
Stochastic Geometry Analysis for Band-Limited

Terahertz Band Communications

Joonas Kokkoniemi, Janne Lehtomäki, and Markku Juntti
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Abstract—The terahertz band (0.1–10 THz) point-to-point
links offer very large spectral resources for extremely high
data rate links or an ability to share the resources among
large numbers of users or devices. The latter case causes a
need to consider interference in the THz band networks. The
stochastic geometry is a powerful tool to estimate the network
level interference and its moments in the case of random
networks. This paper extends the previous works by considering
bandwidth limited networks, i.e., instead of generic modeling
of the interference, we apply bandwidth limited transmissions
to better model realistic networks that utilize limited resources.
Furthermore, we assume heterogenous network with some of the
nodes utilizing directional antennas, and others using isotropic
antennas. Network is further assumed to be sparse in a sense that
the noise causes partial limitations in the achievable signal-to-
noise-plus-interference (SINR). The mean interference and the
SINR are derived and their validity is verified with computer
simulations.

I. INTRODUCTION

The millimeter wave (30–300 GHz) and terahertz band

(0.1–10 THz) communication technologies have become very

popular research topics during the past few year in the search

of extremely high data rates for future communication systems.

Especially, the THz band can be seen as a very potential

platform to realize one Tbps links due to the vast available

frequency resources. On the other hand, the high available

bandwidth makes it possible to share the frequency resources

among large numbers of users and devices. Large bandwidth

can also simplify medium access control (MAC) design for

resource limited devices. The latter is of interest to future

communications systems as the number of internet of things

(IoT) devices is expected increase strongly [1], and thus, they

play an important part in the considered applications for these

high frequency bands.

The downside of the otherwise very potential frequency

bands is the extremely high path loss and molecular absorption

loss [2], especially in the THz band, the main interest of this

paper. Those limit the maximum operational distances, but

on the other hand, high loss allows communication in the

short range without causing interference to the distant devices.

A second downside is the lack of technologies to efficiently

utilize these frequencies. One of the most promising materi-

als in developing novel technologies for future transceivers

is graphene, that is suitable for very high efficiency com-

ponents for high frequency applications, such as antennas

[3]. Graphene, as well as other promising materials and the

general development of the high frequency components bring

confidence to the future of the THz band. A problem with THz

frequencies has been that sufficient output power is difficult

to achieve. Current developments on THz are focused on

generating high power signals at the 300 GHz frequency band,

but potential solutions exist for even higher frequencies.

The THz band point-to-point links will be the reality in

the future. This is only one step away from the THz band

networks. We know the properties of a line-of-sight (LOS)

channels in the THz band. However, the collective network

behavior is more difficult to predict, especially when con-

sidering that the high frequency links will utilize directional

antennas as a consequence of the high path loss. We can

utilize simulation models to predict the interference in the

network, but there is also a better tool; stochastic geometry.

It is a very powerful tool in estimation of the interference

and its moments in random networks. It relies on geometrical

properties of the environment and node distributions and the

expected values of the randomly distributed distances and node

orientations. This paper is an extension to our previous papers

on the THz band stochastic geometry [4], [5]. Those modeled

generic THz band communications considering deterministic

molecular absorption loss and a full free space path loss model

that is commonly used in the THz band channel modeling. In

those papers, we assumed interference limited network and

generic per-Hertz behavior of the channel. This paper extends

those to consider band-limited transmission and smaller user

densities in order to look into the noise and interference

limited signal-to-noise-plus-interference (SINR) cases. This

is strongly frequency dependent as the path loss changes a

lot over the entire THz band. We also utilize less generic

representation of the system geometry by restricting the node

distribution to be on a plane with three dimensional path loss

in order to have more realistic representation of a network.

Results significantly differ from those in our earlier papers

and show different trends due to results here represent average

behavior of the interference over a certain band. Compared to

earlier works, this work led to new insights on interference

in THz networks, since the strongly frequency dependent

molecular absorption loss flattens as it is averaged over a

frequency band and offers a clearer view for the actual network

behavior.

