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Abstract—Facing the huge success of mobile devices, network
providers ceaselessly deploy new nodes (cells) to always guarantee
a high quality of service. Nevertheless, keeping turned on all the
nodes when traffic is low is energy inefficient. This has led to
investigations on the possibility to turn off network nodes, fully
or partly, in low traffic loads. To accomplish such a dynamic
network optimization, it is crucial to predict very accurately
low traffic periods. In this paper, we tackle this problem using
data mining and propose Spatio-Temporal Ensemble Prediction
(STEP). In a nutshell, STEP is based on the following two main
ideas: (1) since traffic shows very different behaviors depending
on both the temporal and the spatial contexts, several prediction
models are built to fit these characteristics; (2) we propose an
ensemble prediction technique that accurately predicts low traffic
periods. We empirically show on a real dataset that our approach
outperforms standard methods on the low traffic prediction task.

I. INTRODUCTION

To sustain the rapidly increasing demand of mobile services,
network operators have adopted a densification strategy by
ceaselessly setting up new network equipment. While this
strategy is necessary for maintaining the minimum quality of
service (QoS) during the peak periods, it most often leads to
a excess use of energy when traffic is normal or low. Two
arguments motivate this statement. First, dense deployment
of nodes (cells) creates overlapping areas in the network,
i.e., within these areas, multiple nodes can serve the same
users. During the high traffic hours nodes are used efficiently.
However when the number of active users and the traffic goes
down, some of the nodes are operating at low utilization level.
Second, it has been recently shown in [1] that traffic load has
small impact on the total energy consumption of an active base
station node. Consequently, the potential of energy savings by
turning off some nodes depending on predicted traffic demand
is high.

Such network optimization strategy would require solving
two complementary open research problems. The first prob-
lem is to very accurately predict low traffic periods at the
node level. As it is experimentally shown later, the standard
statistical technique, e.g., ARIMA, fail in achieving this task.
Second, once some nodes have been elected as candidates for
being turned off at a certain moment, it is crucial to maintain
a trade off between two contradictory goals: saving as much
energy as possible while maintaining satisfactory QoS. Indeed,
reducing the number of operating network nodes during low

traffic period would lead to an increased utilization level and
impact on the QoS for the remaining nodes.

In this paper, we investigate the first problem: what data
mining can do to tackle the low traffic prediction problem,
and propose STEP (Spatio-Temporal Ensemble Prediction),
an accurate technique to perform traffic prediction in mobile
broadband networks. Our approach mainly relies on two
assumptions. First, as stated in [2], traffic varies a lot from
cell to cell and from hour to hour. Consequently, instead of
considering the complete set of traffic data to compute one
single prediction model, it is decomposed into smaller subsets
to compute separate models for each cell and each day hour.
Second, based on the idea that unity is strength, ensemble
techniques encounter a large success to solve classification or
prediction tasks. Basically, such approaches combine single
models and aggregate their respective predictions to make the
final decision. It has been recently shown that these approaches
often perform better than single classifiers/prediction models
[3]. We thus propose an ensemble prediction model to achieve
our goal. Given a training set, an accuracy score is calculated
for each model to evaluate how good it is when trained on the
given set. Based on these accuracies, a strategy is developed to
aggregate these separate predictions. Results obtained on real
mobile broadband network traffic data show that our approach
performs better than a state-of-the-art approach, ARIMA.

The remainder of this paper is structured as follows. Sec-
tion II introduces some background knowledge. In Section III
we formally describe STEP and illustrate it on an example.
Section IV provides some experimental results and Section V
draws the conclusion of this work and open some future
directions.

II. BACKGROUND

A. Toward a Dynamic Optimization Strategy

We illustrate steps in the dynamically optimized network
through the example provided in Fig. 1. A dashed line repre-
sents a coverage area within which users are served during the
busy hours, while the solid line represents possible coverage
area when the traffic is low. Users in the network are denoted
as U1,. . ., Un. The network is constructed by nodes C1,. . .,Ck.
To optimize the energy consumption, we consider two node
states: On (the node is broadcasting) and Off (the node is
turned off), e.g., if we predict low traffic from 2AM to 6AM,
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Fig. 1. Network optimization strategy at 3AM (left - not optimized, historically monitored network data, right - network with optimization)

the node can be turned off at 2AM and should be turned on
at 6AM.

To clarify the process of network optimization, let us look
at 3AM, node C2 in Fig. 1. Historical data shows that C2 was
serving low traffic at 3AM, the neighbor nodes C1, C3, and
C4 were turned on serving low traffic as well. Assume the
prediction for C2 at 3AM will be low (the node will serve
only few users). Intuitively C2 could be turned off, as the
coverage area of C2 can be served by the neighbor nodes C1,
C3, and C4. In this paper, we propose an efficient solution for
predicting periods (see Fig. 1) where a subset of the nodes can
be potentially turned off. The study of selecting the optimal
subset for achieving the best energy savings while maintaining
the minimum QoS guaranties is left for further studies.

