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Abstract—In this work we analyze the distribution of quantum
entanglement over communication channels in the millimeter-
wave regime. The motivation for such a study is the possibility for
next-generation wireless networks (beyond 5G) to accommodate
such a distribution directly - without the need to integrate
additional optical communication hardware into the transceivers.
Future wireless communication systems are bound to require
some level of quantum communications capability. We find that
direct quantum-entanglement distribution in the millimet er-wave
regime is indeed possible, but that its implementation willbe very
demanding from both a system-design perspective and a channel-
requirement perspective.

I. I NTRODUCTION

The exploratory design phase of Fifth Generation (5G) wire-
less communications is well underway, e.g. [1]–[3]. These new
networks will largely operate in the millimeter-wave regime
(30-300GHz), where the wide bandwidths available will allow
for order of magnitude improvements in data throughput.
However, in order to compensate for the lack of diffraction
around obstacles at high communication frequencies, line-of-
sight (LoS) channels must be utilized wherever possible. The
millimeter wavelengths used in 5G will allow for antenna
technology that result in narrow beam-forming towards a LoS
target receiver, with the LoS conditions being maintained
(wherever possible) through location tracking of the target.
Such a communication architecture represents a paradigm shift
from traditional mobile wireless communication systems in
which semi-anisotropic transmissions into non-LoS commu-
nication channels are dominant. These developments already
raise interest in what post-5G wireless networks may look
like. Here, we investigate whether millimeter-waves couldalso
carry quantum information from a transmitter to the receiver.
If possible, this would greatly simplify the design of quantum-
enabled post-5G wireless systems.

Traditionally, in the implementation of quantum communi-
cation protocols such as quantum teleportation and quantum
key distribution (QKD), optical frequencies have been pre-
ferred, e.g. [4]–[6]. This is, in part, due to the negligibleback-
ground blackbody radiation at optical frequencies. However,
the advent of super-conducting microwave1 quantum circuits
have led to an increasing interest in the implementation of

1The termmicrowaves is generally used to cover the frequency range 1-
30GHz. Henceforth, for simplicity the termmillimeter-wave will be taken to
cover the frequency range 1-300GHz, thereby encapsulatingmicrowaves.

quantum communication protocols in the microwave regime,
e.g. [7]–[16]. Such interest is further spurred by advancesin
macro electro-optomechanical resonators that couple quantum
information (derived from superconducting circuits) through
the microwave-optical interface, e.g. [11], [15], [16]. Inthe
context of next-generation wireless communication systems,
these new developments offer the prospect of quantum in-
formation being generated at a superconducting circuit, being
frequency upshifted for transfer over a wired optical network,
and then being frequency-downshifted at a base station for
direct transfer over millimeter-waves to a wireless receiver. In
a sense, it is this paradigm we consider here. Our specific
focus will be the millimeter-wave transfer of the quantum
characteristic under-pinning much of quantum communica-
tions - quantum entanglement. Our task appears hopeful given
that previous studies have highlighted that direct QKD (no
entangled states utilized) in the millimeter-wave regime is
possible at low-loss rates [12].

To make progress we will initially consider a Gaussian two-
mode squeezed state in the millimeter-wave regime, detailing
how thermal noise affects its entanglement under photonic
loss. We then consider if any advantage to entanglement trans-
fer at these wavelengths is offered by certain non-Gaussian
states. We also study the distribution of the millimeter-wave
entanglement between two communicating parties via an in-
termediate relay; using a direct transmission scheme and an
entanglement swapping scheme [17]–[19].

II. SYSTEM MODEL

In the optical regime the average photon number is very
low even at room temperature (300K), resulting in negligible
impact of the thermal noise on the signal. In fact, in the optical
frequency regime the noise variance is effectively unity, i.e.
simply vacuum noise (we adopt here~ = 2). However, in the
millimeter-wave regime the thermal noise possesses a variance
much larger than unity. In order to suppress such noise, the
system needs to be operated at very low temperatures, e.g.
< 100mK. The average photon number for a single mode is
given by n̄ = [exp (hf/kBT )− 1]−1 , whereh is Planck’s
constant,f is the frequency of the mode,kB is Boltzmann’s
constant, andT is the temperature. A thermal quantum state,
ρth, with average photon number̄n is a Gaussian state with
zero mean and covariance matrix (CM)Mth = ωI, where
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ω = 2n̄ + 1 is the quadrature variance andI is the 2 × 2
identity matrix.