There are numerous papers on stochastic geometry for

estimating the interference in wireless networks, such as [6]–



[11]. Our model follows those rather accurately, but with the

differences coming from utilization of the molecular absorp-

tion and strict LOS assumption. Those cause some problems,

but closed-form solutions of the moments of the interference

can be derived.

There are some works on stochastic geometry for the

THz band networks [12]–[14]. Those works have one major

difference to this paper, as well as to our previous papers

on the stochastic geometry for THz band networks [4], [5].

They assume the Matern’s hard-core process, which utilizes

guard bands around the Txs and Rxs. This is a dependent

thinning of a Poisson distributed network and is very useful

in scenarios where node locations can be controlled. However,

our approach is more general and is therefore more easy to

extend into various scenarios.

The rest of this paper is organized as follows. Section II

introduces the system model. Section III gives the channel

model, antenna assumptions, and derives the moments of the

interference. Finally, numerical results/examples are given in

Section IV and Section V concludes the paper.

II. SYSTEM MODEL

The system model herein is closely following the one

we presented in [5]. That is, we consider K different node

categories that can have their unique transmit powers, antenna

configurations, transmit probabilities, and node densities. The

node distributions are assumed to follow the Poisson distribu-

tion in all the K categories, or network layers. In the numerical

results we utilize two node categories, the isotropic sensor

nodes and the directional gateway nodes. Such a network

configuration is illustrated in Fig. 1. It depicts a network

where simple sensor nodes utilize isotropic antenna and more

complex gateways are capable of beam steering and can direct

their transmissions towards the desired receiver.

The core idea of the stochastic geometry is to model a ran-

dom network with random node locations to characterize the

average behavior of the network. Due to ease of calculations,

the interference is usually studied about a node at the origin

and the transmitting nodes are dropped around it (like in Fig.

1). The node at the origin is therefore called a typical node,

as it sees the typical interference behavior of the network.

Each randomly dropped node is associated with its receiver in

random direction from the transmitter. Thus, the typical node

in the origin sees the network as a random interferer. Placing

the typical node in the origin helps with the calculations,

since we assume circularly symmetric planar drop area and

therefore the interference geometry of the system is obtained

as a function of the distance from the typical node only. This is

due to the dropped nodes are modeled as densities rather than

actual nodes, and thus, the aggregate interference is obtained

by integrating over the space surrounding the typical node.

More information of the assumptions and properties of this

type of a network can be found, e.g., in our paper about the

stochastic geometry for the THz band [4] and in the literature

for the general stochastic geometry [6]–[11].
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Fig. 1. The system model. The typical node at the origin corresponds to a
random point in space that experiences the interference induced by randomly
distributed nodes around it. All the nodes, including the typical node, can
have either directional or isotropic antennas.

III. CHANNEL MODEL AND STOCHASTIC GEOMETRY FOR

THE THZ BAND

A. Path Loss Model

In our previous works we assumed fully general path loss

model that is valid in all possible spatial dimensions [4], [5].

Here, on the other hand, we assume regular three dimensional

path loss and a planar drop area for the nodes as detailed

above due to interest in more realistic network deployment

scenario. The path loss model herein is a LOS model that takes

into account the free space path loss (FSPL) and molecular

absorption loss [2]. Then the path gain of the channel is given

by

l(r, f) =
c2 exp(−κa(f)r)

(4πrf)2
, (1)

where κa(f) is the absorption coefficient at frequency f , r
is the distance from Tx to Rx, and c is the speed of light.

The absorption coefficient can be calculated with the help

of databases, such as the HITRAN database [15], and as

presented, e.g., in [2]. The main benefit of utilizing generic

FSPL model is the ease of extending it to take into account

additional propagation mechanisms (such as the molecular

absorption here).

