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Abstract—Random matrix theory (RMT) has been used to
derive the asymptotic capacity of multiple-input-multiple-output
(MIMO) channels by approximating the asymptotic eigenvalue
distributions (AEDs) of the associated channel matrices. A novel
methodology is introduced which enables the computation of
the asymptotic capacity for a generalised system in which two
relays cooperate to facilitate communication between two remote
devices. It is computationally demanding to calculate this capacity
using RMT when nodes are equipped with large-scale antenna
arrays, and impossible in the case where asymmetry exists
between channels within the system. This is because deriving
the capacity across the combined channels from the relays to
the receiver involves polynomials in large and non-commutative
random matrix variables. This paper uses free probability theory
(FPT) as an efficient alternative tool for analysis in these
circumstances. The method described can be applied with no
additional complexity for arbitrarily large antenna arrays. The
minimum SNR required to achieve a given asymptotic capacity
is computed and the simulation results verify the accuracy of the
FPT approach.

Index Terms—Operator-valued free probability theory, ran-
dom matrix theory, massive MIMO, eigenvalue distribution,
capacity, co-operative relay.

I. INTRODUCTION

As a consequence of the increasing number of users and
devices and the rising demands for adaptable technologies
to support the internet of things (IoT), the demand for data
has been predicted to increase a thousandfold over the next
decade. 5G networks will need to support more connections
and increased data traffic, whilst maintaining a high quality of
service in terms of delay, security and reliability [1].

Multiple-input-multiple-output (MIMO) technology has
been instrumental in the advancement of wireless networks
in the past. To address the even greater demands of 5G, the
natural extension is to increase diversity further by using many
more antennas in ‘massive MIMO’ arrays. At the Mobile
World Congress in February 2017, the capability of massive
MIMO to increase cell capacity eightfold by comparison to 4G
LTE was demonstrated. Sprint in particular showcased arrays
that include 64 antennas at the transmit and receive end of both
uplink and downlink wireless channels, and it is speculated
that hundreds of antennas could be used in future designs.
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Massive MIMO is therefore of critical importance in industry
and large-scale arrays are a topic of great interest in current
research [1], [2].

The versatility of the IoT necessitates the integration of a
diverse range of multi-antenna nodes with channels of varying
characteristics in terms of fading, distance and scattering.
Extensive work has been carried out in which random matrix
theory (RMT) is used to analyse the capacity of MIMO
systems [3]. The Shannon capacity formula was first adapted
using RMT for small MIMO arrays by Foschini [4]. However,
for massive arrays the calculations involved become highly
complex. A key advance was the technique introduced in
[5] whereby, the eigenvalue distributions of certain random
matrices provide an alternative approach to capacity analysis.
However, some channels cannot be modelled by a matrix
with a known eigenvalue distribution, and in the case where
asymmetry exists between channels, computing the capacity
for the combined channels is impossible using traditional
RMT. Free probability theory (FPT) provides an alternative
approach to a number of RMT problems [3], [6]. In [7] FPT
is used to find the asymptotic spectral efficiency of massive
MIMO channels with transmit and receive correlation, while
in [8] it is used to find the asymptotic variance of the mutual
information for a channel with insufficient scattering.

Our research analyses the overall capacity limits of a gen-
eralised two-relay system that includes channels with asym-
metric characteristics. We focus particularly on the case where
large-scale antenna arrays are employed. The analysis cannot
be carried out using RMT and, to our knowledge, this is an
area that has not been previously addressed.

The structure of the remainder of this paper is as follows.
In Section II we describe a co-operative system in which
two relays are used to facilitate the communication between a
source and remote destination. Section III presents an overview
of the method including FPT, which is required for the
computationally efficient derivation of the capacity limitations
of our model. The simulation results are given in Section
IV, where we demonstrate the accuracy of the method and
calculate the minimum SNR required to achieve a desired
capacity across the channel with varying degrees of freedom.
In Section V, we summarise our findings.
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Fig. 1: Relay network

II. SYSTEM MODEL

Consider the situation where a pair of multi-antenna source
and destination nodes wish to communicate a wireless signal
s, but have no direct link due to a long separation distance.
Instead, the signal is forwarded by two multi-antenna relays
R1 and R2 via channels G1, G2, H1 and H2 which represent
the channel gains between the source node and R1, the source
node and R2, R1 and the destination node and R2 and
the destination node and cover distances g1, g2, h1 and h2

respectively. An example of such a system given in Fig. 1
where the source node is a vehicle, the destination node is
a base station (BS) and the relays are road-side units. We
suppose that the relays work in half-duplex mode and that
the source, relay and destination nodes are equipped with N
antennas.

