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Abstract—This paper considers a network of source nodes
that transmit data packets to a destination node via relay
nodes over erasure channels by using random linear network
coding. The probability that the destination node will fail to
recover the packets of all source nodes has been bounded and
approximated in the literature for the case of relay nodes that
randomly assign only nonzero values to the coefficients of linear
combinations of data packets. The paper argues for the necessity
of giving relay nodes the choice to also assign the zero value to
coefficients when arithmetic operations are over finite fields of
small size, e.g. GF(2). Alternative probability mass functions for
the coefficients are considered, and expressions for the decoding
failure probability are re-derived.

Index Terms—Cooperative communication, decoding probabil-
ity, random linear network coding, random matrices.

I. INTRODUCTION

Network coding, proposed in the seminal work of Ahlswede

et al. [1], can increase data flow rates in a network. When net-

work coding is employed, source nodes transmit data packets,

whereas relay nodes generate and forward linear combinations

of successfully received packets toward destination nodes.

Wireless links between nodes can introduce packet erasures

in the transmission process and affect network topology. Ho

et al. [2] proposed the use of a random linear network code

(RLNC) for networks with varying or unknown topologies,

according to which the coefficients in a linear combination

of packets are selected uniformly and independently from a

Galois field of size q, denoted by GF(q).
Chiasserini et al. [3] studied a network that consists of N

source nodes, M relay nodes and one destination node. Each

source node transmits one data packet. Source-to-destination

links are not available. An approximate expression for the

decoding probability was obtained, that is, the probability

that the destination node will decode the data packets of all

source nodes. Başaran et al. [4] took into account the source-

to-destination links, improved the counting accuracy of the

combinatorial solution presented in [3] and derived an exact

expression for the decoding probability. The expressions in

both [3] and [4] invoke the matq(·) function, the calculation

of which is based on a numerical method by Klein et al. [5].

As a result, the exact solution proposed in [3] and [4] is both

semi-analytical and computationally intensive, and cannot be

easily integrated in optimization problems. Furthermore, both

[3] and [4] assume that each relay node fails to receive at most

one data packet, thus limiting the scope of the solution.

Seong [6] obtained closed-form bounds on the decoding

failure probability (DFP), that is, the probability that the

destination node will fail to decode the data packets of all

source nodes. The key difference between [6] and [3], [4] is

that the whole network in [6] has been modeled as an RLNC

in which the values of code coefficients are selected with

unequal probability from GF(q). When code coefficients are

more likely to be assigned the zero value than any of the other

q − 1 values of GF(q), the code is known as sparse RLNC,

otherwise it is referred to as dense RLNC. Based on the work

of Blömer et al. [7] on sparse random matrices, Khan et al. [8]

derived tighter bounds than those in [6]. However, both [6] and

[8] study networks without direct source-to-destination links.

Both [6] and [8] assume that relay nodes randomly assign

only nonzero values to code coefficients in linear combinations

of successfully received data packets. This assumption can

introduce flaws when the erasure probability of the source-

to-relay links is very low and RLNC is over GF(2), resulting

in a high DFP.

In this paper, the work of [6] and [8] is revisited by jointly

considering the relationship between the erasure probability

of the source-to-relay links and the probability mass function

(PMF) of the code coefficients. The bounds on the DFP are

re-derived. The work of Brown et al. [9], which proposes an

approximation for the decoding failure probability, is taken

into account and is extended from broadcast to relay-assisted

communication. Our analysis initially focuses on transmission

via the relay nodes only, referred to as Random Network

Coded Relaying (RNCR), and is then extended to include

the support of source-to-destination links, known as Random

Network Coded Cooperation (RNCC).

II. SYSTEM MODEL

As shown in Fig. 1, we consider a network that consists

of source nodes S1, . . . , SN , relay nodes R1, . . . ,RM and one

destination node D. The transmission process is completed in

two phases. In the broadcast phase, each source node transmits

a data packet to the destination node and the relay nodes.
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Figure 1. Model of a network consisting of N source nodes, M relay nodes
and one destination node. The packet erasure probabilities ǫSR, ǫRD and
ǫSD characterize the quality of the source-to-relay, relay-to-destination and
source-to-destination links, respectively.

In the relaying phase, each relay node randomly combines

successfully received data packets, generates a coded packet

and forwards it to the destination. Packets are transmitted over

orthogonal channels. The average channel conditions of the

source-to-relay, relay-to-destination and source-to-destination

links are characterized by the packet erasure probabilities ǫSR,

ǫRD and ǫSD, respectively.

