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Abstract—In this work we examine the performance of a
Location Spoofing Detection System (LSDS) for vehicular net
works in the realistic setting of Rician fading channels. Inthe
LSDS, an authorized Base Station (BS) equipped with multipg
antennas utilizes channel observations to identify a malious
vehicle, also equipped with multiple antennas, that is spdimg
its location. After deriving the optimal transmit power and the
optimal directional beamformer of a potentially malicious vehicle,
robust theoretical analysis and detailed simulations are@nducted
in order to determine the impact of key system parameters ontte

LSDS performance. Our analysis shows how LSDS performance

increases as the Riciank -factor of the channel between the BS
and legitimate vehicles increases, or as the number of antaas at

the BS or legitimate vehicle increases. We also obtain the anter-

intuitive result that the malicious vehicle’s optimal number of

antennas conditioned on its optimal directional beamforme is

equal to the legitimate vehicle’'s number of antennas. The milts

we provide here are important for the verification of location

information reported in IEEE 1609.2 safety messages.

|. INTRODUCTION

detecting and mitigating false claimed locations by expigi
specific properties of VANETS, such as high node density and
mobility. The authors of [14] developed a location spoofing
detection algorithm by comparing the claimed location veth
neighbor table consisting of other vehicles’ identificas@nd
locations. To overcome the non line-of-sight (LOS) problem
in location verification systems, a cooperative algorithasw
proposed in [15]. Some generic location spoofing detection
algorithms (not dedicated to VANETS), were also proposed
in recent years (e.g., [3-6]). These algorithms utilize som
observations such as Received Signal Strength (RSS), Time o
Arrival (TOA), and Angle of Arrival (AOA), and performance
analysis of these algorithms were provided under specific
observation models.

However, the following question has not been explored in
the literature How does the performance of an LSDS depend
on the proportion of the channel which is LOS? In the VANET
environment it is highly likely that a vehicle possesses som

In wireless networks the integrity of location informatiorLOS component towards a BS for the majority of its travel
is of growing importance. As such, the authentication (dime. As such, answering the above question in the context

verification) of location information has attracted corsable

of VANETSs is important, and forms the thrust of the work

research interest in recent years [1-7]. In many circunest&n presented here. In order to investigate the above question,

the device (client) itself obtains its location informatiali-

we consider Rician fading channels in which the Ricign

rectly (e.g., via GPS), and the wider network can only aahieVactor is defined as the ratio between the power of the LOS
the client’s location information through requests to thent. component and the power of other scattered components.
In such a context, the client can easily spoof or falsify ité/e utilize the complex signals measured by an authorized
claimed location in order to disrupt some network functidpa multiple-antenna BS to verify a claimed location of a vesicl
(e.g., geographic routing protocols [8], or directionatess that is equipped with multiple antennas, and infer whether t
control protocols [9]). The adverse effects of locationapay  vehicle islegitimate (reporting its true location) omalicious
can be more severe in Vehicular Ad Hoc Networks (VANETYkpoofing its claimed location). Adopting a practical threa
due to the possibility of life-threatening accidents. Legs§- model, in which the on-road malicious vehicle keeps some
cally, a malicious vehicle could spoof its location in order minimum distance away from its claimed location, we analyze
seriously disrupt other vehicles [10] or to selfishly entendhe performance of our LSDS. In order to guarantee fairness,
its own functionality within the network [11]. The integyit we also determine the optimal transmit power and the optimal
of claimed location in VANETS is therefore important, andlirectional beamformer for the malicious vehicle to mirgmi
motivates the introduction of an LSDS to that scenario. Withthe detection rate. Our analysis demonstrates that our LSDS
IEEE 1609.2 revocation of certificates belonging to malisio works well even when the Riciai-factor is low (e.g.—3dB),
vehicles will occur [12] - an LSDS will form part of the and that detection performance increases as the Rikian
revocation logic. factor of the channel between the legitimate vehicle and the
Recently, many location spoofing detection protocols f@S increases. We also obtain a counter-intuitive obsemati
VANETs have been proposed (e.g., [13—-15]). In [13], th#nat the malicious vehicle can minimize the detection rate b
authors proposed an autonomous and cooperative schemesédting its number of antennas equal to the legitimate \ehic
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Fig. 1. lllustration of the VANETSs application scenario oférest.

