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Abstract—In this work we analyse the structure of highly-
entangled multimode squeezed states, such as those generated
by broadband pulses undergoing type-II parametric down-
conversion (PDC). Such down-conversion has previously been
touted as a natural and efficient means of cluster-state generation,
and therefore a viable future pathway to quantum computation.
We first detail how broadband PDC processes lead directly to
a series of orthogonal supermodes that are linear combinations
of the original frequency modes. We then calculate the total
squeezing of the multimode entangled states when they are
assumed to be measured by an ideal homodyne detection in
which all supermodes of the states are detected by an optimally
shaped local oscillator (LO) pulse. For comparison, squeezing of
the same entangled states are calculated when measured by a
lower-complexity homodyne detection scheme that exploits an
unshaped LO pulse. Such calculations illustrate the cost, in
the context of squeezing, of moving from higher complexity
(harder to implement) homodyne detection to lower-complexity
(easier-to-implement) homodyne detection. Finally, by studying
the degradation in squeezing of the supermodes under photonic
loss, multimode entangled state evolution through an attenuation
channel is determined. The results reported here push us towards
a fuller understanding of the real-world transfer of cluster-states
when they take the form of highly-entangled multimode states in
frequency space.

I. INTRODUCTION

Numerous photonic architectures have been proposed for

the implementation of quantum information processing, with

measurement-based linear optical computing perhaps being

the most well known [1]. However, practical scalability issues

continue to hinder progress in this well-known architecture. A

quite different architecture for quantum information processing

that has garnered interest in recent times is the use of mea-

surements of single nodes contained within a highly entangled

multimode (multipartite) state - that takes the form of a cluster

state, e.g. [2]. A key problem for this latter paradigm is the

generation of the cluster state itself - a difficult task due to

the intrinsic large-scale entanglement required. A potentially

promising avenue to solve this problem is the use of frequency

combs as input to the down-conversion process in an optical

parameter oscillator, e.g. [3]–[6].

In this work we will not investigate specific cluster state

generation techniques, but rather consider the evolution of

such states through photonic-loss channels when these states

are indeed in the form of highly-entangled multimode states.

We will be particularly interested in the total entanglement

that resides within such states following their transmission

through a photonic-loss channel. Since we will investigate the

entanglement properties as measured by homodyne techniques,

our journey will also highlight the importance of proper pulse

shaping of the LO in any quantum protocol that is based

on down converted broadband pulses followed by homodyne

detection (e.g. see [7] for one example of such a protocol). Our

work therefore, not only probes the transfer (communication

through a quantum channel) of specifically engineered cluster

states in their own right, but also the transfer and detection of

generic multimode states produced by broadband laser pulses

undergoing a PDC process.

In continuous-variable (CV) domain, type-II PDC is known

as a source of entangled squeezed quantum states. In type-

II PDC, a photon of the incoming pump beam spontaneously

decays (in a non-linear crystal) into a pair of photons, known

as the signal and the idler. The signal and the idler are

in orthogonal polarizations, forming an entangled squeezed

state [8]–[10]. Standard type-II PDC sources do not generate

a single entangled squeezed state, but (simultaneously) a

multitude of entangled squeezed states in frequency modes

[11]–[14]. In general, each frequency mode of the signal beam

can be correlated with all frequency modes of the idler beam.

However, in entanglement-based quantum communication pro-

tocols, such as quantum key distribution (QKD) and quantum

teleportation where the PDC state (i.e, the output of type-

II PDC) is mostly used as the entanglement resource, the

multimode structure of such a state is usually ignored.

In order to analyse the multimode structure of the PDC

state a new basis is defined in which two sets of orthogo-

nal (frequency-decorrelated) broadband spectral modes, called

supermodes are introduced (one set for the signal beam and

the other set for the idler beam). These supermodes are

linear combinations of the original, single frequency modes

[11], [12], [15]–[18]. In such a modal representation, each

supermode of the signal beam is correlated with only one

supermode of the idler beam. Thus, instead of describing the

PDC state as an entangled squeezed state in the frequency

mode basis, the PDC state can be described as a set of

independent entangled squeezed states in the supermode basis.

Such a supermode basis can also be defined for type-I PDC

of femtosecond-frequency combs [6], [19]–[22].