The packets that are transmitted during the two-phase pro-

cess can be written in matrix form as:

x = Gu ⇔




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...
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=
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
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


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
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uN






. (1)

The column vector u contains the data packets u1, . . . , uN

of the source nodes, where un is the data packet of source

node Sn, for 1 ≤ n ≤ N . The column vector x consists

of the transmitted packets x1, . . . , xN+M , where x1, . . . , xN

are the data packets transmitted by the N source nodes to the

destination node, and xN+1, . . . , xN+M are the coded packets

transmitted by the M relay nodes to the destination node.

G is obtained by the vertical concatenation of the N × N
identity matrix IN×N and the N ×M coding matrix CM×N .

Note that IN×N represents the broadcast phase and CM×N

describes the encoding process of the data packets during the

relaying phase. Each element of CM×N , denoted by cm,n,

is randomly drawn from GF(q), that is, cm,n ∈ GF(q). The

PMF of cm,n, represented by P (cm,n), is influenced by the

erasure probability of the source-to-relay links. For example,

the event of a data packet being transmitted from source node

Sn to relay node Rm and subsequently erased by the channel

is equivalent to the event of relay node Rm setting cm,n = 0
in the encoding process. If erasures have an impact on the

probability of selecting cm,n = 0, then non-erasures affect

the probability of choosing 1 ≤ cm,n ≤ q. Hence, the PMF

P (cm,n) depends on ǫSR.

At the end of the two-phase process, node D constructs ma-

trix A from the rows of G that are associated with successfully

received packets. The number of rows that sub-matrix IN×N

contributes to A is affected by ǫSD. Similarly, the number

of rows of sub-matrix CM×N that will be appended to A

depends on ǫRD. Node D will recover u1, . . . , uN if and only

if A contains N linearly independent rows, thus, has rank N .

III. RANDOM NETWORK CODED RELAYING

Let Em,n denote the erasure of a data packet transmitted

from source node Sn to relay node Rm, and let Em,n signify

the successful delivery of the same packet, where the probabil-

ity of each event is P (Em,n) = ǫSR and P (Em,n) = 1− ǫSR.

The probability that element cm,n of the coding matrix CM×N

will be assigned a particular value from GF(q) is given by

P (cm,n) = P (cm,n |Em,n)ǫSR + P (cm,n |Em,n)(1 − ǫSR). (2)

In the event of an erasure, data packet un of source node Sn
will not be stored on the memory of relay node Rm and will

not participate in the encoding process. This is equivalent to

setting cm,n = 0 in (1) and writing P (cm,n = 0 |Em,n) = 1.

Given that ǫSD=1 and G=CM×N in RNCR, the DFP can

be expressed as [6], [8], [9]

FRNCR(N,M) =

M
∑

m=0

(

M

m

)

ǫM−m
RD

(1−ǫRD)
mF (N |m) (3)

where F (N |m) is the DFP conditioned on the number of

coded packets m that have been received by the destination.

If node D receives m of the M coded packets, the dimensions

of A will be m × N . The conditional probability F (N |m),
which has been bounded in [6], [8] and approximated in [9],

is dependent on P (cm,n) given in (2).

The analysis in [6] and [8] assumes that if data packet un

is received by relay node Rm, it will definitely contribute to

the generation of coded packet xm. This implies that the relay

node will select a value uniformly at random from the q − 1
nonzero elements of GF(q) and assign it to cm,n. We can thus

write P (cm,n = t |Em,n) = 1/(q − 1) for t ∈ GF(q) \ {0}.

Substitution into (2) gives

P (cm,n = t)=

{

ǫSR, if t=0

(1 − ǫSR)/(q − 1), if t∈GF(q)\{0}.
(4)

Based on (4), the following upper bound on the conditional

DFP was obtained in [8, Theorem 3]:

Theorem 1 (Khan et al. [8]). If the PMF used in the encoding

process of RNCR is defined as in (4), the conditional DFP is

upper bounded by

F (N |m) ≤ min {F1(N |m), F2(N |m)} (5)

where

F1(N |m)=1−

N
∏

n=1

[

1−

(

max

{

ǫSR,
1− ǫSR
q − 1

})m−n+1
]

(6)

F2(N |m) =

N
∑

n=1

(

N

n

)

(q − 1)n−1 ρmn , (7)

with ρn in (7) given by

ρn = q−1 +
(

1− q−1
)