Fig. 2. lllustration of the orientations of the three ULA anbas and the
geometry of the BS, legitimate vehicle, and malicious vehic

number of antennas when it adopts the optimal directional
beamformer. This is counter-intuitive sinagoriori one would
have thought it would be optimal to set the number of antenngs channa Model

as large as possible. With no loss of generality, we assume the legitimate channel

II. SYSTEM MODEL (legitimate vehicle-to-BS) and the malicious channel {mal
A. System Assumptions cious vehicle-to-BS) are subject to Rician fading. Ther th

o . : . Np x Ny, legitimate channel matrix is given by
The VANETSs application scenario of interest is illustrated

in Fig. 1, where the BS, the legitimate vehicle, and the He 5L g iy LT 1)
malicious vehicle are each equipped with a uniform linear 1+ K, ° 1+K, "

array (ULA) with N, N, and Ny, elements, respectively. whereK; is the Riciank -factor of the legitimate channdf,,

In this figure, the “Protected Region” is the area where jg the LOS component of the matrix, aiii, is the scattered
vehicle (legitimate or malicious) claims to be. The BS is tgomponent of the matrix. The entries HE,. are independent
verify whether the vehicle is indeed at his claimed locatiognd identically distributed (i.i.d) circularly-symmetigomplex

or not based on wireless channel observations. If the wehigiaussian random variables with zero mean and unit variance.
passes such a verification, a specific action will follow imenotingp; as the space between two antenna elements of
the “Legal Region” (e.g., a traffic light turns green). Theéhe ULA at the BS,H, is given byH, = rTty, wherery,
“Falsehood Region” indicates the minimum distance betwegAdt; are defined as

the claimed location and the malicious vehicle’s locatibhe )

malicious vehicle is inside the “lllegal Region” while itatins rp =1+ exp(j(Np —1)7p costL)], 2)

that it is inside the “Protected Region” in order to bring tr =1, -, exp(j(Ny — 1)71 cosp)], (3)
some selfish. benefits (e.g., it keeps the traffiF: light green :J;l'?ldT denotes the transpose operation. In (2) and (3), we have
advancc_—z for_ itself). We adopt the polar coordmatg system as _ 27 fops /e and ., = 27 fopr/c, where f, is the carrier
shown in Fig. 2, where the location of the BS is select aquencyy is the speed of propagation of the plane wave, and

as the origin, the Ieg|t|mafce_ veh|cle_s I?catlon_|s f’e”‘m' 1, is the space between two antenna elements of the ULA at
xz, = (dr,01), and the malicious vehicle’s location is denote&e legitimate vehicle

asxy = (dM’eM)'.\.Ne assume that the_ cIai_meq location is 1, Ng x Nj; malicious channel matrix is given by
the same as the legitimate vehicle’s location (ixg. js also the

claimed location of the legitimate or malicious vehicle)e W G— | Kum G, /1 G 4)
adopt a practical threat model, in which the distance batwee 1+ Ky ¢ 1+ Ky

x)y and the malicious vehicle’s claimed locatian is larger where k& is the Riciank-factor of the malicious channel,
than a predetermined threshotg,, i.e., [x; — x.| > 7m. G, is the LOS component of the matri&, is the scattered

The orientation of the BS ULA is aligned with the-axis, component of the matrix and is a matrix with i.i.d circularly

which is publicly known. The orientations of the ULAs of thesymmetric complex Gaussian random variables with zero
legitimate and malicious vehicles are under the controhef t mean and unit variances, can be written agg, = %t

legitimate and malicious vehicles, respectively, i.ee, #ingles herer,, andt,; are given by
¢, andy; as shown in Fig. 2 are under the control of the )
legitimate and malicious vehicles, respectively. rar = [1,---,exp(j(Np — 1)7p cos Our)] , (®)




tar =1, ,exp(j(Na — 1)7ar cos )], (6) wherem; andR, are the mean vector and covariance matrix

In (6), we havery — 27 fopar/c, Where pa; is the space of y under#,, respectively, which are given by

between two antenna elements of the ULA at the malicious
: [ Pugldy) Ky
vehicle. m; = WGopv (13)

C. Observation Model Puo(d
. . R, = ( 2ME8M) | 2 ) g (14)
Throughout this work we denote the null hypothesis where ! Ky +1 M | N

the veh|c_le is legitimate ,a%? and.d.enote the alternatlveWe note thatx,y, Py, and p are under the control of the
hypothesis where the vehicle is malicious?ds. The Ng x 1 - . L . )

