2 − 1)cos−1( r

2R
)]c−1

× 2r

R2 (
2

π
cos−1( r

2R
)− r

πR

√

1− r2

4R2 )dr

(13)

From Lemma 1, we observe that the density of the MBSs

λm (also the density of the parent point process λp due to

the location coincidence of the MBSs and the parent points of

the MCP ) and the radius of the cluster R always appear in

the same form of λmR2. No matter how λm or R varies, if

the value of λm maintain constant, Am remains unchanged as

far as the typical user concerned. In the section of numerical

results, we will discuss the specific relationship of these

parameters. We further observe that the BS density is more

dominant in determining Ak than BS transmit power or bias

factor(when α > 2).

The association probability of each tier is a very useful

index in analyzing the network performance. It can directly

represent the percentage of the users served by certain tier



from the total users. So the average number of users associated

with a BS in the kth tier is given as

Nk =
Akλu

λk
, k = m, s (14)

Lemma 2. The PDF of the distance Xk between a typical

user and its serving BS is

fXm(x) =
2πλm exp(−πλmR2)

Am(1− exp(−πλmR2))
x

× exp{−πλpc(
Pm

Ps
·
Bm

Bs
)−

2

αs · x
2αm
αs + πλmx2}

(15)

fXs(x) =
c

As

exp{−πλm(
Ps

Pm

·
Bs

Bm

)
−

2

αm · x
2αs
αm }×

[
x

πR
(1 +

x2

2R2
)

√

1−
x2

4R2
−

2

π
(
x2

R2
− 1)cos−1(

x

2R
)]c−1

×
2x

R2
(
2

π
cos−1(

x

2R
)−

x

πR

√

1−
x2

4R2
)

(16)

Proof: We utilize the similar procedure of derivation as the

Lemma 3 in [9], and the difference between the two derivation

procedures is the integral upper limits. Our integral upper

limits are R and 2R corresponding to the macro-tier and

smallcell-tier respectively, while in [9] it is positive infinity.

So the formulas also present similar form.

C. Average Ergodic Rate

We derive the average ergodic rate of a typical randomly

located user, and it is given as [13][14]

ℜ =
∑

k

Akℜk, k = m, s (17)

We denote ℜk as the average ergodic rate of a typical user

associated with the kth-tier, Ak is the association probability

of the kth-tier which is derived in Lemma 1. And we ignore the

thermal noise in the SINR model in the following derivation.

Theorem 1. The average ergodic rates of overall network is

ℜ =
2πλm exp(−πλmR2)

(1 − exp(−πλmR2))
×

∫

R

0

∫

∞

0

x · exp{−π(

∑

j=m,s

x2/α̂jCj(t) + λs(P̂sB̂s)
2/αsx2/α̂s − λmx2}

dtdx+ c

∫

2R

0

∫

∞

0

exp{−π(
∑

j=m,s

x2/α̂jCj(t)

+ λm(P̂mB̂m)2/αmx2/α̂m )}

× [
x

πR
(1 +

x2

2R2
)

√

1 −
x2

4R2
−

2

π
(
x2

R2
− 1)cos−1(

x

2R
)]c−1

×
2x

R2
(
2

π
cos−1(

x

2R
) −

x

πR

√

1 −
x2

4R2
)dtdx

(18)

where

λs = λpc, λp = λm

and

Cj(t) = λj P̂
2/αj

j (B̂
2/αj

j + Z(et − 1, αj , B̂j)) (19)

Proof: the average ergodic rate of the macro-tier is

ℜm = Ex[ESINRm [ln(1 + SINRm(x))]]

=

∫ R

0

ESINRm [ln(1 + SINRm(x))] · fXm(x)dx

=

∫ R

0

∫ ∞

0

P[ln(1 + SINRm(x)) > t]dt · fXm(x)dx

=

∫ R

0

∫ ∞

0

P[hm > (et − 1) · IPm
−1xαm ]dt · fXm(x)dx

=

∫ R

0

∫ ∞

0

LIm((et − 1)Pm
−1xαm)

· LIs((e
t − 1)Pm

−1xαm)dt · fXm(x)dx
(20)

With the similar method, we can obtain the as

ℜs =

∫ 2R

0

∫ ∞

0

LIm((et − 1)Ps
−1xαs)

