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Abstract—In this paper, we develop a framework for an events. Such a radio sensor can facilitate a vast number of
innovative perceptive mobile (i.e. cellular) network thatintegrates new applications that no existing sensor systems can gnable
sensing with communication, and supports new applications ,aicylarly in the various smartness initiatives, suclsmsrt
widely in transportation, surveillance and environmental sensing. . . .
Three types of sensing methods implemented in the base-stais city, _smqrt home_, smart car and smart transportatlon_. This
are proposed, using either uplink or downlink multiuser com  Sensing information can even be used to help establish the
munication signals. The required changes to system hardwar communication link [5].
and major technical challenges are briefly discussed. We als  Our work is the first step in developing a basic framework
demonstrate the feasibility of estimating sensing paramefs via o guch a perceptive mobile network, including a desaoipti
developing a compressive sensing based scheme and proviglin . . L
simulation results to validate its effectiveness. of the structure, feasibility, main challenges, and predtamy

sensing algorithms. The limited number of papers that erplo
mobile signals for sensing, such as [6], [7], are constrhioe
|. INTRODUCTION the use of a third device [6], and/or involve only simple mebi

s[@nals [6], [7]- In contrast with this work, we investigateo-
[

Ieszagl)omsr(r:]lj:i(c::;ijnnd sggl?zggrigr?;feei: ag\rlglrrglmgn'g Vv\cllrlfé on seamlessly integrating sensing into the actualadignd
i . . g In parafel Retwork architecture for communications in mobile netveork
limited intersections over a century. Performing joint com In this paper, we first explore three types of sensing

munication and sensing, however, offers substantial tIenef’hethods that can be integrated into a mobile network, and

including the potential for shared spectrum and hardwa%ﬂi required hardware changes for such an integration. We

Wh'.Ch IS vgluable for emerging platforms such as unmanng, formulate the sensing problem and propose a preliginar
aerial vehicles and smart cars [1], [2]. Sensing here refesréh

to information retrieval through measurispatial parameters
such as location and moving speed aigsical parameters
such as shape and hardware characteristics, of static and
ing objects using radio signals. Integrating the two fummsi
of communication and sensing into one system can achieve [|. | NTEGRATED SENSING IN MOBILE NETWORKS

immediate benefits of reduced cost, size, weight, and bette{y, consider a system model with major components align-
spectrum efficiency. Most existing research however, i#éh 4 with current and 5th generation mobile networks. These

to point-to-point systems such as millimeter wave radia [2}omponents are critical for successful sensing in a mobile

and passive sensing using, e.g.,broadcasting TV signdls [3+ork where there could be numerous desired and unwanted

and Wi_Fi [4]. ) ) ) echoes or multipath signals. We use the tedotter for the
In this paper, we proposeprceptive mobile network using  nwanted echoes. These system components include:

joint communication and sensing techniques, and identfy b « Multiuser multiple-input multiple-output (MIMO). Mas-
sic requirements that need to be met and key issues thatmeed t sive MIMO is preferred but not essential;

be resolved. Covering most of the land today, the mobilg, (i.e . Multicarrier modulation:

cellular) network is evolving towards a heterogeneous agtw Cloud radio access network (CRAN) architecture: Coop-
capable of connecting almost everything. A perceptive iBobi o 4iive remote radio units (RRU) are densely distributed
network would sense both signal-emitting and silent olject and signal processing for RRUs is done centrally in

while providing non-compromised communication servides. CRAN central (shortened as base-station, BS.).

can potentially become a ubiquitous sensor, providing seam : - o
P y q P 9 A typical communication scenario is as follows: several

less radio sensing wherever there is mobile signal coveragirus work cooperatively to provide connections to mobile
for detecting, tracking, and identifying objects, activities and

stations (MSs), using multiuser MIMO techniques over the
A. Cantoni's work is supported by Discovery Project DP14IBZP of the Same subcarriers. Cooperative RRUs can be within the signal
Australian Research Council. coverage area of each other.