The remainder of the paper is as follows: In Section II

the structure of the PDC state is presented and homodyne

detection is discussed. Section III presents our simulation

results for different LO pulses, and Section IV presents the

effects of photonic loss.
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II. SYSTEM MODEL

A. Multimode Squeezed Entangled States

Homodyne detection is widely used in quantum communi-

cation protocols to measure the quadrature statistics of a quan-

tum state, e.g. [23]–[25]. In many homodyne detections of the

PDC state, an unshaped LO pulse (which is actually the pump

laser pulse) is utilized for the quadrature measurements of the

signal and idler beams. As a result, the quadrature statistics

of one mode of the signal and one mode of the idler beam

are measured. From these quadrature statistics the correlation

between these two modes can be obtained. In some cases this

may only be a fraction of the total correlations between the

signal and idler beams. However, the total correlations of the

PDC state can be obtained by capturing all the orthogonal

supermodes of the state in the homodyne detection which can

be realized by shaping the LO pulse in the spectral form of

the orthogonal supermodes [26].

In type-II PDC, a pump beam with spectral amplitude

α (ω) is first frequency doubled. The nonlinear crystal is

then pumped with the frequency-doubled pump beam where

a photon of the incoming beam spontaneously decays into an

orthogonally-polarized photon pair (the signal and the idler),

forming an entangled squeezed state. This process can be

described by the Hamiltonian [8]–[12], [27],

ĤPDC = ζ

∫ ∫

dωsdωif (ωs, ωi) â
† (ωs) b̂

† (ωi)+h.c., (1)

where â† (ωs) is the photon creation operator associated with

a signal mode of frequency ωs, b̂† (ωi) is the photon creation

operator associated with an idler mode of frequency ωi, and ζ
denotes the overall efficiency of the PDC process. Note h.c. is

the Hermitian conjugate. The function f (ωs, ωi) is the joint

spectral amplitude of the emitted photon pairs, which indicates

the coupling strength between modes at frequencies ωs and ωi,

and is given by

f (ωs, ωi) =
1√
N
α′ (ω′)Φ (ωs, ωi) , (2)

where α′ (ω′) is the spectral amplitude of the frequency-

doubled pump beam at frequency ω′ = ωs+ωi, and Φ (ωs, ωi)
is the phase-matching function. The function f (ωs, ωi) is

normalized via N such that
∫ ∫

dωsdωi|f (ωs, ωi)|2 = 1. Note

we assume a real-valued function for f (ωs, ωi). For more

general functions (e.g. such as used in [12]) details of our

calculations will change, but the broad results will remain.

The PDC state can be described as |PDC〉 = ÛPDC |0〉 |0〉,
where the unitary operator ÛPDC is given by ÛPDC =

exp
(

− i
~
ĤPDC

)

. Such a representation of the PDC state is

not easy to analyse, as there are infinitely many frequency-

correlated modes in the signal and idler beams.

By performing a singular-value decomposition (SVD) on the

function f (ωs, ωi), we are able to express it in a frequency-

decorrelated modal representation [11], [12], [15]–[18], i.e.

f (ωs, ωi) =
∑

k

ckψk (ωs)ϕk (ωi) , (3)

where {ψk (ωs)} and {ϕk (ωi)} are two (real-valued) or-

thonormal basis sets. Each pair of functions ψk (ωs) and

ϕk (ωi) describe a supermode with the amplitude ck, such

that
∑

k

|ck|2 = 1. The type-II PDC Hamiltonian can now be

expressed in terms of supermodes, as

ĤPDC = ζ
∑

k

ck

(

Â†
kB̂

†
k + ÂkB̂k

)

, (4)

where Â†
k (B̂†

k) is the photon creation operator associated with

a signal (idler) supermode, defined as

Âk =
∫

dωsψk (ωs)â (ωs) ,

B̂k =
∫

dωiϕk (ωi)b̂ (ωi) .

(5)

Due to the orthonormal property of the supermode functions,

i.e., {ψk (ωs)} and {ϕk (ωi)}, the supermode field operators

satisfy the commutation relations,
[

Âi, Â
†
j

]

=
[

B̂i, B̂
†
j

]

= δij .

Such a representation shows that the type-II PDC gen-

erates an ensemble of independent twin-beam supermode

squeezed states, for which rk = ζck determines the twin-

beam squeezing in supermode k. Note, in terms of dB

the twin-beam squeezing in supermode k is defined by

−10log10 (exp(−2rk)). The quadrature operators associated

with a signal supermode (Q̂a
k, P̂

a
k ), and an idler supermode

(Q̂b
k, P̂

b
k ) can now be defined as

Q̂a
k = Âk + Â†

k, P̂
a
k = i

(

Â†
k − Âk

)

,

Q̂b
k = B̂k + B̂†

k, P̂
b
k = i

(

B̂†
k − B̂k

)

.

