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Abstract—Recent developments in intelligent transport systems
(ITS) based on smart mobility significantly improves safety and
security over roads and highways. ITS networks are comprised
of the Internet-connected vehicles (mobile nodes), roadside units
(RSU), cellular base stations and conventional core network
routers to create a complete data transmission platform that pro-
vides real-time traffic information and enable prediction of future
traffic conditions. However, the heterogeneity and complexity of
the underlying ITS networks raise new challenges in intrusion
prevention of mobile network nodes and detection of security
attacks due to such highly vulnerable mobile nodes. In this paper,
we consider a new type of security attack referred to as crossfire
attack, which involves a large number of compromised nodes
that generate low intensity traffic in a temporally coordinated
fashion such that target links or hosts (victims) are disconnected
from the rest of the network. Detection of such attacks is
challenging since the attacking traffic flows are indistinguishable
from the legitimate flows. With the support of software-defined
networking that enables dynamic network monitoring and traffic
characteristic extraction, we develop a machine learning model
that can learn the temporal correlation among traffic flows
traversing in the ITS network, thus differentiating legitimate
flows from coordinated attacking flows. We use different deep
learning algorithms to train the model and study the performance
using Mininet-WiFi emulation platform. The results show that
our approach achieves a detection accuracy of at least 80%.

Keywords—Intelligent transport systems, crossfire attacks, at-
tack detection, deep learning, software-defined networks

I. INTRODUCTION

Vehicles are becoming smarter with the development
of communication technologies and embedded components
called on-board units (OBUs) such as cameras, sensors, radars
and global positioning devices. The OBUs are connected to
the Internet through various radio access technologies such
as Dedicated Short Range Communication (DSRC) supported
by roadside units (RSUs) and Long Term Evolution (LTE)
networks supported by cellular base stations, forming vehic-
ular networks. Vehicular networks enable a wide range of
applications that analyze real-time data captured by OBUs
such as road hazards, accidents and traffic density, and then
provide guiding instructions to passengers and vehicles for
smart mobility. Vehicular networks combined with government
road traffic control systems build up the intelligent transport
systems (ITS), which significantly improve safety and security
of citizens over roads and highways [1].

Despite the advantages of ITS, the presence of Internet-
connected on-board devices (known as Internet of Things or

IoT) on the vehicles expose the underlying ITS networks to
new security breaches [2]. IoT devices have low computing
capacity, making them difficult or even impossible to deploy
sophisticated security mechanisms. A large number of highly
vulnerable on-board IoT devices could be compromised to
launch large-scale attacks such as Distributed Denial of Ser-
vice (DDoS) where bots are installed in the compromised
devices that simultaneously send traffic to a targeted victim.
Also due to the increased heterogeneity and complexity of ITS
networks, new challenges arise in design and implementation
of intrusion and attack detection mechanisms.

In this paper, we consider a powerful attack that is launched
by coordinating a large number of compromised devices,
called crossfire attacks [3]. Crossfire attacks aim at isolating
a network region from the remaining partition of the network
through coordinated flooding of the pivotal links. Pivotal links
are the links that connect the target region (e.g., a city) to
the rest of the world. To remain undetected, the attacker
chooses a set of decoy servers surrounding the target region
that are the destination of the attacking traffic originating
from the bots. To launch crossfire attacks, bots installed in
multiple compromised devices are programmed to temporally
coordinate and alternatively send low intensity traffic flows
to the decoy servers through the pivotal links such that the
pivotal links are congested during an attacking window (e.g.,
30 minutes). This attacking window can also be extended
indefinitely by frequently changing the bots, pivotal links and
decoy servers for the target region. A victim server located
in the target region is therefore unreachable and becomes
unavailable. These low intensity traffic flows are indistinguish-
able from the legitimate flows since they come from valid IP
address and have similar traffic characteristics as the legitimate
ones. However, the cumulative amount of traffic generated by
the bots in the attacking window causes bottleneck problem
on the pivotal link(s). Several links could be flooded, leading
to disconnection among network partitions if the links are
pivotal. Detection of such crossfire attacks in ITS is even more
challenging since existing approaches for DoS/DDoS attack
detection are no longer applicable [4], [5].