(

1−
1− ǫSR
1− q−1

)n

. (8)



Expression (5) selects the tightest of two different loose up-

per bounds, namely F1(N |m) and F2(N |m). Upper bound

F2(N |m) in (7) is a function of ρn, which is defined in (8)

and provides the probability that the sum over GF(q) of the

first n elements of a row of matrix A is zero. The same

PMF as in (4) was used in [9] but the Stein-Chen method

was followed to approximate the DFP. In an effort to facilitate

the comparison of the findings in [8] and [9], we present [9,

Theorem 3.1] in the context of RNCR, as:

Theorem 2 (Brown et al. [9]). If the PMF used in the

encoding process of RNCR with N source nodes and M ≥ N
relay nodes is defined as in (4), the conditional DFP can be

approximated by

F (N |m)≈1−(1− ǫmSR)
N
exp

(

−

N
∑

n=2

(

N

n

)

πn

(1− ǫm
SR

)
n

)

(9)

where πn is an approximation of the probability that a subset

of n columns of matrix A add up to the zero vector in GF(q)
but no combination of columns from the same subset sum to

the zero vector. The following recursion holds for πn:

πn = ρmn −

n−1
∑

s=1

(

n− 1

s

)

ρms πn−s (10)

where ρn has been defined in (8) and π1 = ρm1 .

As observed in [8] and also reported in [10], if ǫRD < 1,

the DFP is minimized when the values assigned to the ele-

ments of the coding matrix CM×N are selected uniformly at

random from GF(q), i.e., with probability 1/q. According to

(4), the PMF follows the discrete uniform distribution when

ǫSR = 1/q. For q = 2, the system design has the undesirable

attribute of generating markedly more decoding failures when

0 ≤ ǫSR < 1/2 than when ǫSR = 1/2. In order to alleviate this

problem and reduce the DFP, we need to revise (4).

A. Relay nodes without knowledge of ǫSR

If data packet un is received by relay node Rm, ele-

ment cm,n of the coding matrix CM×N can be assigned

values from GF(q) with equal probability, including the zero

value, i.e., P (cm,n |Em,n) = 1/q. This will ensure that, if

0 ≤ ǫSR < 1/q, data packets that have been received by a

relay node will not necessarily be included in the RLNC

process. Thus, dense RLNC will be avoided and the chances of

generating linearly dependent coded packets at low values of

ǫSR will be reduced. Based on (2), the PMF of cm,n becomes

P (cm,n= t)=

{

ǫSR + (1− ǫSR) /q, if t = 0

(1− ǫSR) /q, if t∈GF(q)\{0}.
(11)

The following proposition is an adjustment of Theorem 1:

Proposition 1. If the PMF used in the encoding process of

RNCR with N source nodes and M ≥ N relay nodes is defined

as in (11), the conditional DFP is upper bounded by (5), where

F1(N |m)=1−

N
∏

n=1

[

1−

(

ǫSR +
1− ǫSR

q

)m−n+1
]

, (12)

F2(N |m) is defined as in (7) but ρn is given by

ρn = q−1 +
(

1− q−1
)

ǫnSR. (13)

Proof. According to the PMF in (11), the zero value will

always be selected with a higher probability than any nonzero

value from GF(q), for any value of ǫSR. Therefore, the

maximum of the two branches of the PMF is ǫSR+(1−ǫSR)/q.

Substitution into (6) gives (12). The expression of ρn for the

revised PMF in (11) can be derived if the same reasoning as

in [7, Theorem 3.3] is applied. In particular, the sum of the

first n elements of a row will be zero if (i) the sum of the first

n−1 elements is zero and the n-th element has the zero value,

or (ii) the sum of the first n− 1 elements is greater than zero

but the n-th element has the appropriate nonzero value that

gives a sum of zero. In terms of probabilities, we can write:

ρn = ρn−1

(

ǫSR+
1− ǫSR

q

)

+ (1− ρn−1)

(

1− ǫSR
q

)

= ρn−1ǫSR + (1− ǫSR) q
−1 (14)

where ρ0 = 1. If we set φn = ρn − q−1, it follows from (14)

that φ0 = 1− q−1 and

φn = φn−1 ǫSR =
(

1− q−1
)

ǫnSR. (15)

Replacing φn with the righthand side of (15) in φn = ρn−q−1

and solving for ρn leads to (13).

Corollary 1. When RNCR uses the PMF in (11), the condi-

tional DFP can be approximated by (9) if ρn in (10) is defined

as in (13).

