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Abstract—Task offloading is a key component in mobile edge
computing. Offloading a task to a remote server takes commu-
nication and networking resources. An alternative is device-to-
device (D2D) offloading, where a task of a device is offloaded to
some device having computational resource available. The latter
requires that the devices are within the range of each other,
first for task collection, and later for result gathering. Hence, in
mobility scenarios, the performance of D2D offloading will suffer
if the contact rates between the devices are low. We enhance the
setup to base station (BS) assisted D2D offloading, namely, a
BS can act as a relay for task distribution or result collection.
However, this would imply additional consumption of wireless
resource. The associated cost and the improvement in completion
time of task offloading compose a fundamental trade-off. For
the resulting optimization problem, we mathematically prove the
complexity, and propose an algorithm using Lagrangian duality.
The simulation results demonstrate not only that the algorithm
has close-to-optimal performance, but also provide structural
insights of the optimal trade-off.

Index Terms—Task offloading, D2D communications, Mobility,
Base station, Relay.

I. INTRODUCTION

Task offloading is a key component in mobile edge com-

puting. Typically, tasks are offloaded to remote servers [1]–

[3] or to computing resources near to users, e.g., base stations

(BSs) [4], [5]. However, these incur significant overhead in

communications and networking [6]. An attractive alternative

is to offload tasks to nearby users [7], [8]. For example, a user

that currently runs on low energy offload send its task to an

idle user with energy available for computation.

In mobility scenarios, the data of a task can be delivered via

Device-to-Device (D2D) communications as the users move

and meet each other [9], [10]. However, this is not a system-

wide optimal strategy especially when some users have low

contact rates with others. In such a situation, the system can be

enhanced by letting the BSs act as relays for task distribution

and result collection. In fact, this approach enables to utilize

better the energy capacity of users. On the other hand, all

tasks should not be relayed via the BSs as this requires a

large number of communications with the BSs. Thus, which

device to offload and how long one should wait before the BS

is called for are both key aspects in optimal task offloading.

Looking into the literature, there are relative few works

[7], [8], [11], [12] that considered task offloading in mobility

scenarios. The works in [7], [8] assumed that the connection

between two users is stable during the entire offloading pro-

cess. The authors of [11] considered offloading one task to

nearby users with maximization of success ratio of obtaining

the result. However, none of these studies utilized BSs as

relays. The investigation in [12] considered a hybrid method

where a task can be offloaded to a remote server, a BS, or a

nearby mobile user. BSs are utilized as relays for delivering

the results, however the trade-off between completion time and

the cost of using BS is not accounted for.

In this paper, we study task offloading where users can

offload their tasks to either remote servers or peer devices,

possibly using the BSs, in a mobility scenario. For each task,

we define a cost related to the completion time and processing.

For offloading, a user can wait longer time to increases the op-

portunity of contact and then collecting the result via D2D, but

the completion time could be quite long. The completion time

can be made shorter if a BS assists with the offloading, but this

will involve additional communications costs. Therefore, we

optimize the time before the BS is involved in task offloading.

In addition, each task has a completion time deadline before

which the result of the task must be obtained. Our aim is to

minimize the total cost of the system. Moreover, the available

energy of the users for processing is taken into consideration.

The contributions of this study are as follows. We formulate

the task offloading problem and show how it can be effectively

linearized. We also prove mathematically the complexity of

the problem. Next, an algorithm based on Lagrangian duality

is provided for problem solving. Our algorithm is compared

to other algorithms. Simulation results demonstrate not only

that the algorithm has close-to-optimal performance, but also

provide structural insights of the optimal trade-off.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In our system scenario, a set of users need to offload their

tasks. We call them requesters and the set is denoted by R =
{1, 2, . . . , R}. The second set of users, referred to as helpers,

have energy available for task processing. The index set of

helpers is denoted by H = {1, 2, . . . , H}. We assume that all

users are within the coverage of network such that BSs can be

used as relays for task distribution or result collection. Merely

to simplify the presentation, we assume there is one BS. The

system scenario is shown in Figure 1.