A. Gaussian Entangled States

We consider initially a two-mode squeezed vacuum (TMSV)
state as our Gaussian entanglement resource. Production of
continuous variable entanglement between millimeter-wave
fields has been experimentally demonstrated [8]–[10]. In Ref.
[10], the generation of TMSV states at millimeter wavelengths
was experimentally demonstrated using a non-degenerate
Josephson mixer. Such a mixer, driven by a pump tone at
frequencyfp, generates a pair of entangled modes, modes 1
and 2, at different frequenciesf1 and f2 from two input
vacuum quantum states (system temperature effectively zero)
such thatfp = f1 + f2. Such a TMSV state with squeezing
r, r ∈ [0,∞) is a Gaussian state with zero mean and the
following CM

Mv =

(

vI
√
v2 − 1Z√

v2 − 1Z vI

)

, (1)

wherev = cosh(2r) is the quadrature variance of each mode,
and whereZ = diag(1,−1).

Of course, the input vacuum modes can be replaced by
thermal modes simply by increasing the system temperature.
Doing so will lead to a thermal two-mode squeezed state as
the output. Such a Gaussian state with squeezingr possesses
a zero mean and a CM in the following form [20]

Mt =

(

aI cZ
cZ bI

)

, where

a = 2n̄αcosh
2(r) + 2n̄βsinh

2(r) + cosh(2r),

b = 2n̄αsinh
2(r) + 2n̄βcosh

2(r) + cosh(2r),

c = (n̄α + n̄β + 1) sinh(2r),

(2)

wheren̄α and n̄β are the average photon numbers of the two
input thermal modesα andβ.

B. Non-Gaussian Entangled States

We will also consider two representative non-Gaussian
states, the photon-subtracted squeezed (PSS) state and the
NOON state, as our non-Gaussian entanglement resource. A
PSS state is created from the incoming TMSV state (with
squeezingr) by subtracting one photon from each mode (using
beam splitters with the same transmissivityκ). In terms of the
Fock state|n〉 such a non-Gaussian state is given by (e.g.,
[21])

|PSS〉 =
∞
∑

n=0
qn|n〉1|n〉2,

qn =
√

(1−λ2κ2)3

1+λ2κ2 (λκ)
n
(n+ 1),

(3)

where λ = tanh(r), and indices 1 and 2 indicate the two
modes. The creation probability for this PSS state is given by

P =
λ2(1−λ2)(1+λ2κ2)(1−κ)2

(1−λ2κ2)3
, (4)

and its density operator is

ρPSS
in =

∞
∑

m=0

∞
∑

n=0

qmqn|m〉1〈n|1 ⊗ |m〉2〈n|2. (5)

We can write the NOON state as,|NOON〉 =
1√
2
(|n〉1|0〉2 + |0〉1|n〉2) with the following density operator

ρNOON
in = 1

2 (|n〉1〈n|1 ⊗ |0〉2〈0|2 + |n〉1〈0|1 ⊗ |0〉2 〈n|2

+|0〉1〈n|1 ⊗ |n〉2〈0|2 + |0〉1〈0|1 ⊗ |n〉2〈n|2) .
(6)

C. Entanglement Measure

We adopt the logarithmic negativity as our entanglement
measure. The logarithmic negativity of a bipartite state with
density operatorρ is defined asELN(ρ) = log2 (1 + 2N(ρ)),
whereN(ρ) is the negativity. This latter quantity is defined
as the absolute value of the sum of the negative eigenvalues
of ρPT , the partial transpose ofρ with respect to either
subsystem. In the special case of Gaussian states, we are
able to determine the logarithmic negativity solely through
the use of the CM. Given a two-mode Gaussian state with

a CM M =

(

A C
CT B

)

, where A = AT , B = BT ,

andC are 2 × 2 real matrices, the logarithmic negativity is
given by E

LN
(M) = max [0,−log2 (ν−)], whereν− is the

smallest symplectic eigenvalue of the partially transposed M .
This eigenvalue is given byν2− =

(

∆−
√
∆2 − 4 detM

)

/2,
where∆ = detA+ detB − 2 detC [22].

