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Radio resource management in cellular net-

works is typically based on device measure-

ments reported to the serving base station.

Frequent measuring of signal quality on avail-

able frequencies would allow for highly reli-

able networks and optimal connection at all

times. However, these measurements are asso-

ciated with costs, such as dedicated device time

for performing measurements when the device

will be unavailable for communication. To re-

duce the costs, we consider predictions of inter-

frequency radio quality measurements that are

useful to assess potential inter-frequency han-

dover decisions. In this contribution, we have

considered measurements from a live 3GPP

LTE network. We demonstrate that straight-

forward applications of the most commonly

used machine learning models are unable to

provide high accuracy predictions. Instead, we

propose a novel approach with a duo-threshold

for high accuracy decision recommendations.

Our approach leads to class specific prediction

accuracies as high as 92% and 95%, still dras-

tically reducing the need for inter-frequency

measurements.

1 Introduction

The booming interest in wireless services means that
cellular networks are upgraded with service over mul-
tiple frequency carriers. This available resource is an
asset, but also pose a relevant radio resource man-
agement problem of how to assign user connections
to different frequency carriers, where users also are
mobile. In order to support users in an adequate
manner, the assignments need to be re-evaluated over
time. If deemed necessary, user connection can be sub-
ject to handover [1] from one frequency carrier to an-
other. To maintain relevant frequency assignments,
frequent measurements would need to be performed,
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which would lead to unnecessary load of the network
and extensive battery consumption. Signaling over-
head can be greatly reduced if an automatic prediction
of the inter-frequency signal quality is provided. Pre-
dictions of the inter-frequency radio signal strength in
terms of 3GPP LTE Reference Signal Receiver Power
(RSRP) has been discussed in [2] by means of Ran-
dom Forests. In this paper, we instead consider Refer-
ence Signal Receiver Quality (RSRQ) as this is a bet-
ter measure of the actual network performance. Pre-
diction of RSRQ is, however, more challenging than
RSRP prediction as the RSRQ measure depends on
the total received radio signal energy from all signals,
Radio Signal Strength Indicator (RSSI), according to

RSRQ =
Rb · RSRP

RSSI
, (1)

where Rb is the number of resource blocks [3]. RSSI
depends on noise and interference, which makes RSRQ
harder to predict, since the interference varies with the
varying radio network load.

In this paper, we predict inter-frequency RSRQ us-
ing the most commonly used machine learning meth-
ods: Random Forest, Neural Networks, Gaussian
Processes and Logistic regression. We pose inter-
frequency prediction as a classification problem. As
our results demonstrate that a straightforward appli-
cation of these methods leads to unsatisfactory predic-
tion quality, we introduce a duo-threshold approach for
decision recommendation. In this approach, we com-
bine two phases: a phase in which we perform mea-
surements of signal quality and a phase in which we
deliver high-quality predictions by means of Random
Forest models.

The paper will be organized as follows: Section II
will present Random Forest, Logistic regression, Gaus-
sian Processes and Neural Networks as well as over-
sampling as a measure to counter unbalanced classes.
In Section III we introduce our proposed duo-threshold
approach. In Section IV we compare the algorithms
in terms of performance and, finally, in Section V we
summarize our findings.

2 Models

In this section, the methods used for RSRQ predic-
tion are presented. Assume m is the number of cells
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in the network. Let Pi, i = 1, . . . ,m be an RSRP
measurement from cell i on the serving frequency and
Qi, i = 1, . . . ,m be an RSRQ measurement from cell
i at the serving frequency. Let j be the index of the
serving cell, hence, Pj and Qj are the corresponding
measurements from the serving cell. Finally, denote
the strongest RSRQ measurement on an alternative
frequency as y. The feature vector in our models is
then

x = (Pi, . . . , Pm, Qi, . . . , Qm). (2)

The aim of the classification is to model an ordering
relationship of the type y ≥ Qj as

C =

{

1, if y ≤ Qj

2, if Qj < y.
(3)

2.1 Random Forest

The Random Forest is described in [4] as an ensemble
of decision trees, where each tree is built by iterative
splitting of the variable space into smaller sections,
nodes, by simple conditions. A tree can be represented
by a set of nodes, M = (Mj , . . . ,MJ). Each Mj is as-
signed a value Vj which is obtained by using a split
variable xj and a split criterion sj . The model estima-
tion is performed by applying Alg. 1.

