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Abstract—Censoring has been proposed to be utilized in savings. Specifically, in[[4] and_|[5], networks with paral-
wireless distributed detection networks with a fusion cergr to lel topologies were considered with Time-Division-Mulép
enhance network performance in terms of error probability in Access (TDMA) and Type-Based-Multiple-Access (TBMA)

addition to the well-established energy saving gains. In #  techniques respectively, while inl[6] networks with sedfisn
paper, we further examine the employment of censoring in topologies were considered.

infrastructure-less cognitive radio networks, where node employ
binary consensus algorithms to take global decisions regding

a binary hypothesis test without a fusion center to coordinge However. all these mentioned censoring svstems have the
such a process. We show analytically - and verify by simuladins ! g sy

- that censoring enhances the performance of such networks i common assumption that a fu3|on center Is pfe_s‘?m for coor-
terms of error probability and convergence times. Our protacol  dination among the transmitting SUs, global decision-maki
shows performance gains up to 46.6% in terms of average and flnally reporting back the decision to SUs. Assuming the
error probability over its conventional counterpart, in ad dition presence of a fusion center in fact contradicts with theenrr
to performance gains of about 48.7% in terms of average eneyg  paradigm of large and/or ad hoc CRNS [7]] [8]. In addition,
expenditure and savings up to 50% in incurred transmission  as was stated in [9], reporting the sensing information feom
overhead. large number of SUs to the fusion center may be problematic.
Moreover, in [10], the authors show the deteriorating intpac
of multipath fading in the reporting channel on the detettio
performance of a centralized cooperative sensing framewor
Cognitive Radios Networks (CRNs) have emerged as a vi-
able solution to the problem of inefficient spectrum utiliaa ) o . )
under the current spectrum licensing paradigin [1]. In the op  The major contribution of this paper is to propose a
portunistic spectrum access cognitive model, secondaysus censoring-based hard-decision distributed detectiandreork
(SUs) that do not possess a license to use a spectrum band #fat is well-suited forinfrastructure-less CRNs (i.e., does
nevertheless allowed to transmit whenever the licensedior p NOt contain a designated central coordinator). Our prapose
mary users (PUs) are not active. Spectrum sensing is threrefoframework does not require the presence of a fusion center
a mandatory task for SUs to detect the presence of the PUs f@r data collection and coordination. Instead, we propose
order to identify the available transmission opportusitjg]. ~ the use of binary consensus algorithms which allow SUs to
Due to the fact that spectrum sensing by a single SU may b@xchange binary information regarding the presence omalese
highly unreliable, cooperative sensing can be employeth sucof @ PU with direct neighbors and eventually arrive at a
that the decision regarding the presence or absence of P@obal decision based on the collective decisions of direct
is based on measurements taken by a cluster of SUs, thereBgighbors. The closest work to ourslis[[11]./[12], where bina
enhancing the reliability of the taken decisions. Howetleig ~ consensus algorithms are used for distributed spectrusingen

comes at an inevitable cost of increased transmission emdrh in @ non-censoring fashion. However, we show analytically
and energy expenditure. - and verify through numerical simulations - that our pro-

posed infrastructure-less censoring-based system sigmily

To lessen the impact of this costensoringwas first  outperforms conventional systems in terms of average error
introduced by Ragd [3] in wireless sensor networks with-soft probability (up to 46.6%), overall incurred overhead (up to
decision detection frameworks where sensors send theylecal 50%), and energy expenditure of SUs (up to 48.7%).
computed Log-Likelihood Ratio (LLR) values to the fusion
center (FC), which is responsible for making a global decisi
Energy savings were attained from employing censoring in  The rest of the paper is organized as follows. Sedfibn |l
this framework on the expense of loss in terms of averaggives a background review on binary consensus algorithms
error probability. Recently, censoring was consideredhaml-  and its application in CRNs. Secti@nllll describes the syste
decision framework, where sensors apply one-bit quamdizat model. We analyze the system in Section IV and validate
to their local measurements prior to transmissionl_In @]lHif  the obtained expressions in Section V. Section VI provides
was proven that censoring enhances the performance of suclumerical evaluation of the attained expressions and shows
networks in terms of error probability of the global decisio the performance gains for our proposed system. Finally, we
in addition to the previously attained and characterizeatgyn  conclude in Section VII.