III. S IMULATION RESULTS

First, we investigate the impact of the thermal fluctuations
at the preparation step on the entanglement of the Gaussian
two-mode squeezed state. In Fig. 1, we plot the logarithmic
negativity, ELN , of the thermal two-mode squeezed state,
given by Eq. (2), at the frequency of 300GHz as a function of
temperature and squeezing. This figure shows a setting where
the two input thermal modes have the same average photon
number, i.e.,̄nα = n̄β .

From Fig. 1 it is evident that an increase in the temper-
ature (an increase in the average photon number) reduces
the entanglement, while an increase in the input squeezing
may compensate such a negative effect. We can also see
that for state-of-the-art squeezing (10dB), the temperature
below which non-zero entanglement appears is approximately
70K (interestingly, liquid nitrogen temperature). For room
temperature (300K), the minimum squeezing needed to obtain
the non-zero entanglement is approximately 16dB.

A. Gaussian Entanglement Through a Thermal Channel

We investigate the evolution of the two-mode squeezed state
in a thermal channel. To do this, we assume the thermal
fluctuations at the preparation step can be suppressed (which
means the Gaussian resource will be a TMSV state), and the
thermal fluctuations only appear through channel losses.

Let us consider Alice initially possessing a TMSV state
where one mode (mode 1) is kept by Alice and the other mode
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Fig. 1. The logarithmic negativityELN of a thermal two-mode squeezed
state as a function of temperature and squeezing for a frequency of 300GHz.

(mode 2) is transmitted towards Bob over a fixed-attenuation2

channel with transmissivityτ and thermal noise varianceω.
The resultant Gaussian state is described by a zero mean and
a CM in the following form

Me =

(

vI
√
τ
√
v2 − 1Z√

τ
√
v2 − 1Z (τv + (1 − τ)ω) I

)

, (7)

whereω = 2n̄+1 and wherēn is the average photon number
of the thermal noise.

In Fig. 2 we plot the logarithmic negativity,ELN , of the
evolved TMSV state given by Eq. (7) as a function of the
channel transmissivity,τ . This figure shows the logarithmic
negativity at different frequencies (15GHz, 30GHz, 100GHz,
300GHz) at room temperature when the quadrature variance
of the initial TMSV states isv = 5.05 (equivalent to 10dB
squeezing). From Fig. 2 it is evident how, for a givenτ , a
decrease in frequency reduces the entanglement. It is also
evident how the entanglement-breaking transmissivity,τeb,
varies with frequency.τeb for a given state is defined as
the maximum transmissivity at whichELN = 0 (or, the
transmissivity at whichν− = 1). We see from Fig. 2 that
higher frequencies lead to lower values ofτeb. It is interesting
to note that for pure vacuum noise (ω = 1), the entanglement
is always preserved for any channel transmissivity.3 Whereas,
for thermal noise (ω > 1), the entanglement disappears for
τ ≤ τeb where τeb = ω−1

ω+1 . This means that even though
the magnitude of the entanglement atτ > τeb grows with
increased initial squeezing, the value ofτeb itself cannot be
decreased by utilizing larger initial squeezing.

The absorption of millimeter-wave signals by the atmo-
sphere is given in [1], from which we find (modulo some
deep attenuations at specific frequencies) an approximately

2In the scenario we envisage, communication ranges of order 100m or less
will be most relevant, and therefore neglect of attenuationfluctuations (e.g.
due to multipath or beam wander) is a reasonable approximation.