The emergence of the software-defined networking (SDN)
paradigm enables network programmability and monitoring
with a separate controller that can run sophisticated algorithms
for traffic engineering and security purposes. Application of
SDN to ITS networks has shown improved performance in
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network resource management [6]. In this paper, we leverage
on the SDN capability to develop a machine learning approach
for detection of crossfire attacks in ITS. The SDN controller
collects traffic measurements of flows destined to different
hosts in the network. The machine learning model deployed in
the controller helps in learning the temporal correlation among
the traffic flows, thus being able to differentiate between
malicious and legitimate flows. We use deep learning tech-
niques based on artificial neural networks to train the learning
model since deep learning has better ability to characterize
the inherent relationships between the inputs and outputs of
networks without human involvement. It also guarantees a
finite convergence for linearly-separable data. We evaluate the
performance of the proposed approach using Mininet-WiFi
emulation platform that allows us to emulate the mobility of
vehicles with on-board IoT devices.

The rest of the paper is organized as follows. We review the
related work in Section II. We present our proposed approach
in Section III. In Section IV, we present different deep learning
algorithms used for training the learning model. We present
performance evaluation in Section V before we conclude the
paper in Section VI.

II. RELATED WORK

There has been research work carried out in the field of
crossfire attacks [3], [7]. In [7], the authors introduced the
Coremelt attack, in which bots generate traffic among them
to cause congestion on the target links. Crossfire attacks have
been presented in [3] wherein the bots coordinate and generate
traffic towards decoy servers in the network.

A number of works have been carried out in the literature for
crossfire attack detection and mitigation [8], [9], [10]. In [8],
the authors presented an approach to defeat crossfire attacks
using a centralized flow-level control and monitoring. In this
model, the defender tries to keep the network running without
any congestion by performing load balancing among links and
paths. The defender also records the sources that cause traffic
congestion and rate-limits the traffic if the cumulative traffic
threshold is exceeded. Using a similar approach, in [10], the
authors proposed to divide the network into multiple domains
and perform traffic rerouting at the local-domain level or
inter-domain level. However, these works do not consider
the temporal correlation between traffic flows and the use
of threshold approach could affect legitimate flows if their
traffic volume also exceeds the threshold. Our work differs
from the above works in that we aim at detecting crossfire
attacks based on traffic behavior and the temporal correlation
between them. In [9], the authors developed LinkScope, a
system used to detect link flooding attacks and to locate the
target area or the link. The proposed system in [9] used
hop-by-hop and end-to-end network measurement techniques
that probe the network with testing packets and measure the
traffic characteristics to detect the performance degradation.
This adds redundant traffic to the network. Whereas, we use
machine learning approaches that capture the traffic behavior
to detect the attacks.
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Fig. 1: An intelligent transport system network.

Machine learning algorithms have also been used in other
works for DDoS detection and mitigation leveraging on the
features of SDN. In [11], the authors presented their approach
that uses Self Organizing Maps (SOMs) to analyze traffic
characteristics captured by NOX controller in an OpenFlow-
enabled network. In [12], the authors developed machine
learning approaches for mitigating DDoS attacks in software-
defined networks. The SDN controller performs traffic analysis
and defines mitigation rules that are installed in the switches.
In our work, we propose to use machine learning approach to
detect crossfire attacks in the context of ITS.

III. ITS NETWORKS AND PROPOSED APPROACH

In this section, we present an overview on software-defined
intelligent transport system networks and our proposed ap-
proach for coordinated attack detection.

A. Software-defined ITS Networks

Fig. 1 presents a simplified architecture of a software-
defined ITS network. All the vehicles moving on the road
communicate with RSUs through wireless communication
protocols to exchange information with other vehicles or with
the system. The RSUs are used as relay nodes or access points
for the vehicles to forward traffic to other parts of the network.
They are connected to the core network and ITS servers with
routers and switches through wired network. With the support
of SDN, we assume that all the RSUs and switches in the
network are OpenFlow-enabled such that an SDN controller is
required to manage the network: installing rules in the network
nodes for traffic engineering and monitoring.

Apart from the vehicle-RSU communications, there can
be hop-by-hop mode of communication among the vehicles
(V2V communication). This allows the vehicles to exchange
information without relaying to RSUs and core network. How-
ever, due to different velocity of vehicles, vehicle density and
limited spectrum allocation, this hop-by-hop communication
mode has poor performance and it is not reliable as compared
to relaying to RSUs. Vehicles can also communicate through
cellular networks with the support of base stations connected
to the core network. In any case, the traffic destined to the
servers (where ITS services are located) will be captured by
the SDN controller at every OpenFlow-enabled switch.