I. INTRODUCTION
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II. BACKGROUND: BINARY CONSENSUSALGORITHM

In this section, we provide a basic review of binary
consensus algorithms in distributed spectrum sen§ing [ol]
allow SUs to cooperatively arrive at a global decision anthwi

no help from a designated central entity, each SU makes & loc|
decision regarding the presence or absence of a PU, dersted

H, or Hy respectively. SUs then exchange their binary loca
decisions with their direct neighbors féf time steps, where
K is the running time of the algorithm. Upon the termination

of the algorithm, each SU individually makes a decision for
H, or Hy, based on the received decisions from neighboring

nodes. Leth(k) = [b1(k),...,ba(k)]T be the vector of local
decisions at time stefp at M SUs. The binary consensus
algorithms are summarized as follows:

Symbol | Description
M Number of SUs.
75 (k) Instantaneous SNR ath SU atjth SU at time step k.
T Min. acceptable threshold for successful decoding.
fs Center frequency of the energy detector Bandpass filter.
B Bandwidth of the energy detector Bandpass filter.
qa T Time interval of the integrator in the energy detector.
a ri(t) R_eceived primary signal bith SU at timet.
s(t) Signal transmitted by the PU.
n;(t) Additive white Gaussian noise.
hi(t) Complex-Gaussian channel gain between the PU:#n&U.
z;(0) Output of the energy detector of thith SU.
b;(0) Initial binary decision ofith SU.
n Local detection threshold in the conventional case.
) n1imo Upper/Lower detection thresholds in the censoring case.

TABLE I. LIST OF SYMBOLS

1) Atfirst time step § = 0), each SU initially transmits |\ here De¢zr) — {1, !f z >0 with 1 and 0 corresponding
its local decision to the neighbors it is connected to 0, ifz<0
at this time step. to decidingH; and Hy, respectively. When: is a vector, the
2) At each consecutive time step & k < K), each function operates on it element-wise.
SU collects the decisions transmitted by neighboring
SUs: It then combines the;‘e decisions, an_ng with the . SYSTEM MODEL
previously received decisions from past time steps,
through acombining functiorwhich generates a new In this section, we describe the system model of our
decisionb(k) to be transmitted to neighboring nodes proposed framework. TABLE | enlists the various symbols
at the current time step. This can be mathematically used in the upcoming analysis.
expressed as:
b(k) = F(b(n), n=0,-- k—-1)0<k<k—1 NetworkModel
(1) We consider a CRN that consistsiaf SUs that opportunis-
where F(.) is the combining function. tically transmit in the presence of a PU. We model the sec-
3) Upon the termination of the algorithmt & K), each  ondary network as an undirected random grépk (N, ),

node makes a final decision based on the previouslyhere/, the set of nodes, represents the SUs,&ttie set of

obtained decisions from all time steps< k < K,
through adecision function This is mathematically
expressed as:

0,--

LE-1) @

whereD(.) is the decision function.

edges, denotes the connectivity of SUs. A nédeconnected

to nodej if 7;;(k) > 7, whereT;; (k) is the instantaneous SNR

of the signal of SU; at SU ; at time step index, andr is

the minimum acceptable SNR required for successful degodin
of secondary transmission. Assuming channel recipraitign
7;:(k) = 7;;(k) and both SUs are in the neighborhood of
each other if their instantaneous SNR exceeds the decoding
threshold. The probabilistic nature of the wireless chaand

Based on the appropriate choice of the combining and detherefore the instantaneous SNR of received secondarglsign

cision functions, the binary consensus algorithm is gueesh

are the reasons behind the “randomness” in the gfajpbue to

to converge to a common decision after a sufficiently longthe absence of a central entity for coordinating transimfsi

running time, i.e.b;(K) =b*, Vi=1,--- ,M as K — oo
[a71).

In this paper, we focus on one variation of binary consensu
algorithms, i.e.,Diversity-based binary consensus algorithm
[12], in which a SU uses its initial local decision for deoisi
reporting at all consecutive time steps, and the combinin
function is basically a majority rule for the received demis

nodes which are in the same transmission range employ the
CSMA/CA multiple access protocol to concurrently use the
bandwidth for transmission while reducing the probabitify
data collision.

gSpectrum Sensing

Each SU is equipped with an energy detector as shown in

along theK time steps. The combining and decision functionsFigure[1. A bandpass filter selects the desired primary aklann

in this case are mathematically expressed as:

k1) =b(k — 1),
K —1)=

1<k<K,

)

3)