. . . . malicious vehicle. We will discuss in the next section ho& th
complex observation vector received from the legitimateive o . L

S malicious vehicle sets these parameters so as to miniméze th
cle (under#,) is given by X
detection rate.

y =V Pre(dL)Hbs + ny, () IIl. L OCATION SPOOFINGDETECTION SYSTEM

yvherePL is the ”af?sm_“ power of the Iegitimate;/ehicgédL) In this section, we first present the decision rule adopted
'S the path loss gain given tg(.dL) = (¢/4mfodo)” (do/dL)", in our LSDS. We then discuss the attack strategy of the
.do is a reference distance, is the pathlloss equnenb ,({Halicious vehicle (e.g., how to s&t;, Pys, andp) in order to

is the beamformer adopted by the legitimate vehicle wWhighininize the detection rate. Finally, we analyze the détect

satisfies|[b|| = 1, s is the publicly known pilot symbol o to:mance of our LSDS based on the malicious vehicle's
(without loss of generality we assume= 1), andny, is the attack strategy.

additive white Gaussian noise vector, of which the entries a
i.i.d circularly-symmetric complex Gaussian random Vales A. Decision Rule of the LSDS

with zero mean and variance;. We note thatb and P we adopt the Likelihood Ratio Test (LRT) as the decision
are under the control of the legitimate vehicle. We assumgle of our LSDS. This is due to the fact that the LRT
that the legitimate vehicle cooperates with the BS to fat#i achieves the highest detection rate (the probability tedet
the ver|f|cat|?n procedure. To this end, the legitimate ®&hi 5 malicious vehicle) for any given false positive rate (the
setsb = t;/[tz| to maximize [t,b]|, where T denotes probability to detect a legitimate vehicle as malicious][1
the conjugate transpose operation. In addition, the tegi The LRT decision rule is given by
vehicle sets its transmit power to that required by the BS >
(we assumeP;, is publicly known). As per (7), the likelihood A ~ [ (¥|xar, P, p, Ha) 21
function of y conditioned on a knowr under# is (y) = f (y[Ho) <
Do
1
_ TR . " . .
f(y|Ho)= N5 det(Ro) ¥ [Hy—mo) Ry’ (y—mo)] , (8) where A (y) is the likelihood ratio ofy, A is the threshold
. corresponding to\ (y), andD, and D, are the binary deci-
wheremg andR are the mean vector and covariance matrix. hat inf hether th hicle is leqiti s
of y under#,, respectively, which are given by slons that infer whether the vehicle Is legitimate or malis,
' ' respectively. Given the decision rule in (15), the falseitp@s

A, (15)

Prg(d)KNp and detection rates of an LSDS are functions Jof The
my = Trb 9) specific value of A\ can be set through predetermining a
false positive rate, minimizing the Bayesian average awmst,
Ry = <PLg7(dL) C,%) In,. (10) maximizing the mutual information between the system input
Kp+1 and output [5]. In this work, we adopt the false positive rate
Likewise, the complex observation vector received from ther (A (y) > A\|Ho), and detection rat&r (A (y) > \|[H1), as
malicious vehicle (undet) is given by the core performance metrics for our LSDS. In addition, we
v = \/WGPS Fny. (11) adopt the minimum total error as the unique performance met-

ric in order to investigate the impact of key system paransete
where Py, is the transmit power of the malicious ve-on the performance of our LSDS.
hicle, g(dy;) is the path loss gain given byg(dy) = . _
(¢/47 fodo) (do/dar)", p is the beamformer adopted by theP- Attack Sirategy of the Malicious Vehicle
malicious vehicle which satisfiep|| = 1, andn,; is the =~ We assume the malicious vehicle knows all the information
additive white Gaussian noise vector, of which the entries &known by the BS or the legitimate vehicle. We first discuss
i.i.d circularly-symmetric complex Gaussian random Vialés how does the malicious vehicle set its true locatign. Since
with zero mean and varianeg,. As per (11), the likelihood there is only one BS in our LSDS, the difference betwégn

function of y under#; for givenx,;, Py, andp is and d,; can be eliminated by the malicious vehicle through
P 2 adjusting its transmit poweP,,. This is the reason why a
Flylxar, Pa, If’ 1) single BS cannot detect location spoofing attacks basedeon th
=~ _exp [—(y—ml)Tle (y—my)], (12) RSS of a channel. As such, we assume the malicious vehicle