For the duration of this paper the subscript i refers to i ∈
{1, 2}. During time slot T1, each Ri receives

yi = αiGis+ ni, (1)

where ni represents the noise across sub-channel Gi and αi

is the attenuation due to path-loss for the channel Gi. This
attenuation has been modelled according to the relationship
between distance and path-loss αi =

1
gm
i

given in [9], where
m is the path-loss exponent. For simplicity, we fix m = 2
globally for the channels considered in this paper, since this
is the standard path-loss exponent for the type of free-space
channels in the far-field depicted in Fig. 1 [10]. However, we
note that our method readily extends to include models in
which this value varies for different channels. We suppose that
each Ri has channel state information (CSI) for Gi and Hi,
and recovers s using maximum-ratio-combining. In T2, Ri

transmits signal s with optimal matched-filter precoding, by
premultiplying the signal by the complex conjugate transpose
H†

i as described in [11]. This enables the user to decode the
received signal:

y = β1H1H
†
1s+β2H2H

†
2s+n = (β1X1 + β2X2) s+n, (2)

TABLE I: Rates across relay network for considered cases.

Case Occurs when Rate
(i) R1 and R2 active min (min (CG1

,CG2
) ,Cp)

(ii) R1 only active min (CG1 ,CH1)
(iii) R2 only active min (CG2 ,CH2)
(iv) No relays active 0

where n is the total noise, βi =
1

hm
i

is the attenuation due to

distance over Hi and Xi = HiH
†
i .

We show that, for large N , the instantaneous capacities of
Gi and Hi and also of the combined link in (2) converge to
fixed limits. Define the capacities of Gi, Hi and the combined
channel, as CGi

, CHi
and Cp respectively. Four possibilities

arise according to whether R1, R2, both or neither are active
in our system. Given that the individual capacities converge,
the overall capacity in each case is given by the lowest rate
across any of the contributing channels as described in Table I.

By finding the combined capacity Cp in T2, for the asym-
metric case where h1 ̸= h2, we quantify the benefits of using
co-operative relays by comparing the maximum achievable
capacity in case (i) with cases (ii), (iii) and (iv).

III. THEORY

Consider the case where the signal-to-noise-ratio is allo-
cated uniformly and given by SNR = ρ

σ2Nt
per transmit

antenna, where ρ is the total input power and σ2 is the variance
of the noise vector n. The ergodic capacity of the MIMO
channel in (1) is then given by [3]:

CErg
Gi

= E
(
log2

∣∣∣INr
+ SNR α2

i GiGi
†
∣∣∣) . (3)

For large massive MIMO channels, on the other hand, the
ergodic capacity is given by the limit of the instantaneous
channel capacity as Nr, Nt tend to infinity while the ratio Nr

Nt

tends to the fixed limit ζ (in our case Nr = Nt ⇒ ζ = 1):

CAsy
Gi

= log2
∣∣INr

+ SNR α2
i X

∣∣
=

Nr∑
i=1

log2
(
1 + SNR α2

i λX(k)
)

= Nr

∫ ∞

0

log2
(
1 + SNR α2

i x
)
fX(x) dx, (4)

where X = GiG
†
i , λX(k) is the kth eigenvalue of X and

fX(x) is the limiting distribution of the eigenvalues of X
[7]. When fX(x) exists it is called the asymptotic eigenvalue
distribution (AED) of X and we call the capacity found in
this manner the asymptotic capacity of H, to emphasise the
fact that it is found by taking asymptotic limits, rather than by
applying (3). This result demonstrates the importance of the
channel matrix, and in particular its eigenvalue distribution, in
calculating the capacity for a MIMO channel.