3To be precise, the minimal background noise is actually set by the
cosmic microwave background. For satellite-satellite links, assuming mK-
cooled transmitter/receivers, and assuming blockage of all other background
sources,τeb ∼ 0.005 in the millimeter-wave regime.
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Fig. 2. The logarithmic negativityELN resulting from the distribution of
the TMSV state with 10dB squeezing over a single fixed-attenuation channel
with transmissivityτ . The figure is plotted at room temperature for different
frequencies in the millimeter-wave regime.

linear trend of the attenuation (in dB) as an increasing function
of frequency. In the context of entanglement distribution,
detrimental absorption at higher frequencies is counteredto
some extent by the less detrimental effects of thermalization
at higher frequencies. Assuming atmospheric absorption is
the sole photonic loss mechanism, we find that for 30GHz
at 100m, the atmospheric loss is∼ 0.2%, andELN ≈ 1.4.
At 300GHz we find that at 50m, the atmospheric loss is
∼ 2.3% andELN ≈ 0.8. The entanglement-breaking distance4

is approximately 200m and 100m for 30GHz and 300GHz,
respectively. As such, we find that in principle, entanglement
distribution at short distances is possible. But given the severe
loss-constraints imposed, extremely narrow millimeter-wave
transmit beams must be constructed such that additional losses
beyond absorption (e.g. through beam-broadening, side-lobe
leakage) are constrained to the 1% (0.1%) level at 300GHz
(30GHz) - an interesting (aka hard) engineering challenge.

In the classical limit (and subject to some other assump-
tions), power lost by beam-broadening effects is governed by
the well-known Friis transmission equation

Pr = Pt +Gt +Gr + 20log

(

cv
4πRf

)

[dBm] , (8)

wherePr andPt are the received (in unobstructed free space)
and transmit powers, respectively;Gt andGr are the transmit
and receive antenna gains, respectively;cv is the vacuum
speed of light (m/s);R is the transmitter-receiver distance
(m), and f is the signal frequency (Hz). The gains can be
very much larger than unity, growing withf2 for a fixed
transmitter dimension. Although notdirectly applicable to
our problem, the Friis equation does at least highlight the
magnitude of the issues we face. For example, at the 3dB
down contour, for an aperture size of1m andf = 300GHz,
gains of order 65dB are achieved and half-beamwidths of order

4This is the distance at which the entanglement-breaking transmissivity is
reached in the channel. Note that due to the absorption-frequency curve in the
millimeter regime, lower frequencies can have larger entanglement-breaking
distances than higher frequencies.
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Fig. 3. The logarithmic negativityELN resulting from the distribution of
the TMSV state with 3dB squeezing, PSS state created from a TMSV state
with 3dB squeezing, and NOON state (n = 2 and n = 5) over a single
fixed-attenuation channel with transmissivityτ at the frequency of 300GHz
and room temperature.

0.03o obtained.5 At the 10dB down contour, for the same size
and frequency, gains of order 60dB are achieved and half-
beamwidths of order 0.06o obtained.6 Reasonable constraints
on the aperture size (of say a few meters) would therefore
appear to dictate that beyond transmit-receiver distancesof
order 100m, implementation would get very difficult. At
distances of 20m or less quantum entanglement distribution
via millimeter-wave beams could be achievable for receiver
aperture sizes consistent with mobile devices. Future wireless
networks where quantum communications over distances of
order 20m would be useful include quantum-enabled vehicular
networks [24].

B. Non-Gaussian Entanglement Through a Thermal Channel

We now investigate the usefulness of non-Gaussian entan-
gled states as a resource for quantum communication in the
millimeter-wave regime. Due to the unbounded number of
such states our investigation is only indicative, not exhaustive.
Since non-Gaussian states are not completely described by
the first and second moments of the quadrature operators, we
cannot analyse their evolution only through the CM. Instead,
we utilize the Kraus representation [25]. In this representa-
tion the action of every trace-preserving completely positive
channel on a quantum state with density operatorρin can
be described in an operator-sum representation of the form