72 det(Ry) setsx,; by minimizing the difference betweefy; and 6,



under the constraink,, — x| > r,,. Then, the adopted valuedetection rate) conditioned ax,, and P, can be obtained
of x,; can be obtained through through

Xy 2 (dyy,04) =  argmin |0y — 07 (16) ¢"(xa, Pyr) = argmin [|mo — Kpl|, (21)

[xn —%XL|>7m »€[0,7]

Given the application scenario of interest as shown in Fig. Where K = /Pyg(da) K /(1 + Kpr)Go. Substituting
we assume that®, is known to the BS. The average signal¥” (xa, Par) into (20), we obtain the optimal directional
to-noise ratio (SNR) of a channel can be readily estimatdgamformer of the malicious vehicle, denoteagx, Py ).
As such, we assume that the malicious vehicle adjusts Y& note thatp*(x,s, Pa;) may not be the globally optimal
transmit power to make sure that the average SNR of tR@amformer (only near-optimal) for the malicious vehicled
malicious channel is the same as that of the legitimal@ the imposition of the one-parameter solutigr) 6f (20) in
channel, i.e.y,, = 7, where5y, = Ppg(d;)/o2 and Obtainingp*(xas, Par).

Tm = PMg(d]},f)/a]?w. Therefore, th_e transmit power of thex  patection Performance of the LSDS

malicious vehicle conditioned oxr), is given by

. Prg(dp)os,
Py (xy) = —————
I\l( I\I) g(dM)U%

Without loss of generality, we first analyze the detection
performance of our LSDS for a genera),;. Obviously, the
malicious vehicle will optimize its transmit powét,; and its
beamformep for a givenx,,. As such, the following analysis
We next discuss how does the malicious vehicle sets jtsfor P, = P;;(xar), andp = p* [xar, Py (xa)]. In order

beamformerp, which is the key vector controlled by theto derive the false positive and detection rates in closenhf
malicious vehicle. The Kullback-Leibler (KL) divergenaein expressions, we further assumé = o3, and K, = Ky

(17)

. . M
[ (ylxar, Par,p, Ha) 0 f (y[Ho) is defined as such thatR, = R;. We would like to highlight that these
assumptions are practical since the malicious vehicle vatl
D (f (vlxar, Par, o, Ha) || (y1Ho)) be very far from its claimed location in order to keep a low

— [ mA xar, Par,p, Ha) dy. (18) detection rate. Also, as we show later the detection rate is
/ ()F vlxar, Parop Ha) dy. - (18) minimized whenK;, = Ky, i.e., K;, = K, is the best case
As per (18), we know that the KL divergence is also thg’r the malicious vehicle. We will also assume the system
expected log likelihood ratio when the alternative hypsibe !(nows I_{_L,_through a predetgrmlned measurement campaign
is true. Based on (15), we also know that the larger the K[ the vicinity of the BS. In_ pr|r_10|ple, knowledge df CQ”'_d
divergence, the more evidence we have for the alternativg "ePlaced by a pdf which is then encapsulated within the
hypothesis [17]. As such, the malicious vehicle is to mimieni ~>DS decision framework. Substituting (8) and (12) into)(15

the KL divergence presented in (18) in order to minimize thtge LRT decision rule can be rewritten as

detection rate. Substituting (8) and (12) into (18), we have 1;1
B T(y) Z T, (22)
Dgr (f (yxam, PupsHa) || f (yHo)) = tr(Ry"R1)—Np D,
w (det R1) + (mo—my) Ry (me—my). (19) WhereT(y) is the test statistic given by
det Ryg
fp(p) T(y) = 2Re{[m] (xar) — mo] Ry 'y}, (23)

As per (19), we know that only the terfi (p) is a function of I is the threshold fofl(y) given by

p. As such, the optimap is the one that minimizegp (p). - N T S

Given the format ofR, presented in (10), we can see that I =10 A+ Re{lmy (ear) —mol TR " [my (xar) +mol}, (24)
[B (p) is minimized when|my — m;| is minimized. A m}(x,,) is given by

constraint on our solution is that we assume the malicious

vehicle adopts a directional beamformer, the direction of . | Prgldr)Ky, . .