eme that can estimate sensing parameters for all the thre
sensing methods. Numerical results are provided to validat
the effectiveness of the proposed framework for this peioep
MRobile network.
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on the duplexing mode. Despite requirements for hardware
change, downlink sensing can potentially lead to bettesiagn
results due to, e.g., fixed locations of RRUs, higher trahsmi
A. Three Types of Sensing Methods power, larger arrays, and more coherent integration timeesi

We consider sensing in BSs at the network-side. Three typtgg tr?—nsmltt.eclj .waveforlm 1S centrall)./ available.
of sensing methods fit within our frameworkctive Sensing, ) 1'Me Division Duplexing (TDD): A TDD system re-
Passive Sensing and Uplink Sensing. Fig.1 illustrates the three quires less hard_vvare changes than FDD fqr downlink sensing.
methods in the considered system setup. Note that RRUs oftiy! DD transceiver generally uses a switch to control the

collect signals, and actual sensing processing is doneatignt © nnection of an antenna to the transmitter or receiver.sto u
in BSs downlink signals for sensing, receivers also need to wor&mwh

transmitter is working. If the switch is always connectedhe
E}%ceiver, the large leakage signal from the local transmitill

bury its own reflected signals and those from remote RRUs and
?ake them non-detectable. Techniques being exploredtigcen

Fig. 1. lllustration of three sensing methods in the considesystem setup.

1) Active Sensing: We refer toactive sensing as the case
where a RRU uses reflected signals from its own transmitt
signal for sensing. Referring to communication, this isiatly
the reflected downlink communication signals. In this cas

similar to a monostatic radar, transmitter and receivercare " . . .

located although they may have two independent antenﬁja\g'tal baseband mterferencg cancellafuon. These_ teclesi

slightly separated in space. This will enable a RRU to sen%[ae’ hgwever, challlenglng to !mp!ementln real mobile syste

its surrounding environment. ne_s!mple_r and wable_solutlon is to separate transmitimd)
receiving signals by using two sets of separated antenmas fo

2) Passive Sensing: In the case ofPassive sensing an ¢ it d . h i Fia. 2. Thi -
external third receiver exploits the communication sigfwal ransmitier and receiver, as shown in Fig. <. This requxase
enna installation space and can increase the overall cos

sensing. In our system a RRU uses signals received from otRBf , . : .
RRUs for sensing. Referring to communication, these waibal . During each_ working cyqle in a RRU’ the receier can
be the downlink communication signals, and hence active amplement active and passive sensing during thg downlmk
passive sensing operate at the same stage. Passive serdfidf and_ operate on communication and uplink sensing
senses the environment among RRUSs. modes during the _”P'F”k stage. )

We will also refer to active or passive sensingwnlink 2 Frequency Divison Duplexing (FDD): An FDD
Sensing when there is no need to differentiate them. orfkansceiver generally uses a diplexer to separate downlink

advantage of downlink sensing is that the entire wavefor@ffid Uplink signals, which are typically well separated in
in the transmitted signal and thus received signal is ctptra’eauency. For downlink sensing, existing hardware in RRUs
KNoOwn. needs to be changed to enable the receiver to process dawnlin

3) Uplink Sensing: BS uses the uplink communicationSignals that are in a different fre_quency band. To this_ end,
signal from MS transmitters farplink sensing. Uplink sensing MOr€ hardware changes to existing systems are required to
estimates relative, instead of absolute, time delay parenne MPlement downlink sensing in FDD than in TDD systems.
because the timing in MS transmitters and RRU receivers is
not aligned. This ambiguity due to lack of synchronizatiop: Major Challenges

can be removed by using, e.g., time difference of arrival ] ] .
measurement and the triangulation techniques in locidizat AMong many challenging problems in developing a percep-