B. Prediction

Prediction methods are developed to give estimates of the
future. Schematically, prediction is a multiple-step process.
During the first learning step, a model based on the historical
data is built and the model parameters are estimated. This
model is then used during the second prediction step. In case of
changing distribution the third model evaluation step enables
the model recomputation whenever the prediction error rate
exceeds a certain threshold. In this paper we consider a few
different techniques used for time series predictions: ARIMA
(AutoRegresive Integrated Moving Average) [4], EGRV (En-
gle, Granger, Ramanathan, and Vahid-Arraghi model) [5] and
ensemble methods [3].

ARIMA is a popular time series forecasting technique. It
has been adapted in various research areas, e.g., stock, natural
gas, IP traffic prediction, etc. Due to variety of use cases,
ARIMA is selected as the baseline technique.

Initially EGRV was designed for the short-term forecasting
of electricity demand. EGRV is based on building multiple
regression models. A model is built for each hour of the day,
e.g., a model for 1AM is built using historical data for 1AM,
and so on for 2AM,... Predictions are made using the model

built for a specific hour, e.g., to predict traffic at 1AM the
model built for 1AM is used. We do not evaluate EGRV
predictions with our data since it is not designed to fit with
MBN data.

The EGRV splitting strategy fundamentally differs from
the ARIMA. Indeed, whereas ARIMA use the whole training
set to learn a single predictive model, EGRV relies on its
subdivision and multiple prediction models. For instance, let
us consider Figs. 2 and 3, which confront how data are
selected for prediction model building. In Fig. 2, a time series

Fig. 2. ARIMA time series (training data 144 hours)

Fig. 3. EGRV time series (6 single hour models)



representing the traffic for one cell for six consecutive days is
displayed. This time series directly serves as input to ARIMA
to compute one prediction model that will be used to predict
traffic values. To show the differences between EGRV and
ARIMA, 6 consecutive hours (22, 23, 24, 1, 2, 3) have been
selected. These selected 6 hours in the ARIMA model, see
Fig. 2, are marked as solid lines, while in EGRV 6 models
(one for every hour) are constructed, see Fig. 3.

Ensemble prediction is based on taking several different
prediction models and using them to build one ensemble
model. The analysis of data allows selecting the most accurate
methods. Intuitively most of the methods would predict dif-
ferent values, therefore the same most common prediction is
taken. Combining prediction methods and selecting the most
common predicted value provides higher confidence and better
results compared to predictions from one individual method.

C. Data Description and Evaluation Metrics

Data Description. We denote by DRaw
T = dRaw

1 , . . . , dRaw
n

the training set used to compute prediction models. Each
dRaw
i (with 1 ≤ i ≤ n) is in the form dRaw

i =
(cellIdi, , datei, houri, traffici). In this paper, we are in-
terested in predicting if traffic will be either low or high
rather than predicting the absolute traffic value. For this
reason, we introduce a user-defined threshold, denoted by
σ, to discretize each traffici into the set of classes C =
{high, low}. Fig. 4 illustrates such a discretization strategy.
The extended training set is denoted by DT = d1, . . . , dn
such that each di (with 1 ≤ i ≤ n) is in the form di =
(cellIdi, , datei, houri, traffici , classi ) (with classi ∈ C).

Fig. 4. Illustration of the traffic value discretization strategy

Evaluation Metrics. We now introduce the evaluation metrics
we used to measure the effectiveness of STEP.

• The global accuracy represents the ratio of correct pre-
dictions over the total number of performed predictions.
Considering the example displayed in Fig. 4, the global
accuracy is 5

10 (i.e., 50%).
• The utility captures the number of hours when the predic-

tion is correct and traffic is classified as low, e.g., utility
equals 4 in Fig. 4. Intuitively, this measure represents the
cumulated number of hours when nodes can be safely
turned off.

• Based on the utility measure, the potential energy sav-
ings can be calculated. For that we consider the energy
consumption model for a base transceiver station (BTS)

described in [1]. The energy required to power a node is
defined as PBTS and the cost for turning on and off a
BTS is defined as Poper . The length of potentially low
traffic period when a BTS could be turned off is denoted
as Tlow. Energy savings Psavings at a single BTS for a
low traffic period can be calculated using equation 1.

Psavings = PBTS ∗ Tlow − Poper (1)

• The local precision [6] is similar to the global accuracy
but for a given class. For instance the precision of the
low class in Fig. 4 is 4

8 since the low class has been
predicted 8 times, i.e., hours 3, 4, 5, 6, 7, 8, 9 and
10, and was correct 4 times, i.e., hours 3, 4, 5 and 9.
Intuitively, the local precision measures how accurate we
are at predicting the selected class.