Assuming the communication over the system in Fig. 1
occurs in a rich scattering environment and that each of
the paths across G1, G2, H1 and H2 are independent and
subject to Rayleigh fading, the channels can be modelled as
zero-mean independently and identically distributed Gaussian



complex random matrices with normalised variance 1
N . The

AED of such matrices are given by the Marčenko-Pastur law
[3]:

fX(x) =

(
1− 1

ζ

)+

δ(x) +

√
(x− a)

+
(b− x)

+

2πζx
, (5)

where (z)+ = max(0, z), a = (1−
√
ζ)2, b = (1+

√
ζ)2 and

δ(x) = 1 if x = 0 and δ = 0 otherwise.

Inserting this result into (4) we can derive the asyptotic
capacities CGi

and CHi
. However, it is less straightforward

to derive Cp. If we attempt to do so using (3) the capacity
across the overall channel in T2 requires the computationally
demanding calculation of the matrix polynomial p where

p = (β1X1 + β2X2) (β1X1 + β2X2)
†

= β2
1X

2
1 + β1β2 (X1X2 +X2X1) + β2

2X
2
2. (6)

However, taking the asymptotic limit using (4) gives:

CAsy
p = Nr

∫ ∞

0

log2 (1 + SNR x) fp(x) dx, (7)

where the asymptotic capacity is given in terms of fp(x), the
AED of the polynomial p, rather than as a function of a matrix
polynomial. Now, the AEDs fX1

(x) and fX2
(x) are given by

(5), and fp(x) depends only on X1 and X2. Unfortunately,
traditional RMT is generally unable to derive the AED for
the sum, product or any other polynomial combination of
multiple random matrices, given only their AEDs [3]. In
[12] and [13], Voiculescu is able to apply FPT to solve this
problem for H1+H2 and H1×H2 through the use of the R-
and S-transform respectively. However, these results cannot
be extended for more general p as this would require that
the Stieltjes transform of the polynomial AED be given in a
closed form, which is not generally the case [3]. We overcome
this problem using a method derived by Belinschi, Mai and
Speicher in [14], which combines the analytic theory of
operator-valued free convolution with Anderson’s self-adjoint
version of the ‘linearization trick’ [15] to determine fp(x).
Armed with this distribution we can use (4) to compute the
capacity-SNR relationship and analyse the overall performance
of our system, in a novel and compute efficient way.

A. Requirements

When applying FPT we view the random matrix variables
Xi as asymptotically free random linear operators with respect
to probability measure φ(Xi) = 1

N Tr(Xi), the normalised
trace of Xi. We indicate this change of perspective by using
lowercase xi to represent the operator-valued variables and
rewrite (6) as:

p = β2
1x

2
1 + β1β2(x1x2 + x2x1) + β2

2x
2
2. (8)

There are two restrictions that must be placed upon x1

and x2 in order to apply the method of [14]. First, they
must be ‘asymptotically free’. The definition and fulfilment
of this condition for our case are described in Section 2.4.1

and Example 2.36 of [3] respectively. The second requirement
is that x1 and x2 must be self-adjoint. This is immediate, since
X†

i = (HiH
†
i )

† = HiH
†
i = Xi, and the self-adjointness of

the matrices Xi and the operator-valued free random variables
xi are equivalent.

B. Linearization

The first step of the method is to convert our polynomial
problem in random matrix variables to one in linear additive
convolution by applying Anderson’s self-adjoint version of
the ‘linearization trick’ [15].

Definition 1: Let x1 and x2 be freely independent variables
and let

p̂ =

(
0 u
v Q

)
be an N×N matrix where u is an 1×(N−1), v an (N−1)×1
and Q is an (N − 1) × (N − 1) matrix. All entries of u, v
and Q are polynomials in x1 and x2 with degree ≤ 1 so that
each entry of the matrix p̂ has the form γ1x1 + γ2x2 + γ3 for
γ1, γ2, γ3 ∈ C. We call p̂ a linearisation of the polynomial p
if p = −uQ−1v.