(6)

The vector of the supermode quadrature operators for the

PDC state with n supermodes can be defined as R̂ =
(

Q̂a
1 , P̂

a
1 , Q̂

b
1, P̂

b
1 , . . . , Q̂

a
n, P̂

a
n , Q̂

b
n, P̂

b
n

)

. The covariance ma-

trix (CM) of the PDC state in terms of the supermode

quadrature operators is defined as Mij =
1
2

〈

R̂iR̂j + R̂jR̂i

〉

−
〈

R̂i

〉〈

R̂j

〉

, where 〈.〉 denotes the first moment of the

supermode quadrature operator. Each twin-beam supermode

squeezed state with squeezing rk is a Gaussian state [2], and

can be described by a CM in the following form

Mk =

(

cosh(2rk)I sinh(2rk)Z
sinh(2rk)Z cosh(2rk)I

)

, (7)

where I is a 2 × 2 identity matrix and Z = diag (1,−1).
For a pure PDC state the total squeezing is given by rtot =
∑

k

rk , and the total logarithmic negativity (as a measure of

entanglement) is given by Etot =
∑

k

−log2 (exp (−2rk)) [2].

B. Homodyne Detection

To measure the quadrature statistics of an optical pulse

through a homodyne detector, the signal pulse is combined in

a 50:50 beam splitter with a strong LO pulse. In general, the

signal pulse consists of a continuum of frequency modes with

field operators â (ω) and â† (ω). Let us assume that the LO



pulse can be described by a normalized real-valued spectral

function g(ω). Through the measurement of the difference-

photocurrent statistics, the signal pulse quadrature operator,

X̂ =
(

Â exp (−iϕ) + Â† exp (iϕ)
)

is measured, where Â =
∫

dωg(ω)â (ω), and where ϕ is the phase of the LO pulse.

Note, for ϕ = 0, the quadrature operator Q̂ =
(

Â+ Â†
)

and

for ϕ = π/2, the quadrature operator P̂ = i
(

Â† − Â
)

of the

signal pulse can be measured. Thus, an LO pulse can be used

to ‘capture’ a supermode (with field operator Â) in the signal

pulse, and measure the associated quadrature operators [23].

The above discussion informs us that if the LO pulse in

the homodyne detection of the signal (idler) beam of the

PDC state is shaped so that it is in the spectral form of

the supermode function ψk (ωs) (ϕk (ωi)), one can measure

the quadrature operators of the corresponding signal (idler)

supermode given by Eq. (6). In this case according to Eq. (3)

the corresponding twin-beam supermode squeezing is given

by rk = ζ
∫ ∫

dωsdωiψk (ωs) f (ωs, ωi)ϕk (ωi).

III. OPTIMAL AND SUB-OPTIMAL DETECTION

Here, we consider a typical (experimental) type-II PDC

process, where the spectral amplitude of the frequency-

doubled pump beam α′ (ω′), and the phase-matching function

Φ (ωs, ωi) are given as

α′ (ω′) = α′ (ωs + ωi) = exp
(

− (ωs+ωi−2ωp)
2

2σ2
p

)

,

Φ (ωs, ωi) = sin c
(

−ks(ωs−ωp)+ki(ωi−ωp)
2

)

,

(8)

where σp is the pump bandwidth and ωp is the central

frequency of the original pump beam. In the phase-matching

function we have ks = L(k′p − k′s) and ki = L(k′p − k′i)
where L is the crystal length, and where k′p, k′s, and k′i are

the inverse of group velocities at the frequencies 2ωp, ωp, and

ωp, respectively. Unless otherwise stated, here we consider the

values of a typical experiment in [11], where ks = 0.061 ps

and ki = 0.213 ps corresponding to a value of L = 0.8mm.

We assume the PDC source to be pumped by a laser source

delivering ultrafast optical pulses with 6 nm FWHM (140 fs)

centered at 795 nm with a repetition rate of 76 MHz [22], [28].

For such a pulse the frequency bandwidth is approximately

2.8480× 1012 Hz FWHM.