B. Proposed Approach
Crossfire attack detection can be done at different locations:

at the source of attack (bots), at the destination (decoy servers)
or at the pivotal links. While detection at the source of the
attack may be impossible due to the spatial distribution of bots
in the network, detection at the decoy servers is also difficult
since many decoy servers could be there in the network.
Furthermore, the decoy servers may not be in the targeted
area of attack, leading to high network resource consumption
of attacking traffic.

Leveraging on the SDN capability, we propose to detect
the attack at the pivotal link level. The SDN controller
probes traffic characteristics from every switch port (link-
level monitoring). We develop the deep learning techniques
that will be run on top of the SDN controller to analyze the
traffic characteristics captured from the network links. The
deep learning techniques based on artificial neural networks
can learn traffic behavior, determine temporal and spatial
correlations among traffic flows in the network, thus being able
to detect whether the network is under an attack or not. Three
traffic characteristics are selected as features in our model:

• Number of flows represents the vehicle density and pos-
sibly the number of bots installed in the vehicles.

• Aggregate flow size represents the traffic volume sent
through a link. We note that a sudden change (increase)
in the flow size can be caught by firewalls or rule-
based detection approaches, but bots in crossfire attacks
gradually increase flow size to flood the pivotal links in
the attacking window.

• Timestamp is an important feature that represents the
temporal correlation among flows. If bots alternatively
generate traffic and send to decoy servers, total traffic
traversing a link could create congestion even though the
individual flow size is low.

To realize the proposed approach, two practical implemen-
tations can be considered. The first possible implementation is
that the controller periodically captures traffic measurements
and performs analysis. The higher the frequency of extraction
of traffic measurements, the faster the attack detection. The
second possible implementation is to use an event-driven ap-
proach to trigger link congestion. When a switch experiences
abnormal behavior of network traffic such as high packet loss,
it sends a request to the controller along with traffic measure-
ments for attack detection. In the next section, we present deep
learning techniques that are able to detect crossfire attacks
based on traffic measurements discussed above.

IV. DEEP LEARNING ALGORITHMS FOR LEARNING
MODEL TRAINING

In this section, we present several deep learning algorithms
used to train the learning model that detects the correlation
among traffic flows sent from vehicles. Deep learning with
multi-layer neural networks has the ability of feature learning
in a short time of training. In this paper, we use Artificial Neu-
ral Networks (ANN), Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) networks.

Input Layer Hidden Layer 1  Hidden Layer 2 

Output  
node

(50 nodes) (25 nodes) (25 nodes)

.
   .

.
.

   .
.

.
   .

.

Circular buffer 
 of capacity α

Fig. 2: Artificial neural network used in our work.

A. Artificial Neural Networks

An artificial neural network depicts the neural distribution
of an animal brain. ANN is a collection of units called
artificial neurons. The edges connect the artificial neurons.
The learning procedure can be adjusted with the help of the
weights of the edges. Each connection acts like a synapses
in brain that transmits signal from one artificial neuron to
another. Depending on the signal strength, the weight of the
neuron may get reduced or increased. The artificial neurons
are aggregated into layers. Apart from the neurons at the input
layer that is fed by the data points there may be also multiple
hidden layers of artificial neurons that perform different kinds
of transformations on their inputs.

Fig. 2 depicts an ANN used in our work. The input layer
consists of 50 nodes. The first node takes the timestamp of
data points. Each of remaining node pairs takes the traffic
features (number of flows and aggregate flow size) of a link
monitored. With this design, our model can monitor and detect
the attack on 24 pivotal links simultaneously. It is worth
mentioning that a larger ANN will be required if the protected
network has large number of links. In order to increase the
efficiency we use two hidden layers, each containing 25 nodes.
The activation function used for the hidden layers is the
Rectifier function [13]. The output layer has only one node
that indicates whether or not a network is under an attack.
The activation function used for the output node is the sigmoid
function [14]. We use Adam optimizer as the gradient descent
to optimize network weights [15]. We use a circular buffer
of size α that indicates the number of times the traffic is
consecutively detected as attacking traffic. If the buffer is full,
the network is detected to be under an attacking window.