Uplink sensing senses MSs and the environment between M&§ Mobile network, clutter suppression and sensing patem
and RRUSs. extraction from complex mobile signals are two essentiaison

to be addressed.
BSs in a mobile network typically see many unwanted
echoes that need to be suppressed before or after sensing
Uplink sensing can be implemented without requiringarameter estimation. Various clutter suppression tegtas
changes to hardware and system architectures of current have been studied in Radar. However, adaptation of these
bile systems. Downlink sensing requires changes that depéachniques to mobile sensing is not straightforward bezaus

or full duplex systems may be applied here, such as RF and

B. Transceiver Structure and Operations



the signals and working environment for the two systems aneth subcarrier and theth OFDM block can be represented

very different. as
Modern mobile signals, particularly in the uplink, could Q L
be fragmented - discontinuous in and varying over time, Vot :ZZbq7ée—j27rn7'q,e.foej?wth,q,eTs,
frequency or space, due to random multiuser access and g=14=1
diverse resource allocation. Extraction of sensing patarse a(M, ¢g.0)a” (M, 0,.0)Xqnt + Zn.s, 2)

from such complicated signals is quite challenging. Most of T
existing work is not directly applicable here. For example, =AM, $)CrD, U X ¢ + 2, ®)
typical channel estimation algorithms in communicationyo where variables with subscrigtare for theg-th RRU, x5, ¢+
estimate composited channels with limited unknown pararare the transmitted signals at subcarrierom the ¢-th RRU,

eters [8], and radar systems [9] generally use optimized or B
unmodulated transmitted signals. A(M, ¢) = (Ar(M, $1), T »AQ(M, é)), ()
Xn,t = (xl,n,h T axQ,n,t) s (5)

[1l. FORMULATION OF SENSING PARAMETER ESTIMATION U = diag{A1(M,01), A2(M,02),--- ,Aq(M,0q)}, (6)

We focus on estimating spatial parameters including dignd henceU is an MQ x L,L = Y| L,, block diagonal
tance, direction, and speed of objects in this paper. matrix. The (-th column in A (M, ¢,) (or Ay(M,8,)) is
a(M, ¢q,0) (or a(M,0,,)), D, and C,, are diagonal ma-
trices with the 3% L, + ¢-th diagonal element being

. q¢'=1"d .
A. System Model beed?tip.aeTs ande~i2mnTacfo respectivelyz, ; is the noise

We consider a CRAN system witf) RRUs and each RRU vector. Note that multipath signals in the above expresaien
has M, antennas configured in the form of a uniform lineaihdexed in the order of RRUs fromto Q.
array. These RRUs cooperate and provide multiuser MIMO
service toK users, using MIMO-OFDMA type of signalling C. Formulation for Uplink Sensing
schemes. Each user has an antenna arrdy,oélements. We The received signal in a RRU at theth subcarrier and the

considerthe si_mple case 0f, = M for anyq andM, = MT t-th OFDM block can be represented as
for any k in this paper. Extension of the results to different

values of M, and M, shall be straightforward. For both K L . .
X K ) _ —j2mnT o f 27t fp ke Ts |
uplink and downlink, we assume that data symbols are first Ynt = ZZbWe ! Bl TTIB e
spatially precoded, and an IFFT is then applied to eachaipati k=1t=1 r
stream. The time domain signals are then assigned to the a(M, gro)a” (Mr, 0k 0)Xk,n,t + Zn,t, (7)

corresponding RRUs. LeV denote the number of subcarriergyhere symbols have similar meaning and expressions to those
and B the total bandwidth. Then the subcarrier interval ig, (3), except that here they are for MSs instead of RRUs.

fo = B/N and OFDM symbol period ifs = N/B + T, Comparing (7) with (2), we can see that they have similar
whereT), is the period of cyclic prefix. expressions except for different symbols and parameteesal

Assume a planar wave-frontin signal propagation. The arrgjence, next we will develop a general on-grid expression for
response vector of a size- array for narrowband signals ispoth downlink and uplink sensing.

given by
a(M,0) = [1,drsin®) . is(M-LsnOT (1 D. Generalized Delay-Quantized On-grid Formulation
In this paper, we will develop 1-D compressive sensing

wherex = 2rd/), d is antenna interval in the array,is the pased algorithms for spatial parameter estimation. Wenassu
wavelength, and is either angle-of-depart (AoD) or angle-that the number of subcarrie > L and N is large
of-arrival (AoA). enough such that the quantization error ofis small and