• Given a class, the local recall [6] represents the ratio
of correct predictions on this class over the number of
elements which really belong to this class. For instance
the recall of the low class in Fig. 4 is 4

5 since the low
class has been measured 5 times, i.e., hours 2, 3, 4, 5 and
9, and prediction was correct 4 times, i.e., hours 3, 4, 5
and 9. Intuitively, the local recall measures the ability of
capturing all the elements which belong to the selected
class.

III. SPATIO-TEMPORAL ENSEMBLE PREDICTION (STEP)

Our approach relies on two main principles: splitting the
training set spatially and temporally to isolate distinct behav-
iors and applying an ensemble strategy to predict low or high
traffic periods. These ideas are described separately in the
following two subsections. Finally, a detailed example is used
to illustrate our proposal.

A. The spatio-temporal splitting strategy

As stated in [2], MBN traffic shows very different behaviors
from cell to cell and from hour to hour. This observation
motivates us to adopt splitting strategy inspired by the EGRV.
We have empirically observed in [2] that traffic values mostly
depend on both cellId and hour attribute values. DT is thus
split into smaller subsets, denoted by DT [x, y], according
to these attributes values. Formally, DT [x, y] is defined by
DT [x, y] = {di | cellIdi = x and houri = y}. Each of these
subsets will serve as a training set to compute the prediction
model associated with the context [x, y]. Consequently, when
prediction needs to be performed, the first step is to identify
which model should be used depending on the values of
attributes cellId and hour, e.g., prediction of the traffic class
of cellId = 1 at 1AM will be based on the model trained with
DT [1, 1AM ].

B. The prediction strategy

Ensemble techniques are known for successfully solving
classification and prediction tasks. Basically, such approaches
combine single models and aggregate their respective predic-
tions to make the final decision. It has been recently shown



that these approaches often perform better than single classi-
fiers/prediction techniques [3]. For this reason, we adopt such
a strategy to tackle the problem of traffic prediction. In this
paper, four simple models minimum (MIN), maximum (MAX),
average (AVG) and median (MED) are built. Nevertheless,
despite this apparent simplicity, our methodology to aggregate
separate predictions obtains very good results compared to the
state-of-the-art as shown in the next section.

In the rest of this subsection, we consider DT [x, y] as
the training set and describe how the ensemble predic-
tion model is built. Essentially, this construction relies on
two steps. First, a score for each single model Mi ∈
{MIN ,MAX ,AVG,MED}, denoted by Acc(Mi,DT [x, y]),
is calculated. Intuitively, this measure evaluates how good
Mi is to predict elements in DT [x, y]. To do so, a cross-
validation strategy is adopted [7]. In a nutshell, each element
di ∈ DT [x, y] is first isolated. Mi is then trained on the rest of
the training set and prediction is finally compared with the real
value. The accuracy reflects the ratio of the good predictions in
this iterative process. Formally, Acc(Mi,DT [x, y]) is defined
as:

Acc(Mi,DT [x, y]) =

∑

di∈DT [x,y]

|Mi(DT [x, y]− di) = class(di)|

|DT [x, y]|
such that Mi(DT [x, y] − di) is the class predicted by Mi

trained on DT [x, y] − di, |Mi(DT [x, y] − di) = class(di)|
equals 1 if the prediction is correct and 0 otherwise, where
|DT [x, y]| is the number of elements in the training set.

Once accuracy scores have been calculated for the four
considered models, their respective predictions need to be
aggregated. For doing so, the following strategy is adopted.
The class predicted by the model showing the highest accuracy
is chosen. In case several single models have the same highest
accuracy but different classes, the majority rule strategy is
applied, i.e., the outputted class is the majority one that
has been predicted by the models with the highest accuracy.
Finally, if none of these two rules can be applied, i.e., our
approach is not able to precisely determine if the node can
be turned off at this time, a safe policy is adopted and the
predicted class will be high.

C. Illustrative example

To illustrate the above-described methodology, let us con-
sider a small dataset presented in Fig. 5 which represents the
traffic associated to cellId = 1 for the six previous days and
the current time (dashed line) - Thursday at midnight. We
assume that the threshold equals 200, e.g., on Monday at 1AM,
traffic is high whereas it is low on Thursday at 1AM, and we
aim at predicting if traffic will be either low or high on Friday
at 1AM for this cell. The subset used for training models, i.e.,
DT [1, 1AM ], is highlighted by the box in Fig. 5.

The accuracy score calculation process for the model MED
is detailed in Table I. In the first line, we evaluate if the traffic
associated with Thursday at 1AM (the second column) can be
predicted using the five remaining elements (the first column).
The result of the MED calculation is displayed in column 3.
Since both real and median traffics are below the threshold,
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|MED(DT [1, 1AM ]− di) = class(di)| equals 1. By repeat-
ing this process, we obtain Acc(MED,DT [1, 1AM ]) = 4

6 .
This process is repeated for the four models. The respective
predictions and accuracies are displayed in Table II.