B. Convolutional Neural Networks

A convolutional neural network (depicted in Fig. 3) is a
variation of multi-layer perceptrons that have been designed
to reduce the efforts of data pre-processing. Each convolutional
neuron processes the data that is within its receptive field. In
our work, the traffic measurements (dataset) captured from
the network is organized as a 2-dimensional array. Each row
represents the traffic measurement at a particular timestamp.
A pair of columns contain the number of flows and aggregate
flow size of a link in the network. We consider a time window
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Fig. 3: Convolutional neural network used in our work.
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Fig. 4: LSTM network used in our work.

with 10 measurements at 10 different timestamps. Similar
to ANN, we define threshold α such that the network is
detected to be under an attack if the attacking traffic is detected
more than α times. The CNN is structured with two separate
convolutional steps. The first operation is a convolutional
filter that spans only the time axis, e.g., it processes one
row of the dataset at a time. This learning step referred to
as temporal filter allows the defender to learn the attacking
traffic pattern over time. The second learning step referred
to as spatial filter spans across all the monitored links for
multiple timestamps, i.e., considering a few rows in the 2-
dimensional array. This learning step aims at detecting the
correlation between different links as they forward the attack
traffic towards the victim. We also use a Rectifier function
for the activation function in CNN. A fully-connected layer
is formed with Adam optimizer that results in a binary value
which determines whether or not the network is under attack.

C. Long Short-Term Memory Network

Long Short-Term Memory Network [16] has been devel-
oped to overcome the drawback of recurrent neural network
on the long term dependency problems. It is used as a sequence
classifier for detecting whether the traffic at each timestamp
is attacking traffic or not. As depicted in Fig. 4, the LSTM
network has two consecutive LSTM cells which forms a
stacked LSTM configuration. The inputs to the LSTM network
are windows of 32 timestamps of 50-dimensional vectors,
which contain number of flows and aggregate flow size of
25 links in the network. Each LSTM cell has 32 hidden units.
With the help of the binary classifier, the output sample from
the stacked LSTM is classified into an attack or non-attack
class by a fully-connected layer. Adam optimizer is used to
train the network with a learning rate 0.001 till the early
stopping condition. We also use a circular buffer of size α
that indicates the number of times the traffic is consecutively
detected as attacking traffic. If the buffer is full, the network
is detected to be under an attacking window.

V. PERFORMANCE STUDY

A. Experimental Setting

We implement the proposed approach and carry out ex-
periments on Mininet-WiFi platform to evaluate its perfor-
mance. Mininet-WiFi is an OpenFlow-enabled network em-
ulator based on Linux LXC containers [6]. It allows us to
create an ITS network as depicted in Fig. 1 with mobile
nodes representing vehicles that follow a specific trajectory
and speed. To generate a Crossfire attack, we direct low
intensity flows from the vehicles to the hosts. We use iperf3 to
generate traffic in both normal working scenarios and attacking
scenarios. In normal working scenarios, the vehicles generate
a background traffic with a traffic rate in the range [600, 1700]
Kbps. During the attacking window, additional traffic is added
along with the background traffic. The compromised vehicles
gradually increase the intensity of the traffic in the range
[40, 300] Kbps and alternatively send the traffic to decoy
servers. We collect 7000 data-points both in normal and attack
scenarios. The total emulation time is 1 hour.

We use the following performance metrics to evaluate the
performance of different machine learning algorithms:

• Precision: Ratio of the number of data-points correctly
classified as attacking traffic over the total number of
data-points predicted as attacking traffic. The precision
value is computed as follows:

P =
TP

TP + FP
(1)

where P is the precision value, TP is the number of “true
positives” and FP is the number of “false positives”.

• Recall: Ratio of the number of data-points correctly
classified as attacking traffic over the total number of
data-points of actual attacking traffic flows. The recall
value is given by:

R =
TP

TP + FN
(2)

where FN is the number of “false negatives”.
• F1-Score: The F1-Score is the harmonic average of

the precision and recall values. It takes a value in the
range [0, 1]. Higher the value of F1-Score, better the
performance of the machine learning technique, i.e., we
obtain perfect precision and recall values when F1-Score
reaches 1. It is computed as follows:

F1-Score =
2PR
P +R

. (3)