For the sake of presentation, we assume each requester

has only one task. However, our formulations and algorithms

can be generalized easily to a more general scenario where

each requester has multiple tasks. Hereafter we use task

r and requester r interchangeably. The required amount of

http://arxiv.org/abs/1901.02745v1
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Figure 1. System scenario of D2D task offloading with possible BS assistance
and presence of user mobility.

energy for processing task r and one communication with

the BS are denoted by epr and ecr respectively. Each helper h,

h ∈ H, can provide at most Eh amount of energy to process

tasks. Processing task r by helpers and the remote server

incur costs δ
p
rh and δ

p
rN respectively. These costs typically

relate to the amount of energy required for computation.

Each communication with the BS and remote server incurs

a cost, denoted by δcrB and δcrN respectively. The cost of D2D

communications is negligible.

The inter-contact model is widely used to characterize the

mobility pattern of mobile users [13], [14]. Hereafter, the term

contact is used to refer to the event that two users come

into the communication range of each other. The inter-contact

time, that is the time between two consecutive time point of

meeting each other, for any two users follows an exponential

distribution [15]. Hence, the number of contacts between any

two mobile users follows Poisson distribution [16]. Moreover,

it is assumed that the contact of user pairs are independent.

We consider a time slotted system consisting of T time slots,

T = {1, 2, . . . , T }, each with duration θ. The deadline of task

r is denoted by dr. As mentioned earlier, we optimize the

time before which a requester uses the BS for task distribution

and/or result collection. Thus for requester r and helper h

there is a timer and its value is denoted by trh. The tasks

are assumed to be delay tolerant, hence the magnitude of

time slot1 is considerably larger than task processing time.

Therefore, we do not account for the processing time of

the tasks. Moreover as the contact between the helpers and

requesters are stochastic, we consider the expected value of

the total cost of system. The following five events may occur

once helper h is designated to task r:

1) They meet at least twice before trh, then the task is

collected and result is obtained, both via D2D.

2) They meet exactly once before trh, then the task is

collected, and they meet at least once again between

trh and dr, then the result is obtained. This case also

uses D2D communications twice.

3) They do not meet before trh, but they meet at least

once between trh and dr. Then the BS is involved to

deliver the task to the helper (with two communications:

1 The magnitude of a time slot is in a range of hour.

requester → BS, and BS → helper) and the result is

obtained via D2D communications.

4) They meet exactly once before trh, however, they do

not meet after this time point until dr. Then the task

is given to the helper via D2D communications and the

result is obtained via the BS (with two communications:

helper → BS, and BS → requester).

5) They do not meet at all within dr. In this case, the task

is sent to the server for processing2.

There is a cost associated with task completion time defined

as the starting time point until the requester obtains the task’s

result. We introduce a cost function f(·) for which f(t) is the

cost for a completion time of t slots. For the events above, we

will derive the total expected task completion cost including

the task completion time and the communication if applicable.

B. Cost Model

Denote by binary variable xrh representing if requester r

offloads its task to helper h. The corresponding variable for

task offloading to the server is denoted by xrN . Denote by

P (M
[k,l]
rh = n) the probability that requester r meets helper h

exactly n times during time slots k to l. Note that when k = l,

it is the probability of having n contacts within time slot k.

For special case k < l, there are two cases, i.e., n > 0 and

n = 0. Intuitively, their corresponding probabilities are defined

to zero and one. The probability P (M
[k,l]
rh ≥ n) is defined in

a similar way. Here, M
[k,l]
rh follows a Poisson distribution with

mean λrh(l−k+1)θ, where λrh represents the average number

of contacts per unit time. Denote by Π
(i)
rh , i ∈ {1, 2, 3, 4, 5},

the probability that event i occurs and the expected cost of

event i, i ∈ {1, 2, 3, 4, 5}, is denoted by ∆
(i)
rh .

The cost of assigning the task r to helper h originates from

waiting time before task completion, communications with BS

(if applicable), and task processing. The associated expected

cost of each event is derived and shown in Table I. For events

1 and 2, the first and second terms are the expected costs

related to task completion time and processing respectively.

For events 3 and 4, the first, second, and third terms are the

expected costs related to task completion time, processing,

and communication with BS. For event 5, we have costs of

processing and communications with server. Thus, the total

expected cost for using helper h for task r is:

∆rh(trh) =

5∑

i=1

∆
(i)
rh(trh) (1)

Hence, the overall cost for all helpers and requesters is:

Cost(x, t) =
∑

r∈R

∑

h∈H

∆rh(trh)xrh +
∑

r∈R

(2δcrN + δ
p
rN)xrN

(2)

where x and t are two matrices of dimensions R × (H + 1)
and R×H , respectively, representing the offloading and timer

variables. Note that the cost function is highly nonlinear, but

we prove in Section IV that this function can be linearized

and the optimal value of timers trh, r ∈ R, h ∈ H, can be

preprocessed.