We established that the PMF in (11) results in sparse RNCR

because selection of the zero element is favored over the

other elements of GF(q) in the encoding process. Thus, for

0 ≤ ǫSR < 1/q, the PMF in (11) is closer to the (optimal)

uniform distribution than the PMF in (4) and a lower DFP

can be achieved. For 1/q ≤ ǫSR ≤ 1, both (11) and (4) lead

to sparse implementations of RNCR; however, the PMF in (11)

deviates from the uniform distribution more than the PMF in

(4) and yields a higher DFP. The benefits of both (11) and (4)

can be reaped for any value of ǫSR, if relay nodes know ǫSR.

B. Relay nodes with knowledge of ǫSR

The packet erasure probability ǫSR captures the average

channel conditions of the source-to-relay links. If the relay

nodes have knowledge of ǫSR, they can ensure that the values

assigned to the elements of CM×N are selected uniformly at

random from GF(q), when 0 ≤ ǫSR < 1/q. Otherwise, when

1/q ≤ ǫSR < 1, the relay nodes can remove the zero value

from the pool of candidate values for the elements of CM×N .

For 0 ≤ ǫSR < 1/q, the probability that relay Rm will select

a particular value for cm,n upon successful reception of data

packet un, so that P (cm,n) = 1/q, can be obtained from (2):

P (cm,n= t |Em,n) =











1− q ǫSR
q (1− ǫSR)

, if t = 0

q (1− ǫSR))
−1, if t∈GF(q)\{0}.

(16)



If relay nodes use (16) to assign values to those elements of

CM×N that correspond to received data packets, the PMF

in (2) will follow the discrete uniform distribution and the

conditional DFP will be equal to [11]

F (N |m) = 1−
N
∏

n=1

(

1− q−m+n−1
)

. (17)

For 1/q < ǫSR ≤ 1, packet erasures can still set the elements

of CM×N equal to zero but relay nodes should only assign

nonzero values to avoid turning CM×N into an overly sparse

matrix. Thus, the PMF in (4) and the upper bound on the

conditional DFP given in (5) can be used for 1/q < ǫSR ≤ 1.

IV. RANDOM NETWORK CODED COOPERATION

In the case of RNCC, matrix G is the vertical concatenation

of IN×N and CM×N , as in (1). Let us assume that the

destination node D has collected n data packets directly from

the N source nodes and m coded packets from the M relay

nodes. Elementary row and column operations can split the

(n+m)×N matrix A at the destination node into four sub-

matrices, with the top-left being the n × n identity matrix,

the bottom-right being an m × (N − n) random matrix and

the remaining entries being zero. As a result, the probability

that the destination node will fail to decode the remaining

N − n data packets, given that m coded packets have been

received, is equal to F (N −n |m). The DFP can be obtained

by averaging F (N − n |m) over all n and m, that is

FRNCC(N,M) =
N
∑

n=0

(

N

n

)

ǫN−n
SD

(1− ǫSD)
n

·
M
∑

m=0

(

M

m

)

ǫM−m
RD

(1 − ǫRD)
m F (N − n |m)

(18)

where F (N−n |m) = 0 for n = N . Note that FRNCC(N,M)
in (18) reduces to FRNCR(N,M) in (3) when ǫSD = 1.

Expression (18) is an extension of the decoding probability of

systematic network coding [12, eq. (8)] to the system model of

RNCC. Depending on the PMF that is used by relay nodes to

assign values to the elements of CM×N , expressions (5), (9)

and (17) can be used to upper bound, approximate or compute

F (N − n |m), respectively, as explained in Section III.

V. RESULTS

The proposed modifications in the PMF used in the encod-

ing process of RNCR and RNCC, their impact on the DFP and

the tightness of the revised theoretical expressions are explored

in this section. To refer to the different implementations of

RNCR and RNCC, we have adopted a naming convention

that describes the lack or excess of zeros in the coding

matrix CM×N , when ǫSR ∈ [0 . . . 1/q] or ǫSR ∈ (1/q . . . 1],
respectively. Three cases can be encountered:

• C1: dense-sparse, if the PMF in (4) is used to assign

values to the elements of CM×N .

• C2: sparse-very sparse, if the PMF in (11) is used to

assign values to the elements of CM×N .
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Figure 2. Decoding failure probability of RNCC as a function of ǫSR for
q = 2, N = 20, M = 25, ǫRD = 0.15 and ǫSD ∈ {0.7, 0.9, 1}.