K-1

S A1)

p t=0

1

Dec(% (b(0) +

with a center frequency; and bandwidthB. The filter is
followed by a squaring-law device and an integrator withetim
interval T to measure the signal power. The output of the
integrator for theith SU is denoted byr;(0). We assume a
flat-fading channel model between the PU and the SUs. Let
r;(t) represent the received primary signal received byithe
SU. Let H; and H, represent the hypothesis of the presence
or absence of a PU, respectively. The received signal can the
be expressed as:



prior probabilities of having?, and H; respectively. We adopt
a global-AND rule since it is the most sensitive to detection

error and therefore the most conservative of all other dwtis
rules in terms of detection performance. This can be viewed
X | ) 2 T x (0) T b (0) as a worst-case for the primary network.
~ () o i \
fe 0 IV. SYSTEM ANALYSIS

In this section, we analyze our proposed system and derive
analytical expressions to characterize different peréoroe
metrics such as average error probability, energy experdit
and network overhead. We also provide numerical simulation

| ni(t) Given H for the performance metrics to ensure the validity of our
ri(t) = hi(t)s(t) + ni(t) Given H; obtained expressions.

Fig. 1. Block diagram of an energy detector at each sensoe.nod

wheres(t) is the signal transmitted by the Pl;(¢) is AWGN ~ A. Average Error Probability
at theith SU, andh;(t) is the complex-Gaussian channel gain | ¢ ~; be the signal-to-noise ratio (SNR) of the received

between the PU and theh SU. primary signal at theith node. Given the energy detector
o model mentioned previously, and assuming identical siedis
Local Decisions characteristics of-;(¢),Vi = 1,--- , M, it is found that the

1) Conventional CaseAfter obtaining a local measure- probability distribution ofz;(0),¥i =1,---, M is [13]:
mentz;(0), each node makes a local decision regarding the
presence or absence of the PU. The decision making process 2:(0) |y ~ XarB G?ven H,
can be expressed as follows: 1 Xorp(2yi)  Given H,

1,  2;(0)>7 wherex2,5 and x3,5(2v;) are central and non-central with
bi(0) = { ~1, 2;(0)<n 4) 2v; non-centrality parameter chi-squared distributionspees
tively, both with 27'B degrees of freedom.

whered;(0) is the initial binary decision of nodé andn is For the conventional system, the local decision probadsslit
the local decision threshold of all SUs. A decision that isof the ith node under hypothesi¥,; and H,, denoted byt
equal tol and —1 corresponds to locally detectinf; and  andm respectively, can be formulated as|[12]:

Hy, respectively.

2) Censoring CaseWe allow nodes tacensortransmis- TB-2 <11 TB-1
sion: a node employs a two-threshold decision making psoces r,, = Pr(b;(0) = 1|H,) = e~ 3 Z — 4+ (i)
as shown in Figur@?, and withholds transmission in case a — nl gl

measurement falls in between the two thresholds.r eand TB_2 B
1o denote the upper and lower thresholds respectively, then th % (e—ﬁ % Z i( ny )n)
n!2( )

detection process can be expressed as: y+1
9)
{ L zi(0)=m
bi(0) =19 0, 7m0 < z;(0) <m (5) Iy (TB,2
=1, 2;(0) <mo mi0 = pr(b;(0) = 1|Ho) =1 — % (10)

whereb;(0) = 0 represents censoring. .
©) P g wherel'(z) andI';(z,y) are the Gamma and lower incomplete

Global Decision Gamma functions, respectively.
. . . . For the censoring system, we define the local decision
SLT'S em_ploy the.dlversny-based binary consensus algorlt_h robabilities of theitr? n())/de under hypothesiH;,j = 0,1
described in Sectiolll to exchange local decisions with,. 7 ’
direct neighbors and eventually arrive at a collective sieai '
regarding the PU. To characterize the detection performanc
of our distributed system, we assume a global-AND rule of 715 = Pr(bi(0) = 1|H;) = Pr(z;(0) > m1|H;)
the decisions made by all SUs, i.e.,
y m_1; = Pr(b;(0) = —1|H;) = Pr(z;(0) < mo|H;)  (11)
Py(K) = Pr(b;(K) = 0,V¥i = 1,..., M|H,),

: , (6) It can be shown thatr;; and 1 — 7_;; have the same
Pro(K) =Pr(b;(K) =0,Vi =1, ..., M|H, _ 11 ~11
fa(K) bs(K) =0, ¥i [Ho) functional form as[{9), ando and1 — 7_,, have the same
and the average error probability is defined BfK) =  functional form as[(10), while substituting with 7; andnq

iy Pra(K) + mh, (1 — P4(K)), wherery, andry, are the respectively in both cases.