Algorithm 1 Random Forest

1: for b = 1 to B do

2: Draw bootstrap sample [5]
3: Grow random-forest tree Tb:
4: for all nodes do

5: while msize > mmin do

6: Randomly select k variables
7: Find best variable/split among them
8: Split the node into two child nodes

9: Output the tree ensemble as [Tb(x)]
B
1 ,

where B is the number of bootstrap samples, msize is
the node size and mmin is the minimum node size. In
our scenario, we use the default settings of mmin = 5.
The sample size of the bootstrap samples is ⌈0.632 ·
nobs⌉, where nobs is the number of observations in the
training set. B = 500 trees are grown, and the best
split is found by using the Gini impurity measure, see
[6] for details. We make predictions by locating a given
x in one of the terminal nodes.

Let m1 be the number of observations of class 1 in
a node in a single tree and m2 the number of observa-
tions of class 2 in a node, then the output of a single
classification tree is

p(C = 2|x) =
m2

m1 +m2
, (4)

which is the probability of class 2 being the major-
ity class in the predicted node. The prediction of a
Random Forest model is the average of predictions ob-
tained from all trees in the ensemble.

2.2 Logistic regression

Logistic regression is used for binary classification
problems which requires transformation of the output
to fit within the interval [0, 1] with the logistic sigmoid
function. According to [6], for M model parameters,
we make new predictions with

p(C = 2|x) =
1

1 + exp(−a)
, (5)

where a =
∑M−1

j=0 βjx and we find the weights, β,
with maximum likelihood using of the derivative of
the logistic sigmoid function.

2.3 Gaussian Processes

A brief description of Gaussian Process classification
is described in this section, however, details can be
found in [6]. We consider the model

y(x) = βTφ(x), (6)

and search for the joint probability distribution of
y(x1), . . . , y(xN ) by adding a prior distribution to
the weight vector of the linear model with φ =
(φ0, . . . , φM−1) non-linear basis functions representing
x:

y(x, β) =
M−1
∑

j=0

βjφj(x). (7)

By using an isotropic Gaussian prior on β we get a
posterior for y from which we sample to obtain pre-
dictions. The posterior is Gaussian with zero-mean
and covariance K, which is the so called Gram matrix
from a kernel function. We run the Gaussian Processes
using a vanilladot kernel.

2.4 Neural Networks

According to [6], when constructing a Neural Network,
we compute linear combinations of x and arrange them
to obtain aj activations :

aj =

D
∑

i=1

βjixi + βj0. (8)

We perform transformations of the linear combina-
tions, zj = h(aj), and achieve hidden units, where h(·)
is, in our default settings, the logistic sigmoid func-
tion. To produce multiple hidden layers, we can again
obtain linear combinations of the hidden units to form
the next layer. To produce the output, the activa-
tions are transformed with the logistic sigmoid for our
binary classification problem. The class probabilities
are obtained with

p(C = 2|x) = σ
(

M
∑

j=1

β
(2)
kj h

(

D
∑

i=1

βjix
(1)
i +β

(1)
j0

)

+β
(2)
k0

)

,

(9)
where σ is the logistic sigmoid function and the upper
indices represent the layers.



2.5 Oversampling

As data can, in some cells, be rather imbalanced be-
tween the classes, oversampling of the minority class
has been performed by randomly sampling from the
minority class with replacement until reaching 50/50
class proportions per cell/alternative frequency com-
bination.

3 Duo-threshold prediction

We propose a duo-threshold approach for which we
either perform a measurement or deliver a high-
quality prediction. True class values are computed
by applying (3). The overall accuracy is defined as

TP+TN
TP+TN+FP+FN

, where TP is the number of positive
observations predicted correctly, FP the number of
negative observations predicted as positive, TN the
number of negative observations predicted correctly
and FN the number of positive observations predicted
as negative. Furthermore, we define observations for
which the inter-frequency RSRQ is higher than the
serving RSRQ as positive and observations for which
the inter-frequency RSRQ is lower than the serving
RSRQ as negative. In order to ensure high accuracy
of the predictions, we introduce a three-class output
with two thresholds, δ1 and δ2, as follows:

Cd =











1, if p(C = 2|x) ≤ δ1

2, if p(C = 2|x) ≥ δ2

3, otherwise,

(10)

where p(C = 2|x) is obtained from a machine learn-
ing model used for prediction. Equation (10) demon-
strates that observations not meeting any of the
threshold conditions are classified into the third class
as the predictions are too uncertain. With this ap-
proach, we can maintain a sufficient accuracy for the
original classes as we only make decisions about the
most certain observations. To compute the accuracies
of the classes, we alter the traditional measurements
True Positive Rate, TPR = TP

TP+FN
, and True Neg-

ative Rate, TNR = TN
TN+FP

. TPR is the ratio of
correctly classified true positives, therefore, TPR cor-
responds to the accuracy of the observations where
the alternative frequency has a higher RSRQ than
the serving RSRQ and TNR to the accuracy of ob-
servations with a higher serving RSRQ. For our duo-
threshold computations, we define TNRd and TPRd

as

TNRd =
TN +Nmn

TN + FP +Nmn

(11)

and

TPRd =
TP +Nmp

TP + FN +Nmp

. (12)

Nmn and Nmp are the number of observations from
class 1 and class 2 which were predicted as class 3,
respectively. Since we measure Nmn and Nmp, we
consider them correctly handled and therefore we add

them to the nominators. This enables a natural com-
parison to the 100% accuracy we would achieve by
frequent measurements: when δ1 → 0 and δ2 → 1,
TN +FP → 0 and TP +FN → 0 and we measure all
observations, which gives TNRd → 1 and TPRd → 1.
Note that the TNRd is affected by δ2 and TPRd by δ1.
A demonstration of the threshold impact can be seen
in Fig. 1, where the colors represent the two different
classes and the dashed lines the threshold separating
the more certain predictions from the less certain.

0.0 0.2 0.4 0.6 0.8 1.0

Threshold

Figure 1: Example of the proposed threshold bounds.

We will also use measure share to evaluate our models,
which we define as

Nmn+Nmp

Ntot
, where Ntot is the total

number of predicted observations.

4 Results

4.1 Setup

The data are collected from an urban scenario and
consist of RSRP and RSRQ from the serving cell and
close-by cells as well as inter-frequency RSRP and
RSRQ measurements. All covariates have been stan-
dardised, and the models have been fitted indepen-
dently by cell/inter-frequency combination since the
distributions among cells and inter-frequencies vary
and the enumeration of the nearby cells vary between
serving cells. The data are sparse since few cells
provide a signal for each observation. For each ob-
servation, there is a pair (RSRP,RSRQ) of inter-
frequency measurements which is believed to repre-
sent the strongest available signal on the alternative
frequency. A small portion of the datasets, consisting
of each cell/inter-frequency combination, are too small
(typically less observations than covariates) and have
been removed for more fair comparison of the mod-
els. The models have been fitted and evaluated with
the training and test partition 75/25. We allow some
prediction error and therefore we set an acceptance



limit for the test TNR to 0.95 and TPR to 0.90. In
the handover scenario, moving a user from a serving
frequency with known signal quality to an alternative,
possibly inferior frequency without signal confirmation
is combined with higher risk than letting the user stay
on the serving frequency. Therefore, we set a stricter
limit for TNR. We have used R [7] and packages
randomForest [8], kernlab [9] and neuralnet [10].

All models were run with default settings as stated
in Section II.

4.2 Model evaluation

In Tab. 1, the overall test accuracies as well as the
TPR and the TNR for Random Forests (RF), Lo-
gistic regression (LM), Gaussian Processes (GP) and
Neural Networks (NN) are shown for a random 10%
uniform sample of the data. We show results for the
NN with (50, 30, 10) neurons as NN did not perform
better with more neurons or layers. Furthermore, we
have used early stopping to avoid overfitting. The ta-
ble represents means of the results of the sampled data
sets.

Table 1: Accuracies

Model Acc. class TPR TNR

RF 0.801 0.324 0.896
LM 0.792 0.415 0.872
GP 0.791 0.313 0.890
NN 0.780 0.415 0.845

From the results, we conclude that NN have the lowest
TNR and the lowest general accuracy. LM has the
best TPR and the RF performs evenly, and has the
best TNR, which is the most crucial measure in our
scenario since a model with low TNR may lead to
unnecessary handovers. RF and LM appear to be the
most promising models.

The results when using oversampling can be found
in Tab. 2.