B. Analysis of Results

1) Impact of Number of Vehicles: In the first experiment,
we evaluate the impact of the number of vehicles on the
performance of the proposed approach. In Fig. 5, we present
all four performance metrics for different network size, i.e.,
the number of vehicles present in the network. The results
show that the performance of the proposed approach degrades
with the increasing number of vehicles. This is because large
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Fig. 5: Performance of proposed approach for different number vehicles.
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Fig. 6: Performance of proposed approach for different speed ranges of vehicles.

number of vehicles (implicitly meaning large number of traffic
flows) makes it difficult to detect the correct temporal and spa-
tial correlations among flows. Many legitimate flows could be
detected as part of attacking traffic as they may have temporal
correlation with other attacking flows. In any cases, the results
show that using LSTM achieves the best performance with
87% of accuracy when there are 30 vehicles in the network
and up to 91% of accuracy when there are 10 vehicles in
the network. This is because LSTM has better capability of
bridging long time lags in time series that contains traffic
characteristics of the network. Even though CNN has the
lowest performance among the deep learning techniques, it
achieves at least 76% with the densest network.

2) Impact of Vehicle Speed: In the second experiment,
we evaluate the impact of vehicle speed on the performance
of the proposed approach. We define different speed ranges
(in m/s) with each vehicle randomly choosing a speed in
that range. In Fig. 6, we present the performance of the
proposed approach. The experimental results show that the
performance of the proposed approach slightly degrades when
vehicles increase their speed. Due to the wireless connection
between vehicles and RSUs, the faster the speed of vehicles,
the more the failures in connection establishment between
them. These connection failures lead to the communication
delay and disorder of arrivals and timestamps of packets at the
RSUs where traffic features are extracted. Temporal correlation
among packets is therefore much more difficult to determine
and achieve high performance. We note that LSTM with its
ability of time series analysis, it always achieves the highest
performance with 85% of accuracy when vehicles move with
the highest speed. It is worth mentioning that LSTM achieves
at least 90% in terms of other performance metrics.
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3) Impact of Attacking Traffic Threshold: As discussed
previously, we need to set parameter α that indicates the
number of times in the detection window the traffic appears
as attacking traffic to decide whether the network is under
attack or not. In this experiment, we evaluate the impact
of α on the accuracy of the proposed approach. In Fig. 7,
we present the accuracy of the deep learning techniques for
different values of α. The results show that when α is too
small or too large, the accuracy of the proposed approach
degrades. Indeed, when α is too small, the detector will be
very sensitive with the correlation among flows, leading to
high number of false positives, i.e., normal traffic detected as
attacking traffic. On the other hand, when α is too large, the
detector is not sufficiently sensitive, leading to high number of
false negatives. The results show that ANN and LSTM achieve
the highest accuracy when α takes the value of 6 while CNN
has the best performance when α is equal to 5.

4) Training Time and Detection Time: We also evaluate the
training time of the learning model as well as its detection time
for a set of data points. As shown in Table I, the training time



TABLE I: Training time and detection time (in seconds)

Techniques Training time Detection time
ANN 58.69 1.02
CNN 92.24 1.15
LSTM 109.35 1.10

of the proposed approach is only about 100 seconds. LSTM
spends the longest time for training the learning model. This
could explain why it has the best performance. It is to be
noted that this is a one time cost, given that historical traffic
measurements are available to create a training dataset. In an
online system, the training dataset could be enriched after new
data points have been classified. The learning model can be
updated with these new data points. The re-training process
can be performed in parallel with the detection process. Thus,
the training time will not cause any delay in detection time,
allowing our approach to react against attacks promptly. It is
also worth mentioning that detection time is also very short
which is only 1 second for all the deep learning techniques
based on the proposed approach.

VI. CONCLUSION

In this paper, we investigated the problem of coordi-
nated/crossfire attacks in software-defined ITS networks. We
proposed a machine learning based approach that leverages on
the software-defined networking capability to capture traffic
measurements such as the number of flows, aggregate flow
size and timestamps of the traffic. We developed deep learning
techniques using ANN, CNN and LSTM to train the learning
model that can learn the temporal and spatial correlations
among flows that originate from different compromised nodes.
We evaluated the performance of the proposed approach by
using Mininet-WiFi emulation platform. The experimental
results show that the proposed approach achieves high per-
formance in terms of accuracy, precision, recall and F1-Score.
The results also show that all the deep learning techniques used

for training the proposed learning model achieve a detection
accuracy of at least 80%. Among them, LSTM achieves the
best performance with at least 87% of detection accuracy.
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