• C3: uniform-sparse, if (16) is used to ensure that the PMF

is uniform when ǫSR ∈ [0 . . . 1/q], and the PMF in (4) is

employed when ǫSR ∈ (1/q . . . 1].

Fig. 2 shows the impact of each PMF on the DFP of

both RNCR (ǫSD = 1 by definition) and RNCC (when ǫSD ∈
{0.7, 0.9}) for N = 20 source nodes, M = 25 relay nodes,

q = 2, ǫRD = 0.15 and ǫSR ∈ [0, 1]. Fig. 2(a) illustrates the

poor performance of C1, analyzed in [6], [8], for low values

of ǫSR. As can be observed in Fig. 2(a) for ǫSR < 0.2, the

destination node will fail with a high probability to collect a

sufficient number of linearly independent coded packets and

recover all of the data packets. The high DFP for low values

of ǫSR necessitates the adoption of a different PMF for the

encoding process. In C2, relay nodes can assign 0 or 1 with

equal probability to code coefficients of received data packets.

As can be seen in Fig. 2(b) for low values of ǫSR, the DFP

drops to 0.44 for ǫSD = 1, to 0.2 for ǫSD = 0.9 and to 0.03 for

ǫSD = 0.7. For an increasing value of ǫSR, code coefficients

are more likely to be assigned the value 0 as per (11), hence

fewer data packets are involved in linear combinations. In C3,

the PMF of code coefficients in (16) prompts relay nodes to

favor 1 over 0 with an increasing probability, as ǫSR grows

from 0 to 0.5. The overall PMF is uniform and the DFP is

minimized for ǫSR ∈ [0, 0.5], as confirmed by Fig. 2(c). If

ǫSR ∈ (0.5, 1], both C1 and C3 use the same PMF.



Figure 3. Decoding probability achieved by the three RNCC implementations
for q = 2, ǫSR = ǫRD = 0.15, ǫSD = 0.7 and N,M ∈ {2, 4, . . . , 20}.

The decoding probability, given by 1−FRNCC, at the desti-

nation node for each of the three cases under consideration is

shown in Fig. 3. In particular, the gain in decoding probability

that can be achieved by the proposed schemes, C2 and C3, over

C1 is depicted as a function of the number of source nodes

and relay nodes in the system, where N,M ∈ {2, 4, . . . , 20},

q = 2, ǫSR = ǫRD = 0.15 and ǫSD = 0.7. As expected, the

decoding probability is low when the source-to-destination

links are weak and the relay nodes are fewer than the source

nodes (M < N); this is because the packets received by

the destination node are, occasionally, fewer than the source

packets or the linearly independent packets among the received

packets are, often, fewer than N . As only three useful (out

of four possible) linear combinations of two source packets

can be generated by relay nodes when N = 2 source nodes,

C2 and C3 achieve only a marginal increase in the decoding

probability, as M grows. However, we observe that both C2

and C3 significantly improve the decoding probability when

2 < N ≤ M but the superiority of C3 is notable only for

low values of M . This observation leads to the practical

recommendation that C2 can be used in place of C3 as N
increases, N < M and ǫSR < 0.5, because the complexity

introduced in C3 in order to equip the relay nodes with

knowledge of ǫSR provides negligible performance gains.

We note that, as the field size used by RLNC grows, the

number of possible linear combinations that can be generated

by relay nodes increases. The use or omission of zero coeffi-

cients during the encoding process has a diminishing impact

on the DFP of RLNC over fields larger than GF(2), and C1,

C2 and C3 perform similarly, especially at low values of ǫSR.

VI. CONCLUSIONS

Expressions to bound and approximate the decoding failure

probability of random network coded relaying are readily

available. This paper has extended these expressions to random

network coded cooperation in order to capture the contribution

that links between the source nodes and the destination node

can make to the reduction of the decoding failure probabil-

ity. More crucially, the paper established that inclusion or

exclusion of the zero element from GF(2) in the selection

process of code coefficients at the relay nodes should take

into consideration the packet erasure probability of the source-

to-relay links, i.e. ǫSR. For ǫSR ≤ 0.5, relay nodes should be

able to choose the zero element with a probability equal to

0.5 or a variable probability that decreases from 0.5 to 0
for an increasing value of ǫSR. For ǫSR > 0.5, the zero

element should be excluded from the encoding process at the

relay nodes to avoid the generation of overly sparse linear

combinations of data packets.
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