ρout =
∞
∑

ℓ=0

Gℓρin G
†
ℓ , where the Kraus operatorsGℓ satisfy

∞
∑

ℓ=0

Gℓ G
†
ℓ = I, with I being the identity operator. In [25], the

Kraus operators of a fixed-attenuation channel with vacuum
noise is given. Here, we will generalize the results of [25] to
a fixed-attenuation channel with transmissivityτ and thermal

noise ρth =
∞
∑

n=0

n̄n

(n̄+1)n+1 |n〉 〈n|, where n̄ is the average

photon number of the thermal noise. The action of such a

5The 3dB down half-beamwidth in degrees is approximately10/(fD),
wheref is in GHz andD is the aperture size in m.

6See [23] for a discussion of beam-forming in 5G.

channel on a quantum stateρin is given by

ρout =
∞
∑

ℓ=0

∞
∑

n=0
Gℓ,n ρin G†

ℓ,n, where

Gℓ,n =
(

n̄n

(n̄+1)n+1

)
1
2

∞
∑

m=mmin

jmax
∑

j=jmin

√
m!ℓ!(m−n+ℓ)!n!

(m−n+j)!(ℓ−j)!(n−j)!j!

×(−1)
n−j(√

1− τ
)ℓ+n−2j

(
√
τ )

m−n+2j |m〉 〈m− n+ ℓ| ,
(9)

wheremmin = max [0, n− ℓ], jmin = max [0, n−m] and
jmax = min [n, ℓ]. From these operators the elementary den-
sity operator|m′〉 〈n′| after the evolution through the thermal
channel can be written

|m′〉 〈n′| →
∞
∑

ℓ=0

∞
∑

n=0

Gℓ,n |m′〉 〈n′| G†
ℓ,n =

∞
∑

n=0

ℓmax
∑

ℓ=0

jmax
∑

j=jmin

j′max
∑

j′=j′
min

n̄n

(n̄+1)n+1 (−1)
2n−j−j′

×
√

(m′+n−ℓ)!ℓ!m′!n!

(m′−ℓ+j)!(ℓ−j)!(n−j)!j!

√
(n′+n−ℓ)!ℓ!n′!n!

(n′−ℓ+j′)!(ℓ−j′)!(n−j′)!j′!

×(1− τ)
ℓ+n−j−j′

(
√
τ )

m′+n′−2ℓ+2j+2j′

× |m′ + n− ℓ〉 〈n′ + n− ℓ| ,

(10)

whereℓmax = min [m′ + n, n′ + n], jmin = max [0, ℓ−m′],
j′min = max [0, ℓ− n′], and jmax = j′max = min [n, ℓ]. Here,
we assume for each of our non-Gaussian density operators,
ρPSS
in in Eq. (5) andρNOON

in in Eq. (6), mode 1 remains
unaffected and mode 2 evolves through a fixed attenuation
channel with transmissivityτ and thermal noiseρth according
to Eq. (10). Since the logarithmic negativity,ELN , is deter-
mined from the partial transpose of the output density operator,
ρPT
out, which possesses an infinite number of elements, we are

required to deploy a numerical method to approximateρPT
out

by limiting its size, i.e. creating a truncatedρPT
out . In the case

of the evolved PSS state, we will create a truncatedρPT
out by

setting two cutoffs, one cutoff on the total photon number of
the two modes (see [26], [27]), and the other cutoff on the
number of elements in the thermal noiseρth (large relative to
the average photon number ofρth). However, in the case of the
evolved NOON state setting the latter cutoff is enough. The
logarithmic negativity can then be determined directly from
the negative eigenvalues of the truncatedρPT

out.
In Fig. 3 we plot the logarithmic negativityELN of our

evolved non-Gaussian states compared to the TMSV state as
a function of the channel transmissivityτ . This figure shows
ELN at a frequency of 300GHz for room temperature. Since
the pure NOON states, regardless of the value ofn, contain 1
ebit of entanglement, (i.e.,ELN = 1), we consider a TMSV
state withv = 1.25 (3dB squeezing) which contains 1 ebit of
entanglement. We assume the PSS state is also created from
a TMSV state having an initial entanglement of 1 ebit. For
the photon subtraction operation we select an optimal value