2In this case, the BS also can be used for both the task distribution and
result collection, but we do not account for this solution because it involves
four communications with the BS.



Table I
EXPECTED COSTS AND PROBABILITIES OF EVENTS.

Event Expected cost Probability

1 ∆
(1)
rh

(trh) =

trh
∑

k=0

f(k)
(

P (M
[1,k]
rh

≥ 2) − P (M
[1,k−1]
rh

≥ 2)
)

+Π
(1)
rh

(trh)δ
p

rh
Π

(1)
rh

(trh) = P (M
[1,trh]
rh

≥ 2)

2 ∆
(2)
rh

(trh) =

dr
∑

k=trh+1

f(k)P (M
[1,trh]
rh

= 1)
(

P (M
[trh+1,k]
rh

≥ 1)−

P (M
[trh+1,k−1]
rh

≥ 1)
)

+Π
(2)
rh

(trh)δ
p

rh

Π
(2)
rh

(trh) = P (M
[1,trh]
rh

= 1)P (M
[trh+1,dr]
rh

≥ 1)

3 ∆
(3)
rh

(trh) =

dr
∑

k=trh+1

f(k)P (M
[1,trh]
rh

= 0)
(

P (M
[trh+1,k]
rh

≥ 1)−

P (M
[trh+1,k−1]
rh

≥ 1)
)

+Π
(3)
rh

(trh)
(

δ
p

rh
+ 2δcrB

)

Π
(3)
rh

(trh) = P (M
[1,trh]
rh

= 0)P (M
[trh+1,dr]
rh

≥ 1)

4 ∆
(4)
rh

(trh) = Π
(4)
rh

(trh)
(

f(trh) + δ
p

rh
+ 2δcrB

)

Π
(4)
rh

(trh) = P (M
[1,trh]
rh

= 1)P (M
[trh+1,dr]
rh

= 0)

5 ∆
(5)
rh

(trh) = Π
(5)
rh

(trh)
(

δ
p
rN

+ 2δc
rN

)

Π
(5)
rh

(trh) = 1−
∑4

i=1 Π
(i)
rh

(trh)

C. Energy Consumption on Helpers

The energy consumed on a helper consists of those for pro-

cessing and communications, whereas that for D2D communi-

cations is negligible in comparison. Therefore, we consider the

expected consumed energy. Hence, for requester r we have:

er =Π
(1)
rh (trh)e

p
r +Π

(2)
rh (trh)e

p
r+

Π
(3)
rh (trh)(e

p
r + ecr) + Π

(4)
rh (trh)(e

p
r + ecr)

(3)

D. Problem Formulation

The problem is formulated as follows:

min
x∈{0,1}R×(H+1),t∈{0,1}R×H

Cost(x, t) (4a)

s.t.
∑

h∈H

xrh + xrN = 1, r ∈ R (4b)

∑

r∈R

erxrh ≤ Eh, h ∈ H (4c)

Constraints (4b) indicate that a requester must offload its

task to either a helper or to the server. Constraints (4c) respect

the available energy of helpers.

III. COMPLEXITY ANALYSIS

Theorem 1. The task offloading problem is NP-hard.

Proof. We adopt a polynomial-time reduction from the Knap-

sack problem of N items having weights {e1, e2, . . . , eN},
values {g1, g2, . . . , gN}, and capacity E. Our reduction is as

follows. We have one helper, i.e.,H = {1}, with total available

energy E. There are N requesters, i.e., R = {1, 2, . . . , N}.
The expected amount of energy for processing task r is er.

We set λrh = ln(1
ǫ
) for all requesters and helpers where

ǫ is a small positive number. Therefore, the requesters and

helpers meet at least once with probability 1 − ǫ. Also, we

use f(t) = 0 and set the same deadlines for all requesters,

i.e., dr = dr′ , r, r
′ ∈ R. By construction the optimal timer

value is dr for all requesters. The number of time slots is set

to the deadline of tasks, i.e., T = dr. The costs for processing

task r by the helper and the server is set to δ
p
rh = 0 and

δ
p
rN = 0. The cost of communications with BS and server

is set to δcrB = 0 and δcrN = gr
2 . This setting results in the

overall completing cost for task r by the helper and the server

as 0 and gr respectively, i.e., ∆rh = 0 and 2δcrN + δ
p
rN = gr.