Table 2: Accuracies, oversampling

Model Acc. class TPR TNR

RF 0.798 0.880 0.779
LM 0.626 0.874 0.571
GP 0.743 0.856 0.721
NN 0.802 0.894 0.784

The TPR is higher for all models, however, the TNR
and overall accuracy are lower. With oversampling,
the NN models achieve better results. The NN appear
to outperform the other models in terms of accuracy,
TPR and TNR. RF achieve the second highest values
for all measures. We conclude that oversampling
improves our predictions, however, does not reach
TNR = 0.95 and TPR = 0.90. Therefore, we
continue to examine RF and NN with oversampling

when introducing our custom duo-threshold method.

4.3 Threshold evaluation

As the standard approaches do not provide satisfying
results, a different strategy to deliver high-accuracy
decisions is needed. We again set lower limits TNRd =
0.95 and TPRd = 0.90. The TNRd and TPRd by δ1
and δ2 for RF and NN can be seen in Fig. 2 and Fig.
3 respectively.

0.0 0.1 0.2 0.3 0.4 0.5

0.85

0.90

0.95

1.00

δ1

0.5 0.6 0.7 0.8 0.9 1.0

δ2
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Figure 2: TPRd and TNRd for Random Forest by δ1
and δ2.

0.0 0.1 0.2 0.3 0.4 0.5

0.85

0.90

0.95

1.00

δ1

0.5 0.6 0.7 0.8 0.9 1.0

δ2

TPRd and TNRd by thresholds, NN

TPRd

TNRd

Figure 3: TPRd and TNRd for Neural Networks by
δ1 and δ2.

The lighter lines represent the TPRd and the darker
lines TNRd. The dotted lines are the lower limits
for TPRd and TNRd respectively. We can see that
the RF model achieves higher TNRd, however, lower
TPRd. The step-form of the NN TNRd curve can be
explained by very few predictions having probabilities



over 0.5, therefore, a small change in the thresholds
does not have much impact.

The measure share by δ1 and δ2 can be seen in Fig.
4 for RF. Fig. 5 displays the difference in measure
share between RF and NN.
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Figure 4: Measure share for Random Forest by δ1 and
δ2.
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Figure 5: Measure share difference between Random
Forest and Neural Networks by δ1 and δ2.

The color scale to the right of the heatmaps shows the
corresponding measure share. Each composition of δ1
and δ2 is represented by a coordinate in the map. We
can see that the shade gradient in Fig. 4 varies with
the thresholds: for high values of δ1 and low values
of δ2 the color shift is less prominent while the mea-
sure share shifts more rapidly for low values of δ1 and
high values of δ2. In the difference plot, the darker the
shade, the better the performance of NN in compar-
ison to RF. The NN seem to outperform the RF for
low values of δ1 in terms of measure share. Note that
both thresholds have a prominent effect on the share of

observations recommended for measuring. We define
the best model as the model with the lowest measure
share, yet meeting the lower limits of TPRd = 0.90
and TNRd = 0.95. The best results for each model
are shown in Tab. 3.

Table 3: Best thresholds

Model δ1 δ2 TPRd TNRd M. share

RF 0.50 0.65 0.919 0.952 0.0563
NN 0.50 0.95 0.985 0.952 0.138

We can see that both models fulfill the lower limits.
The Neural Networks achieve higher TPRd than Ran-
dom Forest, however, Random Forest allows a higher
δ1 and a lower δ2, still maintaining a lower share of
observations which has to be measured. Despite the
indications in Fig. 5 of NN achieving a lower measure
share than RF, the NN requires a higher δ2 to reach
the lower limit of TNRd which results in the best NN
model having higher measure share than the best RF
model. Therefore, the Random Forest is, according to
the results, superior to the Neural Networks.

5 Conclusions

An easy yet costly approach to obtain inter-frequency
information is to perform frequent measuring. Our
results show that standard machine learning meth-
ods perform unsatisfactory, even using oversampling
to counter imbalanced classes. Our duo-threshold ap-
proach combines a highly confident prediction phase
with a measurement phase. This allows for a high ac-
curacy of 92% and 95% for two types of decisions while
reducing the need for inter-frequency measuring by ap-
proximately 95% in comparison to frequent measuring.
The authentic data is combined with some limitations
in information which could be of importance, such as
lack of geographical position and cell load. The models
could also be improved if measurements from several
alternative frequencies for each observation were avail-
able.
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