We approximate the function f (ωs, ωi) by subdividing

the frequency range [0, 2wp + 3σp] (for both ωs and ωi)

into n = 1000 discrete bins which allows us to form an

n × n matrix. Performing an SVD on this n × n matrix

(i.e., Eq. (3)), we will have n supermodes in both the signal

and idler beams. The k-th supermode of the signal beam is

only correlated with the k-th supermode of the idler beam,

forming a twin-beam supermode squeezed state with a twin-

beam squeezing rk (calculated from the SVD). Then, we can

calculate rtot =
∑n

k=1 rk, which is a good approximation of

the total squeezing of the PDC state. Note also, we assume

unit efficiency for the PDC process, i.e., ζ = 1. In Fig. 1,

we plot rk of the first 20 supermodes (out of n = 1000
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Fig. 1. The twin-beam squeezing of the first 20 supermodes.

supermodes) for different values of σp. According to Fig. 1,

squeezing amplitudes rk exponentially (approximately) decay

for higher-order supermodes (i.e., higher values of k), with

the decay rates decreasing with decreasing pump bandwidth.

Note, for σp = 1.4240× 1012 Hz, the squeezing included in

the leading 20 supermodes is approximately 50% of the total

squeezing rtot = 6.

We also plot the total squeezing rtot of the PDC state as a

function of the pump bandwidth σp in Fig. 2 (top figure). As it

can be seen the total squeezing can be increased by decreasing

the pump bandwidth. Such a squeezing improvement can be

explained because a narrower bandwidth (i.e., smaller σp)

leads to a larger value of α′ (ω′), resulting in stronger coupling

between frequency modes of the signal and idler beams in the

function f (ωs, ωi). In all our calculations thus far, the total

squeezing rtot is calculated assuming the LO pulses are shaped

in the form of the supermode functions (optimal detection).

Now, we consider homodyne detection of the PDC state

without shaping LO pulses (in the form of {ψk (ωs)} and

{ϕk (ωi)}). In fact, the LO pulse for the homodyne detection

of each signal and idler beams is directly taken from the laser

source, which means the LO pulse is actually in the form

of pump spectral function, i.e., α (ω). Thus, we consider the

normalized functions

gs (ω) = gi (ω) =
1

√

Np

exp

(

− (ω − ωp)
2

2σ2
p

)

(9)

as the two unshaped LO pulses, where gs (ω) (gi (ω)) is the LO

pulse for the homodyne detection of the signal (idler) beam,

and Np is the normalization constant.

As discussed earlier, in the homodyne detection an LO pulse

with the function gs (ω) (gi (ω)) captures a supermode in the

signal (idler) beam, and the associated quadrature operator

can be measured. The squeezing associated with the captured

supermodes can be given by

rg = ζ

∫ ∫

dωsdωigs (ωs) f (ωs, ωi) gi (ωi) . (10)

Here we consider the PDC state described by Eq. (8) which

is now homodyne detected by the unshaped LO pulses gs (ω)
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Note, the plots show the squeezing for different crystal lengths. Here L1 =

0.8mm, and the solid unmarked line (L = L1) leads to values ks = 0.061
ps and ki = 0.213 ps.

and gi (ω). In Fig. 2 (bottom figure) we plot the obtained

squeezing, rg , by such a homodyne detection as a function of

the pump bandwidth, σp. As can be seen the squeezing rg is

first increased by increasing the pump bandwidth, because a

wider LO pulse is able to capture a wider supermode (i.e. a

linear combination of more frequency modes). However, the

correlation between these frequency modes is decreased by

increasing the pump bandwidth. Thus, there is a peak in the

value of rg , which means there is an optimal value of the

pump bandwidth to maximize the obtainable squeezing when

the PDC state is homodyne-detected by unshaped LO pulses.

Comparison between the top and bottom plots of Fig. 2

clearly shows the cost of the sub-optimal homodyne detection

of the PDC state relative to the optimal homodyne detection.

That is, Fig. 2 shows that for all values of the pump bandwidth,

the LO pulses need to be properly shaped in order to measure

the total squeezing of the PDC state otherwise only a small

fraction of the total squeezing can be measured. For instance,

for σp = 8 × 1012 and L = L1, rg is approximately 20%
of the total squeezing rtot. Note that, the parameters that

are varied in these plots represent perhaps the two most

fundamental variables under the experimentalist’s control -

namely the bandwidth of the pump and the length of the

non-linear crystal. Opposing effects are at play here1, but a

particular observation worthy of note is the fact that as L
increases and the bandwidth decreases the mismatch between

optimal and suboptimal detection can decrease.2

Note, if we reduce the bandwidth of the unshaped LO

pulses, σp, such that the LO pulses approach a delta function,

i.e., gs (ω) = gi (ω) = δ (ω − ωp), the captured twin-beam su-

permode squeezed state approaches the twin-beam frequency-

mode (the mode associated with the central frequency ωp)

squeezed state.