TABLE I
ACCURACY CALCULATION

DT [x, y]− di di MED |MED(DT [1, 1AM ]−
di) = class(di)|

74, 64, 384, 1601, 100 98 100 1

74, 64, 384, 1601, 98 100 98 1

74, 64, 384, 100, 98 1601 98 0

74, 64, 1601, 100, 98 384 98 0

74, 384, 1601, 100, 98 64 100 1

64, 384, 1601, 100, 98 74 100 1

Acc(MED,DT [1, 1AM ]) 4/6

TABLE II
ENSEMBLE METHOD ACCURACY, HOUR 1

Model Prediction Accuracy

MIN Low 4/6

MAX High 2/6

AVG High 1/6

MED Low 4/6

The results provided in Table II show that models MED and
MIN share the highest accuracy. Since both models predict low
traffic for the cellId = 1 at 1AM, STEP will predict low for
this spatio-temporal context.

IV. EXPERIMENTAL STUDY

A. Dataset Description

To evaluate STEP, we used real network data from a major
EU city. 660 mobile broadband network nodes deployed in 229
sites are used for the building models and the predictions. The
mobile network is monitored for 46 consecutive days during
the 1st quarter of 2012. Date, time, network node name and
the sum of traffic in megabytes within one hour are used.

We now compare our proposed STEP with ARIMA for
different threshold values. ARIMA(1,1,3) model building and
predictions were performed using R programming language.
The threshold for the evaluation period is selected taking the
minimum and the maximum traffic values and splitting in
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Fig. 6. (a) Prediction accuracy; (b) Recall and precision for low periods; (c) Utility; (d) Accuracies for predictions in the future

intervals size of 30. Half of the data set (first 23 days) is
used for model building (STEP and ARIMA). We focus on
the lower threshold values (up to 300) since mobile broadband
network can be optimized only when the traffic is low.

B. Global accuracy

In Fig. 6a, STEP and ARIMA average prediction accuracies
are provided for the next 24 hours. As we can see STEP is
considerably better for traffic predictions with lower (more
realistic) threshold values. For a threshold of 90, STEP shows
26% higher prediction accuracy.

C. Recall and precision metrics

Fig. 6b displays low class prediction results. The low
class precision is important when estimating potential energy
savings, as this case is when a cell can potentially be turned
off. As we can see, potential savings for STEP are always
higher than for ARIMA for all threshold values.

The 100% recall for ARIMA for thresholds above 180 is
because ARIMA intuitively “gives up” predicting low and high
and just predicts everything as low.

D. Utility

We provide utility for the next 24 hours with different
threshold values in Fig. 6c. As in [1], we consider that a node
carrying low traffic consumes PBTS = 137W per hour and the
operational cost for the node is zero, Poper = 0. The energy
savings for different threshold values can now be calculated
using equation 1 and the utility.

Considering possible energy savings for the next 24 hours,
our proposed STEP gives potential savings of up to 20% (i.e.,
Psavings = 430kWh) for a threshold of 30, while ARIMA
for the same threshold shows no energy saving possibilities.
With higher threshold values, the ARIMA utility increases as a
result of the “always predict low” behavior discussed in IV-C.
This is because the utility measure is very simple and does not
penalize the wrong low guesses of ARIMA. Thus, the actual
potential savings for ARIMA would be lower.

E. Prediction validity in the future

We evaluate STEP and ARIMA prediction accuracies for
mid-term (7 days) with threshold equal to 150, see Fig. 6d. The
figure shows that STEP accuracy has a slight ∼2% accuracy
decrease over the 7 days, while ARIMA accuracy for the

same period decreases more than 10%. Thus, our proposed
STEP model is much more stable over longer time periods
and requires less maintenance for keeping high accuracy.

V. CONCLUSION

Accurately predicting low traffic periods in MBNs is the
first necessary step to develop a dynamic network optimization
strategy. In this paper, we achieved this goal by proposing
STEP (Spatio-Temporal Ensemble Prediction) which combines
a spatio-temporal data splitting and an ensemble prediction
technique. Experimental results showed that (1) STEP for
lower thresholds outperforms (by 26% in the best case) the
well known forecasting technique ARIMA, and (2) potential
energy savings enabled by STEP is at least 20%. Our work
could be extended in several directions. First, a more precise
utility metric that penalizes wrong low guesses should be de-
signed. Second, we are convinced that the prediction accuracy
can be increased by incorporating additional knowledge, e.g.,
frequent patterns, points of interest, and events. Third, once
potential candidates have been elected for being turned off, it
is challenging to determine which ones can be really turned
off while preserving a minimum QoS.
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