of κ = 1 which maximizes the initialELN . This means the
PSS state contains an initial entanglement of more than 1 ebit.
From Fig. 3, we find that if the sending rates (into the channel)
for all the states are equal [26], some non-Gaussian states
can provide an advantage relative to the Gaussian states in
terms of the final entanglement. For instance, the PSS state
and the NOON state withn = 2 lead to more logarithmic
negativity than the TMSV state. The ‘take-away’ message
here is that non-Gaussianity can indeed enhance entanglement
distribution in the millimeter-regime, but that any enhancement
is a complicated function of how the non-Gaussian state is
produced (i.e its initial entanglement), and its fragilityunder
photonic loss. The calculations shown here indicate that the
enhancements potentially derived from non-Gaussian states
may not warrant the additional complexity required for their
production.

C. Quantum Communication via a Relay

Beyond the single point-to-point fixed-attenuation channel,
we now turn our attention to relay-based communications.
Specifically, we consider an entanglement swapping scheme
at a relay as a means to generate entanglement between Alice
and Bob (who now have no direct LoS between them). We
are interested in quantifying thecost (reduced entanglement)
incurred by such a scheme in comparison to a direct transmis-
sion (a transmission in which the relay simply forwards the
signal) between Alice and Bob. Such a cost is important to
determine in the context of the quantum repeater scenario - in
which entanglement distillation takes place at the relay prior
to any entanglement swapping operations. If this cost is too
high it could be that distillation is best obtained at the end
stations directly and not at the relay. For clarity of exposition,
we will consider only Gaussian states sent via the relay.

Direct Transmission Scheme: Let us consider Alice initially
possessing a TMSV state given by the CM in Eq. (1). We
assume one mode is kept by Alice while the other mode is
transmitted over a fixed-attenuation channel with transmissiv-
ity τa and thermal noise varianceωa to an intermediate relay,
then perfectly reflected in the relay and sent towards Bob
through a fixed-attenuation channel with transmissivityτb and
thermal noise varianceωb. As a result of such a transfer the
Gaussian state is given by zero mean and the following CM

Md =

(

vI
√
τaτb

√
v2 − 1Z√

τaτb
√
v2 − 1Z v′I

)

,where

v′ = τb (τav + (1− τa)ωa) + (1− τb)ωb.
(11)

Entanglement Swapping Scheme: Let us consider both Alice
and Bob initially possessing a TMSV state, given by the CM in
Eq. (1), with the same squeezing. One mode of each entangled
state is kept by the communicating party and the second mode
of each state is transmitted to the intermediate relay. We again
assume Alice’s (Bob’s) link is a fixed-attenuation channel with
transmissivityτa (τb) and thermal noise varianceωa (ωb). The
received modes are then swapped via a Bell measurement
at the relay (the modes are mixed through a balanced beam
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Fig. 4. The logarithmic negativityELN resulting from the direct transmission
scheme (solid line) and the entanglement swapping scheme (dashed line) as
a function of the combined channel transmissivityτaτb. The figure is plotted
at room temperature for different frequencies in the millimeter-wave regime
with the initial TMSV state possessing 10dB squeezing.

splitter with the two output modes conjugately homodyned).
The Bell measurement outcome is then communicated to Alice
and Bob so that they can displace their modes according to
the measurement outcome. Under the assumption of optimal
displacement the conditional state (averaged over all possible
Bell measurements) between Alice and Bob is given by the
following CM [17], [28]

Ms =

(

vI 0
0 vI

)

−

(

v2 − 1
)

(

τA
θ
I −

√
τAτB
θ

Z

−
√
τAτB
θ

Z τB
θ
I

)

,

(12)

whereθ = (τa + τb)v + (1 − τa)ωa + (1− τb)ωb.
For focus, we consider a symmetric setting for each scheme

where Alice’s link is identical to Bob’s link, i.e.,τa = τb = τ
and ωa = ωb = ω. In Fig. 4 we plot the logarithmic
negativity resulting from our two communication schemes, as
a function of thecombined channel transmissivityτaτb. This
figure showsELN at different frequencies (15GHz, 30GHz,
100GHz, 300GHz) at room temperature for the case where
the quadrature variance of the initial TMSV state isv = 5.05
(again, equivalent to 10dB squeezing). The same settings are
adopted for the two schemes. Note, the curves ofELN for the
direct transmission scheme with respect toτaτb in Fig. 4 are
exactly the same as the corresponding curves ofELN with
respect toτ in Fig. 2.