IV. LOSSY CHANNELS

In the previous section, we assumed there is no loss in the

PDC state. In this section we analyse the evolution of the

PDC state through a lossy channel in terms of the transferred

squeezing levels - a metric important for many quantum

information protocols. We note the transmission of the PDC

state over a lossy channel has been previously analysed in

terms of the achievable quantum communication rates [17].

We assume the idler beam of the PDC state is kept un-

changed at the source, while the signal beam is transmitted

through a lossy channel. For simplicity, we also assume the

lossy channel is a fixed-attenuation channel with transmissivity

τ , and that losses are independent of the frequency (of the

signal beam). Since the channel loss is independent of the

frequency, the mode functions {ψk (ωs)} and {ϕk (ωi)} of the

PDC state remain unchanged [29]. Hence, all the twin-beam

supermode squeezed states evolve independently from each

other through the channel. Thus, the total logarithmic nega-

tivity of the PDC state at the output of the fixed-attenuation

channel can be calculated through the evolution of the CM of

each twin-beam supermode squeezed state. Each twin-beam

supermode squeezed state with an initial CM as given by

Eq. (7), is after transmission of the signal beam (through a

fixed-attenuation channel with transmissivity τ ) described by

an evolved CM of the following form

M loss
k =

(

cosh(2rk)I
√
τ sinh(2rk)Z√

τ sinh(2rk)Z (τ cosh(2rk) + 1− τ ) I

)

.

(11)

As such, the (approximated) total logarithmic negativity of

the mixed PDC state is given by Etot =
∑n

k=1 Ek, where

Ek is the logarithmic negativity of the evolved twin-beam

supermode squeezed state described by the CM M loss
k .

Note, given a Gaussian state with a CM M =
(A,C;CT , B), where A = AT , B = BT , and C are

2 × 2 real matrices, the logarithmic negativity is given by

E (M) = max [0,−log2 (ν−)], where ν− is the smallest

1Note when σp increases, the coupling between frequency modes of the
signal and idler beams becomes weaker, however, the number of frequency
modes contributing to the total squeezing increases.

2Of course other processes can be utilized to reduce such a mismatch,
e.g. frequency filtering at the sending station. However, such processes will
usually remove the cluster-state configuration, the evolution of which is of
prime interest to us here.
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symplectic eigenvalue of the partially transposed M . This

eigenvalue is given by ν2− =
(

∆−
√
∆2 − 4 detM

)

/2,

where ∆ = detA+ detB − 2 detC [2].

Considering the pure PDC state described by Eq. (8) as

the initial PDC state, we plot in Fig. 3 the total logarithmic

negativity, Etot, of the mixed PDC state at the output of the

channel as a function of the channel transmissivity τ and the

pump bandwidth σp. As it can be seen, the total logarithmic

negativity (similar to the total squeezing) of the PDC state

is increased by decreasing the pump bandwidth, while it

decreases with increasing channel loss. These results quantify,

for a given input bandwidth, how much loss a channel can

tolerate in order to achieve some target total entanglement. As

such, they should prove useful in designing specific protocols

which utilize optimal detection of the embedded entanglement

within the quantum state.

V. CONCLUSION

In this work we have explored the importance of optimal

pulse shaping in the homodyne measurements of any cluster

state which is embedded in a multipartite entangled quantum

state. Our results illustrate the trade off in complexity (optimal

pulse shaping) versus quality (total entanglement) that arises

in any information processing using such states. We have also

determined how the total entanglement of the cluster state (as

determined via optimal pulse shaping) is impacted by photon

loss in a fixed attenuation channel. Future work could include

variable attenuation channels, and the impact of non-Gaussian

operations such as photon subtractions at the sending station.

Determination of the range over which significant supermode-

multiplexing gain is viable once frequency-dependent loss is

considered would also be useful. Frequency-dependent losses

will, in part, determine the transceiver dimensions needed to

coherently transfer cluster states over a specified distance.
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