B. Interference and Noise

We are interested in the mean interference of band-limited

networks, i.e., each node utilized certain common-to-all band-

width W at the same center frequency. Then the mean inter-

ference needs to be calculated over that bandwidth W . Given

the above path loss model, the aggregate interference over that

band becomes

Iaggr =

K
∑

k=1

∑

i∈Φk

lk(ri), (2)

where

lk(ri) =

∫

W

PTx,k

W
EΘ[GTx,k(Θ)]EΘ[GRx,k(Θ)]l(ri, f)df. (3)



where Φk is the set of interfering nodes, PTx,k is the total

transmit power of the kth category Txs, PTx,k/W is the per

Hertz transmit power (we assume equal distribution of transmit

power over the band W ), EΘ[GTx,k(Θ)] and EΘ[GRx,k(Θ)] are

the expected antenna gains of the Txs and the typical Rx node

(assumed to be independent of the frequency), and Θ is the

direction of the antenna in 3D space. The transmit power spec-

tral density (PSD) PTx,k/W can replaced with any arbitrary

and application specific transmit PSD. The summation over

k node categories is done based on the previously mentioned

assumption of the Poisson distributed nodes, and the fact that

superimposing multiple PPPs is still a PPP [10, Sec. 1.3].

Based on the aggregate interference and path loss for the

desired signal, signal-to-interference-plus-noise ratio (SINR)

becomes

SINR =
S(r)

N + Iaggr

, (4)

where

S(r) =

∫

W

PTx

W
maxΘ[GTx(Θ)]maxΘ[GRx(Θ)]l(r, f)df (5)

is the desired signal power, where maxΘ[G] is the maximum

antenna gain, assuming that the desired link is perfectly

aligned. The noise power N given by

N =

∫

W

kbTNfnf (f)df, (6)

where kb is the Boltzmann constant, T is the temperature, Nf

is the noise figure, and nf is a noise reduction factor due to

quantum effects at high frequencies [16], which is given by

nf (f) =
hf

kbT

(

exp

(

hf

kbT

)

− 1

)−1

, (7)

where h is the Planck’s constant. This factor causes a few dB

drop of the noise power at higher end of the THz band as a

consequence of the high energy transitions between the energy

states of the molecules becoming sparser when compared to

the lower frequencies.

C. Antenna Patterns

The antenna patterns utilized here are either isotropic or

simple cone shaped directional antenna patterns [4]. We al-

ways assume that the antenna pattern integrates to unity, and

thus, the total transmit power over the antenna pattern is

always constant. Therefore, the expected antenna gain to any

given random direction Θ becomes

EΘ[G(Θ)] =
1

4π

∫

R3

G(Θ)dR3 =
1

4π
, (8)

where 1/4π is the effective expected antenna gain due to the

above mentioned integration of the antenna pattern to unity.

As a consequence, integrating 1/4π over the 3D space equals

unit total transmit power in average per unit transmit power.

D. Stochastic Model of the Aggregate Interference

The most interesting part of the stochastic modeling of

the interference is the mean interference power that can be

utilized in estimation of the expected interference of a network.

The moments of the interference can be calculated from the

Laplace transform of the aggregate interference [6], [7]

LIaggr
(s) = EΦ

[

exp

(

−s

K
∑

k=1

∑

i∈Φk

lk(ri)

)]

, (9)

where Φ indicates expectation over all the sets of nodes Φk.

The detailed calculations of this expression to the point from

which we can calculate the moments of the interference are

given in [4], [5]. One needs to add the above integration over

a band W and the associated terms herein to take into account

the impact of calculating the interference over potentially

large bandwidth in which the channel response may change

drastically due to, e.g., molecular absorption loss. After some

manipulations, we can give the Laplace transform as

LIaggr
(s) =

∏

K

exp



−2πpkλk

∞
∫

0

r(1− exp(−slk(r)))dr



 ,

(10)

where λk is the density of the nodes of the node category k
and pk is the probability of a node to transmit, which operates

as an effective thinning operation for the λk due to assumption

of an ALOHA transmission scheme.

From the above expression we can calculate the moments

of the interference. The nth raw moment of the aggregate

interference power is obtained from the nth derivative of the

Laplace transform by [9]

E[In] = (−1)n
dn

dsn
LIaggr

(s)
∣

∣

∣

s=0

. (11)

To give the final moments more easily, we mark the above

Laplace transform in (10) as

LIaggr
(s) = fG(n) exp(−L(s)), (12)

where

fG(n) =

(

maxΘ[GTx,k(Θ)]maxΘ[GRx,k(Θ)]

EΘ[GTx,k(Θ)]EΘ[GRx,k(Θ)]