M M' M n c n M—c
Py(K) ~ M Mo —2—— )| 1 ———
a(K) Z Z nle! (M —n— c)!mlﬂmw_11 { Q( (l—p)(M—c) )} { Q( (-—p)(M—1-0) )] ’ )
=0 w R K
M M' v n c n M—c
Pro(K) =~ - = alns Ay - —_—_— 1-— —_—_— .
oK) ;;n!c!(M—n—c)!mmM’m [ Q( /%)] { Q( /%)] ®
= pK pK

To model the connectivity between SUs among the net-

work, theadjacency matrixA(k) is defined as: 1y, (K) = S,
1-P (14)
2 =——|M —b2(0) —
1 if ﬂj(k/’) >=T, 275_7 O—yi(K)i KP |M bl(o) C|

aij (k) = - (12)
0 otherwise . _ .

For the second term in the third equality ifh_¥13),
o o Pr(C,S|H;) can be viewed as a multinomial distribution
wherea;;(k), i,j € {1, --- , M} denotes thei, j)th element  [14] of having C SUs deciding 0 (w.p.mp;) and n =
of the matrix A(k). a;;(k) = 1 in thl§ context means that éSjLMi C) /2 SUs deciding a 1 (w.pmy;). Therefore, it
nodesi and j are connected, and vice versa. For ease otan be expressed as:
exposition, we neglect the intricate details of the wirgles

channel transmission and communication scheme and assume

a;j(k), i # j, ¥ k > 0 to be Bernoulli random processes with Pr(C, S|H,) =

p = Pra;j(k)) = Pr(7;:(k) > ), which implicity models S+ M—c

wireless channel characteristics. Pr(C=c n= 5 |Hy) = (15)
The following lemma provides the detection and false M % e p(M—n=c)

alarm probabilities for the censoring system. nlel (M —n—c¢) = "H70T-U

Lemma 1. Assume a cognitive radio network that consists of : . . -
M SUs employing a binary consensus algorithm as described Plugfgllr;g (1) and(15) if{13) giveEl(7). Similar approach
in Sectionl, wherep is the probability of having a reliable can be followed to prove 18).

link between two SUs. Then for a sufficiently largg the ]
probability of detection and false alarm of the global démis

can be approximated by](7) and (8) respectively. For comparison, similar expressions are obtained for the

conventional (non-censoring) case based the results_ih [12

Proof: According to [B), the probability of detection of with minor variations to account for polar transmissioniso3e
’ i are:

the global decision can be expressed as:

Py(K) = Pr(bi(K) = 0,Vi =1, ..., M|H)) o
=Priy;(K)>0,Vi=1,...,. M|H M Min M-—n
1»(1 () ) Pa(K) ~ Z (M-m)ﬂ'n (1 =) >
@S ST Pryi(K) > 0,i = 1,.., M|C, S, H1) n=—M,—M+2,.. \ 2 (16)
c=0 Se& (13) 0 n M
x PH(C, S|Hy) 'Y ey
®) - —Hy; P
~[[e(—%) xPrC,S|H:)
i=1 Tyi
M
1 N M @ M—n
where y(K) = [pn(K), -~ yu(K)T = —0@0) + P~ > <M_+>” (1 =mo) 2
1 K-1 M n=—M,—M+2,... 2
— ST A@®b®), S = b0)T1 and1 = [1,---,1]T, C n M
5 % Land1 < [l Jio(—2)]
is the number of nodes having 0O as initial decisions, and (1—p)(M—-1)
1 o . . pK
Qz) = \/—g_fz exp(—t2/2)dt. The third equality (step (17)
7

(a)) comes from Bayesian chain rule, whefe= {—(M —
¢),—(M —c+2),...,M —c}. The fourth near-equality (step
(b)) holds because for a sufficiently large, we can apply
the Central Limit Theorem (CLT) to approximate the value of In a conventional system a node typically transmits an
P,(K). Accordingly, the distribution ofy; given S andC is  equal amount of energy for both decisions (assuming polar
a Gaussian distribution with mean and variance that arelequaepresentation). Le#? be the energy consumed by a node
to: to transmit a decision (either a 1 or a -1) to neighboring

B. Energy Expenditure
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Fig. 3. Average probability of error (analyticahig. 4. Energy expenditure (analyticald = Fig. 5. Network overhead (analytical)M =
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nodes; then the average energy consumed by a nddelisa  is given by&;(C) = my; M. Therefore the average number of
censoring-enabled system, however, a node saves the ttansensoring nodes is equal to:

energy during the censoring phaseFlfis the energy required

to transmit a 1 or a -1 in the censoring case, then the average

energy consumed by a node is equal to: E(C) = (pu,m00 + P, T01) M (20)