· LIs((e
t − 1)Ps

−1xαs)dt · fXs(x)dx

(21)

Where LIi(z) is the laplace transform of Ii. For clarity of

exposition, we define

P̂i =
Pi

Pk
, α̂i =

αi

αk
, B̂i =

Bi

Bk
(22)

Which respectively represent transmit power ratio, path loss

exponent ratio and bias ratio of interering BS to the serving

BS. And the laplace transform is

LIi((e
t − 1)Pk

−1xαk)

= exp{−πλiP̂
2/αi

i x2/α̂iZ(et − 1, αi, B̂i)}
(23)

with

Z(et − 1, αi, B̂i)

= (et − 1)
2

αi

∫ ∞

(B̂i/(et−1))
2/αi

1

1 + uαi/2
du

(24)

Plugging (23) into (20) and (21), we obtain the average

ergodic rate of each tier. Furthermore, plugging(10)(11)(20)

and (21) into (17), we achieve the average ergodic rate of

entire network.

IV. NUMERICAL RESULTS AND DISCUSSION

In Fig. 2, we obtain the average ergodic rate using Monte

Carlo simulations for comparing the two-tier PPPs and our

proposed hybrid model (PPP+MCP). Our simulation param-

eters are as follows: (Pm, Ps) = (53, 33) dBm, α =
4, Bm/Bs = 1, λm = 1/(π5002) . It shows the average

ergodic rate versus the intensities of SBS λs. The blue line

and red line are the average ergodic rate of PPPs and our

proposed model, respectively. From the numerical results from

the observations that for MCP, a large number of daughter

nodes within each cluster achieve a higher ergodic rate than

PPP because of the non-uniform distribution of users.

In Fig. 3, we explore the relation between association

probability and bias ratio where the increasing ratio means



SBS Density
4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 E
rg

od
ic

 R
at

e[
na

ts
/s

ec
/H

z]

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

PPP+PPP
PPP+MCP

Fig. 2. Average ergodic rate compari-
son for varying SBS density

B1/B2
5 10 15 20 25 30 35 40 45 50

A
ss

oc
ia

tio
n 

pr
ob

ab
ili

ty

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
Macro-tier
Smallcell-tier

Fig. 3. Effect of association bias ratio
on association probability

Radius
0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ss

oc
ia

tio
n 

pr
ob

ab
ili

ty
 w

ith
 m

ac
ro

-t
ie

r

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

LamdaMBS=1/(2*pi*5002)

LamdaMBS=1/(pi*5002)

LamdaMBS=2/(pi*5002)

Fig. 4. Effect of radius of cluster on
MBS association probability

Radius
0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ss

oc
ia

tio
n 

pr
ob

ab
ili

ty
 w

ith
 s

m
al

lc
el

l-t
ie

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LamdaMBS=1/(2*pi*5002)

LamdaMBS=1/(pi*5002)

LamdaMBS=2/(pi*5002)

Fig. 5. Effect of radius of cluster on
SBS association probability

the power amplification of MBS is larger than that of SBS.

Higher bias ratio leads to the consequence that more user are

offloaded from SBS to MBS. We can flexibly control the load

of each tier by tune the biases. From the above figure, we

also can see the association probability with SBS-tier is much

higher than that with macro-tier. This means the typical user

is more likely to connect to a SBS instead of a MBS, i.e., the

users can be offloaded from MBSs to SBSs.

In Fig. 4 and Fig. 5, we can see that when the density

of MBS is fixed, the association probabilities increase with

increasing radius of clusters. This is because the SBSs and

the users are distributed uniformly throughout the entire plane

with the increasing radius. When the radius increases to a

certain value, the users can achieve an equivalent uniform

distribution, and the association probabilities will be constant.

Moreover, they also show that the association probabilities

under larger density reach a stable value at a faster speed,

which validates the formula (12) in which the density of the

MBS and the radius R always occur in the integrated form of

λmR2 .

V. CONCLUSION

In this paper, we presented a model considering both the

inter-tier and user-BS dependence to analyze the effects of

offloading in HetNet. The association probabilities and average

ergodic rate were derived. An interesting result that the density

of MBS and the radius of the clusters jointly affect the associa-

tion probabilities is obtained. Simulation and numerical results

showed that the proposed model can aggressively offload the

mobile users from MBSs by bias adjustment.