)n−1

, (13)

where n is the derivative order, is an antenna gain fac-

tor that takes into account the larger variability of the re-

ceived power in the case of directional antennas because

the maximum interference power varies between zero and

PTx,kmaxΘ[GTx,k(Θ)]maxΘ[GRx,k(Θ)] [5]. It can be seen that

this factor is one for isotropic antennas and does not have

impact on the mean interference, as the expected antenna gains

alone take into account the antenna effects for the average

interference. The term L(s) in Eq. (12) is

L(s) =
∑

K

2πpkλk

∞
∫

0

r(1− exp(−slk(r)))dr. (14)



Calculating the moments of the interference according to (11),

first two moments become:

E[Iaggr] = L′, (15)

E[I2aggr] = −fG(n = 2)L′′ + (L′)2, (16)

where

L′(s = 0) =
∑

K

c2

8π
pkλkEΘ[GTx,k(Θ)]EΘ[GRx,k(Θ)]

×

∞
∫

0

r−1

∫

W

PTx,k

Wf2
exp(−κa(f)r)dfdr,

(17)

L′′(s = 0) =

−

∑

K

c4

128π3
pkλk(EΘ[GTx,k(Θ)]EΘ[GRx,k(Θ)])2

×

∞
∫

0

r−3

∫

W

P 2

Tx,k

W 2f4
exp(−2κa(f)r)dfdr.

(18)

The mean interference is obtained directly from (15) and the

variance is given by

var(Iaggr) = −fG(n = 2)L′′(s = 0), (19)

because var(X) = E[X2] − (E[X])2, which is easy to solve

from (15) and (16). Any higher moment can be calculated

similarly and as shown for the third moment in [5].

IV. NUMERICAL RESULTS

The numerical results are given for two layered network;

one utilizing directional antennas and one utilizing isotropic

antennas. The aggregate interference this case is a summation

over the two node categories, but results are given for single

layers as well in order to show the differences in the results

as a consequence of different parameters. Those are given in

Table I. The densities of the nodes are obtained from the drop

area of four meters in diameter. This diameter is enough to

ensure no interference coming outside this area, and thus, the

simulations results approach to those obtained with theories

presented in the previous section utilizing infinite area with the

given node densities. The feasibility of the four meter diameter

drop area is therefore shown by the perfect match between the

theories and simulations. The simulation model for this paper

is a band-limited modification to that given in detail in [4].

Furthermore, the bandwidth is assumed to be 20 Gigahertz,

which offers very large theoretical capacity, but on the other

hand it reduces the communication distance due to large noise

power as it will be seen below. The noise figure Nf of the

receiver was assumed to be 10 dB.

Using the above parameters, and calculated the mean inter-

ferences for both layers, their sum, desired signal powers at

11 cm distance from directional and isotropic transmitters, and

the noise floor are given in Fig. 2 for the 20 GHz bandwidth as

a function of the center frequency. Fig. 3 is a closeup of Fig.

2 for the below one THz frequencies. The ripple in the curves

TABLE I
PARAMETERS FOR THE NUMERICAL RESULTS.

Parameter Directional nodes Isotropic nodes

Antenna beam width π/4 N/A
Number of nodes 100 300

Density of nodes λk 2/m2 6/m2

Transmit power PTx,k 1 W 1 W
Probability to transmit pk 0.5 1
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Fig. 2. The aggregate interferences, signal powers, and noise floor based on
the theory and simulations.
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Fig. 3. A closeup of Fig. 2 for below one THz frequencies.

is caused by the molecular absorption that causes frequency

selective, but deterministic fading to the signals. Therefore,

it gives similar fading to all the frequency domain powers.

We can see that the high bandwidth combined with the large

path loss results in interference limited communications below

about one THz and noise limited above it. Obviously the noise

limitations is subject to the bandwidth of the transmission.

The communication distance here is very low and could be

enhanced with higher gain antennas. However, the point here is

not to demonstrate a system performance, but the performance

of the theories for the band-limited interference. As it can be

seen, the theories presented in the previous section perfectly

match with those obtained by computer simulations.