For the /-th out of a total of L multipath signals, let the delay estimation can be well approximated as an on-
¢, and ¢, be the AoD and AoA, respectively, and the grid estimation problem. Let the delay terami2™7 /o pe
amplitude, 7, the propagation delay, anfb , the associated quantized toe—727¢/(4N) where ¢ is a small integer and
Doppler frequency. The basic task for sensing is to estimate value depends on the method used for estimatinghe
these spatial paramete{sy, fp ¢, ¢¢,0e,b0},¢ = 1,---,L  minimal resolvable delay is thery(gB).
from the received signal. In formulating the sensing proble Let K and My denote the total number of users/RRUs and
next, we will ignore system imperfections such as carrigiumber of antennas in each user/RRU, respectively, foeeith
frequency offsets and timing offsets between different RRUuplink or downlink sensing. We now convert the multipath
and between MSs and RRUs. signal models in (7) and (2) to a generalized on-grid (delay
only) sparse model, by representing it usiNg > L, N, <
gB multipath signals where only., signals are non-zeros.

B. Formulation for Active and Passive Sensin ) .
L v v g Referring to (3), the delay-on-grid model can be repregknte
According to the system structure in Section II-B, for anyg

RRU, it sees reflected signals from itself and the multipath -
signals from the othe® — 1 RRUSs. Its received signal at the Yot =AM, $)C,DiPU" %, 1 + Zp 1, (8)



where C,, is now redefined as C, = We first consider noiseless cases. Onceltim®nzero blocks
diag{1, e =72/ (aN) ... g=i2mn(Np=1)/(9N)} = re-ordered V,AT (M, ¢) are determined, we can then get thedelay
according to the quantized delay valud3;is an N, x L estimates according to the indexes of the blocks.
rectangular permutation matrix that maps the signals from aFrom (10) we can see that only tligh column inV, has
user/RRU to its multipath signal, and has only one non-zenon-zero elementsye=727tf0.«TsUp, if b, # 0. Therefore,
element of valud in each row; the other symbols have similar T o —jomtfp.Ts T

expressions with those in (3), with elementsAriM, ¢) and VeAT(M, ¢) = bee™*™) Upca’ (M, ). (12)
D, being reordered according to the delay. More specificallince p, only has a single non-zero element Up, will
the columns inA (M, ¢) of size M x N, and the diagonal generate a column vector corresponding to one columid.in
elements inD, of size N, x N, are now re-ordered andBecausaJ is a block diagonal matrix, only out of K M x1
tied to the multipath delay value®J is an MK x L block vectors in each column is non-zero.

diagonal radiation pattern matrix fov/; arrays.x, , is the ~ Now represenV,A” (M, ¢) as K My x M sub-matrices
MrK x 1 symbol vector. For the moment, we allow repeatedB; ;.- -, B} )" If By # 0, then this multipath is from
delay values inC,, to account for multipath signals with thethe k-th RRU (user). We can also see that

same quantized delay but different AoAs and/or AoDs. By = bee=32tIp.e T g (N, 0.0)a” (M, b1..0). (13)

IV. ESTIMATION OF SPATIAL PARAMETERS From By, calculating the cross-correlation between columns
$Id rows, we can obtain AoA or AoD estimates, depending
on the order of the calculation.

I?oppler shift fp ¢ can be estimated across multiple OFDM

We now propose a preliminary scheme based on 1
compressive sensing for estimating the spatial paramétkis
scheme works for all three sensing .methods.. we assume tk:r)]fr(’:‘)cks, based on the cross-correlatiorBaf;, in these blocks.
the symbolsx, s are known. For uplink sensing, this can be ’

. . ; The absolute value @f, can be estimated as the mean power
achieved by demodulating the symbols as sensing can telergtt all elements inBy ;.. A better estimate is to use the cross-
. . . . . [_’k.
more delay than communication, while for downlink sensing, o 1ation output for estimating AoA