Consequently, if task r is offloaded to the helper, its gain is

2δcrN + δ
p
rN − ∆rh = gr. By construction, the optimum to

our problem solves the Knapsack problem instance. As the

Knapsack problem is NP-hard, the conclusion follows.

IV. ALGORITHM DESIGN

The cost in equation (2) has a rather complicated structure

because of the nonlinearity. However, in the following we

provide a structure insight stating that for each pair task

r and candidate helper h, the optimal value of trh can be

preprocessed. This enables us to reformulate the cost function

as a linear function without loss of optimality.

Lemma 2. For any pair r and h, the optimal value of timer

trh can be obtained with linear complexity.

Proof. For each possible value of trh from 0 to dr, the value of

∆rh(trh) can be computed in linear time, because ∆rh(trh)
is the sum of costs of the five possible events. The cost of

each of them involves calculating the probabilities and cost of

completion time. The probabilities can be obtained in O(1) via

formula λke−λ

k! and the completion time cost can be obtained

in O(T ) as there is maximum T time slots. Thus the overall

complexity is O(T ). Furthermore, the value of ∆rh(trh) is

independent from the other pairs. These together enable us to

obtain the optimal value of trh by taking min operator over

all possible values, i.e., ∆∗
rh = min {∆rh(trh)}

trh∈{0,1,...,dr}

.

By Lemma 2, the objective function is linearized below.

min
x∈{0,1}R×(H+1)

∑

r∈R

∑

h∈H

∆∗
rhxrh +

∑

r∈R

δrNxrN (5)

s.t. (4b), (4c)

A. Lagrangian Relaxation

We apply Lagrangian relaxation to (4c). Denote by uh,

h ∈ H, the corresponding Lagrange multipliers. We have the

following Lagrangian relaxation:



L(u) = min
x∈{0,1}R×(H+1)

∑

r∈R

∑

h∈H

∆∗
rhxrh+

∑

r∈R

(2δcrN + δ
p
rN)xrN +

∑

h∈H

uh(
∑

r∈R

erxrh − Eh)

s.t. (4b)

(6)

The above problem is polynomial-time solvable as the only

constraint (4b) states that the task has to be assigned to either

a helper or the server. Therefore, the optimal is to pick the

helper or the server that minimizes the expected cost.

B. Subgradient Optimization

The Lagrangian dual problem is v∗ = maxu≥0 L(u), where

u = [u1, . . . , uH ]. A subgradient, d = [d1, . . . , dH ], to the

concave function L(u) can be obtained as:

dh =
∑

r∈R

erx̄rh − Eh, h ∈ H, (7)

where {x̄rh, r ∈ R, h ∈ H} is obtained from the optimal

solution to L(u for the given u. The dual problem can be

solved with subgradient optimization, described in Algorithm

1. In the algorithm, K is the maximal allowed number of

iterations, v
¯

and v̄ denote the best known lower and upper

bounds on v∗. Any feasible solution yields upper bounds.

Initially, we use v̄ =
∑

r∈R(2δcrN + δ
p
rN). We user the

following formula to calculate the step [17]:

t(k) = max{0, η
v̄ − g(u(k))

‖d(k)‖2
} with 0 < η < 2 (8)

Algorithm 1: Lagrangian-based Algorithm

1: Choose a starting point u(1), choose ǫ1 > 0 and ǫ2 > 0,

v
¯
← −∞, v̄ ←

∑
r∈R(2δcrN + δ

p
rN )

2: repeat

3: Solve (6), yielding L(u(k)) and x̄

if L(u(k)) > v
¯

then v
¯
← L(u(k)) ;

4: Make an attempt to modify x̄ to a feasible solution,

and possibly update v̄

5: Calculate search direction d
(k) and step length t(k)

using formula (7) and (8) respectively

6: Update u
(k+1) = u

(k) + t(k)d(k)

7: k ← k + 1
8: until (k > K or ‖d(k)‖ ≤ ǫ1 or ‖u(k) − u

(k−1)‖ ≤ ǫ2)

We carry out Step 4 as follows. For each helper having its

energy constraint violated, we reassign some of the allocated

tasks to other helpers in ascending order of cost.