According to Fig. 4 the direct transmission scheme is
always able to generate more entanglement than the en-
tanglement swapping scheme. However, the entanglement-
breaking transmissivity at each frequency is almost the same
for the two schemes. Considering the symmetric setting, the
entanglement-breaking transmissivity (in each channel) of the
direct transmission scheme is given byτdeb =

√
ω2−1
ω+1 , while for

the entanglement swapping scheme it is given byτseb =
ω

ω+1 .
From this we see that asω increases, the entanglement-
breaking transmissivity for the two schemes becomes identical.



Note again, that the value ofτeb for each scheme is only
dependent on the thermal noise of the channel.

From these results it is evident that entanglement swapping
at the relay in the non-LoS condition between Alice and
Bob can occur at only a slight relative cost, and that direct
transmission (reflection at the relay) is more useful in terms
of the entanglement distribution between Alice and Bob.
The necessity for entanglement distillation at the relay (as
opposed to at Alice and/or Bob) would be a function of the
distillation protocol (some protocols operate better at higher
input entanglement levels). Of course, in a lossless channel,
direct transmission is always a preferred transmission scheme.

D. QKD and other Applications

Although difficult to achieve in practice, we have seen
that non-zero entanglement distribution in the millimeter-wave
regime may be possible over short distances. This then begs
the question as to what you can do with such entanglement.
A first use of course is QKD. It is well known that all QKD
implementations have a prepare and measure (PM) scheme -
and an entirely equivalent entanglement scheme (e.g. [22]).
Based on this correspondence, we have carried out additional
calculations which translate our entanglement distribution cal-
culations for Gaussian states into resultant QKD rates (we
refer the reader to [19] for more detail on such translations).
The resulting QKD key-rates for direct transmissions are
entirely consistent with those found previously for a PM
QKD scheme based on thermal states [12]. Our key rates for
the entanglement swapping scheme (based on assuming no
correlation between ancillary states used by the eavesdropper)
are somewhat lower, as expected. Our main conclusion on
key rates is therefore is similar to that found for entanglement
distribution - QKD is possible in the millimeter-wave regime
but difficult and viable over only short distances.

Other quantum applications are possible with the entangle-
ment levels we have found (teleportation, dense codingetc.).
However, given the low values of the entanglement achievable,
such applications will likely need substantial entanglement
distillation prior to the application running, in which case
the use of non-Gaussian states such as those investigated here
would be useful. We refer the reader to [17] for an example
of a distillation scheme in the non-Gaussian space.

IV. CONCLUSIONS

We have shown how direct quantum entanglement distribu-
tion in next-generation wireless communications is possible
- but very demanding on the design requirements of the
system and on the channel requirements of the communication
links. In effect, almost pure (negligible non-LoS components)
and almost lossless links will be necessary for entanglement
transfer to be viable in the millimeter-wave regime. Nonethe-
less, entanglement distribution via millimeter communication
is potentially viable in practice at communication distances of
less than 100m. For distances much beyond 100m any entan-
glement distribution would be extremely difficult to implement
in practice.

It remains an open question as to whether in practice the
implementation complexity involved in the delivery of low-
loss millimeter-wave quantum links renders a full integration
of free-space optical quantum communications into wireless
architectures a better option. The latter scheme will have less
demands on the channel and beam characteristics, but will
necessitate that the transceivers have on board the hardware
to operate in two quite different wavelength regimes. Future
work could explore this question further.
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