_they are centrally k_nown. H_owever, the range of subcarriersIn noisy cases, we can sort the blocks A7 (M, ¢), £ —
n doyvnllnk and uplink sensing .COUId be. d|fferer_1t. RR.US Caﬂ .-+, N, according to the estimates &f and use a threshold
see signals at more subcgrrlers in downlink sensing thanluplto filter out blocks corresponding to multipath signals. Vie c
because the total subcarriers could be shared by differenpg also keep the estimated results for a subseVpblocks with

of users. larger estimatedy,s, and then apply data fusion techniques
over all measurements spanning a segment of space, time and
A. Single Multipath for Each Delay frequency domains to get synthesized sensing results.
Rewrite (8) as
B. Multiple Multipath Signals with the Same Delay

T T T T
=x..(c QI VA* (M, ¢), 9
Yne = Xni(Cn @ Duiric) (M. ¢) ®) Let ¢, = (cl,cl,,cl, )T, where c,» represents
where ® denotes the Kronecker productc, = the repeated entries. We can accordingly repred@ht=

(1, e 92mn/oN) o em2m Ny =D/ON)T - Ty e i an (W, Wa, W) andV = (VI, VE, VI)7. Then
MrK x MrK identity matrix, andV is a Mr KN, x N,

T
block diagonal matrix WVAT (M, ¢p) = (W1, W) < (V211$3)E{&V{F7(?zf &) ) .
V = diag{bee 2P T Upy }imy o v, (10) This shows that we can always useca with single entry
with p, being the/-th column of PT. for each quantized delay, and multiple signals with diffire

We have now separated signai$ , (c? @ I, x) that are @ngles will show up in the MMV estimates. More specifically,
known and dependent onfrom others. LetS, denote the set if £ € Sq multipath signals have the same delays but different
of available subcarriers for sensing and 2t denote its size. AOAS or AoDs, we will get
Stacking all row vectorg” ,,n € S, to a matrix generates VAT (M, ¢) = Z bee 72 0. T Upal (M, ¢).  (14)

Y = WVAT (M, ¢), (11) t€Sa
) o ) If these multipath signals are from different RRUs (users),
whereW is an N, x My K N, matrix with its n-th row being multiple B;s will be non-zero. Hence in this case, these

XT (CT Q1 ) . . . .
n,t\Cpn ©IMrK)- . multipath signals can be estimated straightforwardly.
Inspecting (11), we can see that the estimation problemt mytipaths are from the same RRU (user), we will have
can be formulated as a multi-measurement vector (MMV)

block sparse problem [10] withV, x M observationsY,, By = Y bee " Toa(My, 0y )a" (M, ¢1.0).  (15)
sensing matrixW, and block sparse signalVA” (M, ¢) L€8q

of L-sparsity. LetV = (V{,V],.-- VL )" where V, When the multipath number is small, we can solve this
denotes theMrK x N, block signals, andL out of N, problem by applying spectrum analysis techniques, such as
Vs have non-zero elements. A block sparse compress&8PRIT or MUSIC. We can also right-multip/ x 1 beam-
sensing algorithm can solve (11) and generate estimates goanning vectors tB, ; to get the magnitude plot at different
VAT (M, @), 0 =1,--- ,N,. AOAS.
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Fig. 3. Results for AoA-Distance estimation in downlink sieg. Note the Fig. 4. Results for AoA-Distance estimation for uplink segs Notes are
A0A here and in Fig. 4 is actually the angleadf sin(¢¢) | Every star or circle similar to those in Fig. 3.

represents parameters for one multipath: Stars and caodefor estimated and
actual ones, respectively. Different colors representtipath from different

RRUs. Upper: transmission power=20 dBm; bottom: transorispower=15

dBm. VI. CONCLUSIONS
We have developed a basic framework for a perceptive
mobile network where three types of sensing methods can

V. SIMULATION RESULTS be integrated with communication. A preliminary scheme is

We present preliminary simulation results here using tifi¢veloped for estimating sensing parameters, and its-effec

block Bayesian Sparse Learning algorithm [10] to validate t tiveness is validated by simulation results. Although ¢hare
effectiveness of our parameter estimation scheme, with1. ~ Significant challenges in making the system fully functiona
We consider a system with RRUs, providing connections ©Ur work here is a solid first step, demonstrating the fekisibi

to 4 users using allV = 1024 subcarriers and x 4 multiuser 2nd providing a way to proceed.
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