Eay = (P, (1 = mo0) + pu, (1 —7o1)) E< B, (18)
and the average number of transmitted messages per node in

C. Overhead this case is equal to:

The binary consensus algorithm requires nodes to exchange(1 — (pg,mo0 + P, m01)) M x K
data packets between neighbors during the running time of M = (21)
the algorithm. Specifically, in a conventional binary carses (1 — (paymo0 + pr,m01)) K < K

setting, a node transmits data packets to direct neighbors if

the algorithm taked( time steps to run. L
Validation

In a censoring-enabled setting, however, a node which ) . ] ] )
decides to censor transmission will not congest the network In this subsection, we validate the obtained expressions
and therefore will reduce the average number of packetgla numerical simulations. We _aSSUme.a CRN that CQnS|StS of
transmitted per node. Given thét is the number of nodes M randomly deployed SUs with a uniform distribution. We
which made a decision to censor transmission in a networkéssumep = 0.8 andy = 2 dB. Figureg 2 anf{l6 show a com-
then the average number of censoring nodes at any time cdt@rison between the simulated and analytically obtain&sea

be expressed as: of the probability of detection and false alarms respebtjve
which clearly shows the soundness of the obtained expressio
E(C) =pu, * &(C) + pu, * E(C) (19) @) and [B). The values of the thresholds that were used to

produce the two figures are obtained by optimizing over the
where £(X) is the expectation ofX and &;(X) is the average error probability, the procedure of which is expdl
conditional expectation ofX given H;. The distribution of in the following section. Similar numerical validations nee
C conditioned onH; is binomial with probability of success made for equationd (18) and_{21) but were omitted due to
equal tomg; out of M trials, therefore the expectation of which space limitations..



V. NUMERICAL EVALUATION

In this section, we compare the performance of our pro
posed algorithm with its conventional counterpart. We jev
numerical evaluation of the obtained expression§ in (II&), (
(@) and [8). We numerically optimize the average probapilft
error over the decision thresholds, i.e., we search for thees
of n, m1 andny which minimize the average probability of error
in both the conventional and censoring cases. We compare
three different scenarios to observe the performance of our
proposed system in various network conditions: 1) Worst- [1]
case scenario: poor network connectivity £ 0.2) and bad
communication channel(= 2 dB), 2) Best-case scenario:
high network connectivityy{ = 0.8) and good communication [2]
channel { = 4 dB), and 3) Normal scenario: high network
connectivity p = 0.8) and bad communication channel£ 2 )
dB).

A. Average Error Probability

Figure[3 shows the average error probability of the con- Y

ventional and censoring systems agaiRstor M = 51. It is

clear that censoring-enabled systems outperform coroueadti
systems for all tested scenarios, which implies that itvigagis

a sane option to employ our proposed algorithm for detectionl]
performance with less values of average error probability.

fact, highest performance gains are achieved in worst case
scenario % = 0.2 andy = 2 dB), where performance gain (6]
up to 46.6% can be attained féf = 1.

B. Energy Expenditure [71

Figurel4 shows the average energy expenditure for all three
scenarios with censoring sensors fBr = 1. The average
energy expenditure is not significantly affected by the gean [g]
of the network conditions noK'. It is clear though that for all
cases, censoring-enabled systems provide energy sahniags t
their conventional counterpart, with an average gain o¥%8.
of energy savings. (9]

C. Network Overhead [10]

Figure[® shows the average incurred overhead for conven-
tional and various censoring-enabled cases with a perimcea [11]
gain up to 50%, which also shows that our proposed protocoiL
proves superior on that front.

[12]
VI.

In this paper, we proposed a distributed detection frame-
work for infrastructure-less CRNs which allows SUs to censo [13]
transmission. Our proposed system is based on using binary
consensus algorithm for data exchange between SUs and
therefore does not require the presence of a FC. We derivd#!l
analytical expressions for performance metrics such asgee

CONCLUSIONS

error probability, energy expenditure and incurred ovache
We validated the obtained expressions via numerical simula
tions, and we proved that our proposed system significantly
outperforms existing non-censoring counterparts in a# th
previously mentioned performance metrics. Performanaesga
were established up to 46.6% in average error probability,
energy savings of 48.7% and up to 50% savings in incurred
fransmission overhead.
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