For p as given in (8), we find that taking:

u =
1√
2
(β1x1 + β2x2 β1x1 + β2x2) ,

v =
1√
2

(
β1x1 + β2x2

β1x1 + β2x2

)
and Q =

(
0 −1
−1 0

)
,

produces a linearisation that satisfies Definition 1 and can be
written as the operator-valued linear combination p̂ = x̂1+ x̂2

where the operator-valued distributions of

x̂1 =

 0 β1x1√
2

β1x1√
2

β1x1√
2

0 0
β1x1√

2
0 0

 , x̂2 =

 0 β2x2√
2

β12x2√
2

β2x2√
2

0 −1
β2x2√

2
−1 0

 ,

can be derived from fx1
(x) and fx2

(x) respectively [14].

C. Subordination Theorem

To find the distribution of the polynomial p using this
deconstruction requires the use of the Cauchy transform:

Gp(x) = φ

(
1

x− p

)
,

for all x for which x−p is invertible. Defining q as the N×N
matrix with x as the top left entry and zeros elsewhere, we
notice that

q− p̂ =

(
1 −uQ−1

0 1

)(
x− p 0
0 −Q

) (
1 0

−Q−1v 1

)
,

so that the invertibility of x − p and q − p̂ are equivalent.
Standard matrix operations can then be used to show that the
(1, 1)th-entry of (q − p̂)−1 is (x − p)−1, so that the Cauchy



transform Gp(x) is just the (1, 1)th-entry of the operator-
valued (3× 3 matrix) Cauchy transform:

Gp̂(q) = I3 ⊗ φ
(
(q− p̂)

−1
)

=

(
φ
(
(x− p)

−1
)

φ(∗)
φ(∗) φ(∗)

)
, (9)

where I3 is the 3 × 3 identity matrix [14]. Therefore, we
can compute the Cauchy transform of p if we can determine
p̂ = x̂1 + x̂2 from the operator-valued distributions of x̂1

and x̂2. As explained in III-B, we are able to derive the
distributions of x̂1 and x̂2 from fx1

(x) and fx2
(x). Moreover,

having verified that x1 and x2 are freely independent, it
follows from the basic properties of freeness that x̂1 and x̂2

are operator-valued freely independent. The main result in [14]
tells us that, provided this is the case, it is possible to calculate
the operator-valued Cauchy transform of p̂ = x̂1 + x̂2 from
Gx̂1

(q) and Gx̂2
(q) using operator-valued free convolution:

[14, Theorem 2.2] Let x̂1 and x̂2 be self adjoint operator-
valued random variables free over an operator-valued non-
commutative probability space (M,φ,B) with M a unital
Banach algebra, B a unital Banach subalgebra of M and
φ : M 7→ B a conditional expectation which preserves the
unit. Then there exists a Fréchet analytic map ω : H+(B) →
H+(B) such that

Gx̂1+x̂2
(q) = Gx̂1

(ω(q)) for all q ∈ H+(B).

Moreover, let q ∈ H+(B) and define

H+(B) :=
{
q ∈ B :

q− q∗
2j

> 0

}
and hx̂i(q) :=

1

Gx̂i
(q)

.

Then ω(q) is the unique fixed point of the map

Ωq : H+(B) → H+(B), Ωq(ω) = hx̂2 (hx̂1(ω) + q) + q

and
ω(q) = lim

n→∞
Ω◦n

q (ω) for any ω ∈ H+(B),

where Ω◦n
q denotes the nth iteration of Ωq, q∗ represents the

adjoint of q in M and j is the imaginary number with unit
length.
Now the Cauchy transforms Gx̂1 and Gx̂2 are uniquely
determined by x̂1 and x̂2. Therefore, by rearranging the
subordination form given in Theorem III-C, we may compute
the Cauchy transform, Gp̂(q) = Gx̂1

(ω(q)), via the iteration

ω 7−→ Gx̂2

(
b+Gx̂1

(ω)−1 − ω
)−1 −

(
Gx̂1

(ω)−1 − ω
)
.