Fig. 4 gives the corresponding SINR values to the powers

given in Fig. 2. Fig. 5 is a closeup of Fig. 4 for the below

one THz frequencies. As it can be expected, the theoretical

SINRs based on the stochastic interferences perfectly matches
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Fig. 4. SINRs for the directional and isotropic nodes with interference coming
from the total aggregate interference power of the network.
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Fig. 5. A closeup of Fig. 2 for below one THz frequencies.

the simulation results. Although not the point of these results,

the SINRs show the importance of the directional antennas

in the THz band communications: in the case of rather dense

network of nodes, interference and noise quickly cover the

weak transmit power of an isotropic transmitter. Therefore,

the THz band communications will always require directional

antennas, even at very low distance, but even more so if

we target several meters of range. In the case of larger link

distances, lower bandwidths should be utilized due to quickly

aggregating noise power as a function of the bandwidth. Below

one THz frequency and especially in the millimeter wave

frequencies the stochastic interference plays very important

role due to relatively lower path loss compared to the above

one THz frequencies.

These results show that the stochastic geometry is a useful

tool to estimate the band-limited systems’ interference levels.

Although, the noise might be more meaningful in many cases,

the accurate link budget calculations require full understanding

of the energies in the channel. Those can be estimated quickly

and accurately with the stochastic geometry without a need for

complex simulation models.

V. CONCLUSION

We have show the aggregate interference model for band-

limited networks operating at the THz frequency band. Based

on the simulations, these models predict the interference levels

exactly as well as the higher moments of the interference. With

the help of stochastic geometry, the moments can be obtained

without the need for heavy network level simulations, but the

interference can be calculated with closed form expressions.

Based on the knowledge of the interference in the network,

accurate link budget calculations become possible by adjusting

the modulations, transmit powers, etc. to the expected SINR

of an individual link. This is a very important aspect on

which the stochastic geometry can help a lot by accelerating

the estimation process without sacrificing the accuracy in the

process.
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[4] J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “Stochastic geometry
analysis for mean interference power and outage probability in thz
networks,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 3017–
3028, May 2017.

[5] ——, “Stochastic analysis of multi-tier nanonetworks in thz band,” in
Proc. ACM Int. Conf. Nanoscale Comput. Commun., 2017, pp. 1–6.

[6] M. Haenggi and R. K. Ganti, “Interference in large wireless networks,”
Foundations and Trends in Networking, vol. 3, no. 2, pp. 127–248, Nov.
2008.

[7] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and
M. Franceschetti, “Stochastic geometry and random graphs for
the analysis and design of wireless networks,” IEEE J. Sel. Areas

Commun., vol. 27, no. 7, pp. 1029–1046, Sep. 2009.
[8] M. Haenggi, “Outage, local throughput, and capacity of random wireless

networks,” IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 4350–4359,
Aug. 2009.

[9] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic geometry for
modeling, analysis, and design of multi-tier and cognitive cellular
wireless networks: A survey,” IEEE Commun. Surveys Tuts., vol. 15,
no. 3, pp. 996–1019, Jun. 2013.

[10] F. Baccelli and B. Blaszczyszyn, “Stochastic geometry and wireless
networks, volume I – Theory,” Foundations and Trends in Networking,
vol. 3, no. 3–4, pp. 249–449, Dec. 2009.

[11] A. Baddeley, Stochastic Geometry: Spatial Point Processes and their

Applications, ser. Lecture Notes in Mathematics, W. Weil, Ed. Springer
Berlin Heidelberg, 2007.

[12] V. Petrov, D. Moltchanov, and Y. Koucheryavy, “Interference and SINR
in dense terahertz networks,” in Proc. IEEE Veh. Technol. Conf. (fall),
2015, pp. 1–5.

[13] ——, “On the efficiency of spatial channel reuse in ultra-dense THz
networks,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–7.

[14] V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Kouch-
eryavy, “Interference and sinr in millimeter wave and terahertz commu-
nication systems with blocking and directional antennas,” IEEE Trans.

Wireless Commun., vol. 16, no. 3, pp. 1791–1808, Mar. 2017.
[15] L. S. Rothman et al., “The HITRAN 2012 molecular spectroscopic

database,” J. Quant. Spectrosc. Radiat. Transfer, vol. 130, no. 1, pp.
4–50, Nov. 2013.

[16] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys.

Rev., vol. 32, pp. 110–113, July 1928.