VI. ACKNOWLEDGEMENT

The work was supported by National Nature Science Foun-

dation of China Project (Grant No. 61471058), Hong Kong,

Macao and Taiwan Science and Technology Cooperation

Projects (2014DFT103202016YFE0122900), the 111 Project

of China (B16006) and Beijing Training Project for The

Leading Talents in S&T (No. Z141101001514026).

REFERENCES

[1] H.S.Dhillon, R.K.Ganti, F.Baccelli, and J.G.Andrews, Modeling and
analysis of K-tier downlink heterogeneous cellular networks, IEEE
J.Sel.Areas Commun., vol.30, pp.550-560, 2012.

[2] Q.Ye, B.Rong, Y.Chen, M.Al-Shalash, C.Caramanis, and J.G.Andrews,
User association for load balancing in heterogeneous cellular networks,
IEEE Trans.Wirel.Commum., vol.12, no.6, pp.2706-2716, Jun. 2013.

[3] D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. K. Wong, R. Schober, and
L. Hanzo, User association in 5G networks: A survey and an outlook,
IEEE Commun. Surveys & Tutorials, vol. 18, no. 2, pp. 10181044, 2016.

[4] Qimei Cui, Tianpeng Yuan, Wei Ni, Energy-Efficient Two-Way Relaying
under Non-Ideal Power Amplifiers, IEEE Transactions on Vehicular
Technology, Vol. 66, Issue: 2, Pages:1257-1270, 2017.

[5] Qimei Cui, Hengguo Song, Hui Wang, Mikko Valkama, A. Dowhuszko,
Capacity Analysis of Joint Transmission CoMP with Adaptive Modu-
lation, IEEE Transactions on Vehicular Technology, Vol. 66, Issue: 2,
Pages:1876-1881, 2017.

[6] S.Singh, H.S.Dhillon, J.G.Andrews, Offloading in Heterogeneous
Networks:Modeling, Analysis, and Design Insights,IEEE
Trans.Wirel.Commum., vol.12, no.5, pp.2484-2496, May 2013.

[7] Martin Haenggi, Stochastic Geometry for Wireless Networks, New
York:Cambridge University Press, 2013

[8] S.N.Chiu, D.Stoyan, W.S.Kendall, and J.Mecke, Stochastic Geometry
and Its Applications, 3nd ed. New York:Wiley, 2013.

[9] H.S.Jo, Y.J.Sang, P.Xia, and J.G.Andrews, Heterogeneous cellular net-
works with flexible cell association:a comprehensive downlink SINR
analysis, IEEE Trans.Wirel.Commum., vol. 11, no.10, pp. 3484-3495,
2012.

[10] Na Deng, Wuyang Zhou, Martin Haenggi, Heterogeneous cellular net-
work models with dependence, IEEE J.Sel.Areas Commun., vol.33,
no.10, pp.2167-2181, October 2015.

[11] J.C. Young,M.O. Hasna, and A. Ghrayeb. Modeling heterogeneous
cellular networks interference using Poisson cluster processes,IEEE
J.Sel.Areas Commun., vol.33, no.10, pp.2182-2195, May 2015.

[12] D.Moltchanov, Distance distributions in random networks, Ad Hoc
Netw., vol.10, no.6, pp.1146-1166, Mar. 2012

[13] J.G.Andrews, F.Baccelli, R.K.Ganti, A Tractable Approach to Coverage
and Rate in Cellular Networks, IEEE Trans.Commum., vol.59, no.11,
pp.3122-3134, November 2011.

[14] Y Liu, L Lu, G Li, Q Cui, W Han, Joint user association and
spectrum allocation for small cell networks with wireless backhauls,
IEEE Wireless Communications Letters, Volume: 5 Issue: 5, Page(s):
496499, Oct. 2016.


	I Introduction
	II System Model
	III Analysis Process
	III-A Distribution of the Desired Distance
	III-B Association Probability
	III-C Average Ergodic Rate

	IV Numerical Results and Discussion
	V Conclusion
	VI Acknowledgement
	References