As demonstrated in (9), the Cauchy transform Gp(x) is just
the (1, 1)th entry of the matrix obtained for Gp̂(q). The final
step is to use the Cauchy inversion formula, as was done in
[7], to find the AED fp(x) itself from its Cauchy transform
Gp(x), that is:

fp(x) =
1

π
lim

ϵ→0+
ℑ
(
Gp

(
x+

√
−1ϵ

))
. (10)
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IV. SIMULATION RESULTS

A. Accuracy

In this section we demonstrate the accuracy of the analytic
techniques introduced in Section III. The analysis has been
carried out for the case where we normalise the distances in
the system model so that g1 = g2 = 1, h1 = 0.2−

1
2 and

h2 = 0.3−
1
2 with m = 2 so that α1 = α2 = 1, β1 = 0.2 and

β2 = 0.3. That is, the distances between the source node and
each Ri are equal whereas the distance between R1 and the
destination is greater than that between R2 and the destination,
as illustrated (not to scale) in Fig. 1. Fig. 2 is the histogram of
the eigenvalues of p approximated by simulating ten thousand
instances of H1 and H2 in the case where N = 32. This is
overlaid by the distribution function fp(x), calculated using
(10). It is clear that the results give an accurate approximation
of the actual AED in this case.

Fig. 3 gives the capacity per input SNR achievable across
the channel for arrays ranging from size N = 1 to N = 128.
The solid lines in the graph represent the asymptotic capacity
found using (7) while the points represent the simulation
results found by applying (3) with p replacing GiG

†
i . The

asymptotic capacity predicted using FPT matches the simula-
tion results with high accuracy. Surprisingly, even when N = 1
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we can see that the simulated points are well approximated by
the theoretical asymptotic capacity, which means the asymp-
totic result can also be meaningfully applied to smaller arrays.
However, for N = 128 we notice that there are no simulation
points in Fig. 3 for input SNRs greater than 38 dB. This is
due to the limitations a standard desktop-computer’s hardware
imposes on its ability to calculate the determinants of large
matrices. Because these calculations involve both very large
and very small numbers, and the computer cannot store these
values with an infinite degree of accuracy, increasing the array
size drastically magnifies the round-off error and the program
outputs an error. As either N or the SNR increase further, this
problem worsens, and the maximum number of antennas for
which we can derive the capacity for T2 across the full range
of SNR values, without using FPT, is 128.

We also note that the theoretical asymptotic capacity result
took a fixed length of time (approximately three seconds)
regardless of the size of the array, whereas the time complexity
of the simulation increases as we increase N . In particular,
when a thousand channel matrix realisations were computed
as part of the simulation approach, it was outperformed by the
FPT method for array sizes greater than N = 2.

B. Overall System Analysis

Finally, we use the asymptotic capacities for T1 and T2 to
analyse the overall system model given in Fig. 1 using the
rate equations for cases (i-iv) from Table I. The comparison
given in Fig. 4 shows that the best rate is achieved in case
(i) when all channels are viable and the FPT result applies.
This is what we would expect because the ability for the
signal to travel via both relays introduces an extra spatial
dimension when compared to cases (ii) and (iii). Moreover
case (iii) outperforms case (ii) which can be explained by the
fact that h2 < h1, which means that channel H2 suffers less
from attenuation due to distance. Thus, we have been able
to efficiently quantify the benefit of using massive MIMO as
part of a co-operative wireless communication system with an
unlimited number of antennas, through the use of FPT.

V. CONCLUSIONS

In this paper we demonstrated how to use (7) to find the
asymptotic capacity of a massive MIMO, co-operative relay
system with multiple channels and hence multiple channel
matrices. Our result enables a new, computationally efficient
means of quantifying the achievable rate improvements when
such systems employ large-scale antenna arrays. The method
is used to determine the capacity limits for asymmetric relay
arrangements regardless of how large the arrays at each node
become. In particular, it is possible to use the FPT method
to calculate the capacity of systems using antenna arrays
greater than 128 × 128 in dimension, which is impossible to
derive using standard simulation approach due to the nature
of the operations involved. The method be readily extended
to analyse co-operative networks with more than two relays,
different numbers of transmit and receive antennas and even
channels with different fading statistics, provided the AED of
the channel matrix is known.
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