V. PERFORMANCE EVALUATION

For performance comparison, we consider two intuitive task

offloading strategies based on the expected cost and contact

rates respectively. For these two strategies the tasks are allo-

cated to helpers in descending order of expected completion

cost and contact rate, respectively. After allocating a task, the

residual energy of helpers will be updated. This process will

be repeated until each task is assigned to either a helper or

the server.

The energy available of each helper is generated randomly

within interval [1000, 3000] Joule (J). The experiments in [18]

have shown that λrh follows Gamma distribution. Here, we use

Gamma distribution Γ(0.5, 1). The energy required to process

a task depends on two factors: the size of data and type of

workload [19], and the number of CPU cycles for processing

one bit varies by workload type [19], [20]. We generate the

tasks with data size within interval [0.5, 5] MB and assign

them workload such that CPU cycles per bit is in the range

[2000, 37000]. We consider 1
730×106 J and 1.42 × 10−7 J

for energy consumption of one CPU cycle and one bit data

transmission respectively [20]. The processing cost of task

r on helper h and the remote server are set to δ
p
rh = epr

and δ
p
rN = 10epr. The other parameters are set as follows:

δcrB = 100ecr, δcrN = 1000ecr, f(t) = αt2 where α is a

weighting factor, T = 24, and θ = 1 hour. The deadlines

of tasks are generated randomly within range [1, 24] time

slots. A task with more required energy has a longer deadline.

All simulation results are obtained by averaging over 100
instances.

Figures 2 and 3 show the impact of the number of helpers

R and weighting factor α on the expected total cost. In Figure

2, as expected, the cost decreases with respect to H . For

H = 3, the performance gaps of cost-based and contact-based

strategies with respect to the Lagrangian-based algorithm are

19% and 5% respectively, and the values grow to 29% and

80% for H = 7. The reason for the increase is that the

available energy is limited when H = 3, thus most of the

tasks are offloaded to the server, no matter which strategy or

algorithm is used. But, when the number of helpers increases

to H = 7, the Lagrangian-based algorithm manages to utilize

the energy of helpers to accommodate more tasks, whereas the

two other strategies are less optimal in this regard. In addition,

the solution from the Lagrangian-based algorithm is about

20% from the lower bound of global optimum. This manifests

that our algorithm produces close-to-optimal solutions.

In Figure 3, we observe that with the increase of α, the

overall expected cost increases. This is expected as a higher

α means a growth in a coefficient in the objective function,

whereas the solution space remains unchanged. The contact-

based strategy performs better than the cost-based one for large

values of α. The reason is that the expected cost of each

event basically consists of two main parts: the cost related

to the expected completion time and the cost related to the

processing and communications. The former depends on the

weighting factor α and the contact rates between the requesters

and helpers. Thus, larger α gives more emphasis on the contact

rates, and consequently the contact-based strategy shows better

performance when α increases. Furthermore, the Lagrangian-

based algorithm consistently and significantly outperforms the

cost-based and contact-based task allocation strategies.

In Figure 4, the x-axis is the relative timer values with

respect to the deadline, before the BS is used, and the curves

show the percentages of requesters setting their timers being

at most the values of the x-axis, for various values of α.

We can see that when parameter α increases, there are more



requesters using shorter timers. For example for α = 0.1,

about 50% of requesters will use the BS at time point zero,

while this percentage for α = 0.00016 decreases to almost

zero. These results provide structural insights of using D2D

communications versus the BS as well as the resulting cost

trade-off, in relation to the amount of emphasis put on task

completion time.
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Figure 4. Impact of α on the timers, i.e., the amount of time that a user
waits before the BS is called for assistance, with respect to deadlines when
R = 15, H = 5, T = 24, θ = 1, and f(t) = αt2 .

VI. CONCLUSIONS

We have studied a task offloading problem with presence

of user mobility and possible assistance of BS as relay. For

this optimization problem, we have provided structural insight,

complexity analysis, and a solution algorithm. Simulation

results manifested that our algorithm has a small gap with the

optimal solutions and outperforms the other two strategies, i.e.,

cost-based and contact-based strategies. The future work plan

is to investigate a more hierarchical task offloading architecture

for mobility scenarios.
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