which is chosen (see below) so as to minimize detection. The mi (xar) = 1+ Ky, Gop” [xar, Py (xar)] - (25)
rationale for this assumption is that it allows the attacker
optimize his solution based on only one parameter (allowi
rapid in-the-field decision making), and allows for a charit
of exposition. The format of our directional beamfornpers

,\?ém R€} denotes the real part of a complex number. Then,

e derive the false positive rate(\, x,,), and the detection

rate, 5(\, xps), of the LSDS in the following theorem.
Theorem 1: The false positive and detection rates of the

i b
given by LSDS for a givenx,; are given by
1 . T
- 1o Nas — Dragcoso)]”, (20 . S
P Ny [ exp(j(Nar = 1)7as os o)) (20) ol xar) =0 In\+ [ml(XM)—mo]TROI[ml(XM)—mO] 7
where ¢ is the beamforming direction. Then, the optimal \/Q[mT(XM)—mo]TRBI[mT(XM)—mo]

beamforming directiony (the value ofyp that minimizes the (26)
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In\— [m’{(XM)—mo]TRBI [m?(x)r)—myg] | the distributions of the test statistics in order to obtdie t

BAxm)=Q - »approximations of the false positive and detection ratase D
\/2[mf(xﬂ'f)_m0]TR0 [ (xar) —myo] to the limited space, we left such analysis for further work
(27) and we investigate the detection performance of the LSDS
) for Ry # R; through numerical simulations in the following
where Q(z) = 5 [ exp (_t?) dt. section.
Proof: As per (23), we derive the distributions of the test
statisticT(y) underH, and#; as follows IV. NUMERICAL RESULTS
In this section, we first present numerical simulations to
T(y)|Ho ~ N(2Re{[m1(XM)—mo]TR51mo}, verify the accuracy of our provided analysis. We also previd

some useful insights on the impact of the SNR of the legitemat
2[m} (xa7) —mo] Ry [m*{(xM)—mo]), (28) channel, tr_le location of the mal_ic_ious vehicle, _number of
antennas (i.eNg, N, Nys), and RicianK -factors (i.e.,K,
K ) on the detection performance of our LSDS.
In Fig. 3, we present the Receiver Operating Characteristic
B (ROC) curve of our LSDS. In this figure, we first observe
2[m’ (xpr) —mo] 'Ry [m} (xa7) —myg] ). (29) : ; : :
1\AM 0] o 1AM 0 that the Monte Carlo simulations precisely match the th@ore
o ) o results, which confirms our analysis provided in Theorem 1.
As per the decision rule in (22) and the definitions of thedfal§ye a1s0 observe that the ROC curvesfor = 5dB dominate
positive and detection rates, we obtain the desirablet®sul 1o ROC curves fof;, = 0dB. This observation demonstrates

W) ~N(zRe{[m1<xM>—mowRolml(xM)},

(26) and (27) after some algebraic manipulations. B ih5t the detection performance of the LSDS increases as the
The minimum total error conditioned on =, can be |egitimate vehicle’s transmit power increases. This is thie
expressed as [19] the fact that the impact of the channel noise will be reldive

e(xar) = 1 — BN xar) + (A, xa0). (30) suppressed by increasing the transmit power. As expected,
we further observe that the ROC curve shifts towards the
We note that the detection performance of the LSDS baskeft-upper corner as6;, — 6| increases. This demonstrates
on x}, can be obtained by substituting;, into our derived the necessity to guarantee a minimum distance between the
performance metrics. We also note that a decision similar nwalicious vehicle’s claimed location and its true location
(22) can be obtained for the case whé&g # R,. Under In Fig. 4, we present the minimum total error versus the
this case, the false positive and detection rates cannot ragmber of antennas at the malicious vehicl€é;f) of our
obtained in closed-form expressions since the distributib LSDS. As expected, we first observe that the minimum total
the corresponding test statistic is intractable. Howewercan error decreases d$g or Ny, increases. This is due to the fact
utilize a similar methodology presented in [20] to approaien that the more antennas the legitimate or the BS is equipped
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channel, the number of antennas at the BS, or the number of
antennas at the legitimate vehicle increases. We alsondutai

a counter-intuitive observation that the malicious vetitcl
optimal number of antennas is equal to the legitimate velsicl
number of antennas. Finally, we showed that the Ridi&an
factor of the malicious channel that minimizes the detectio
rate is identical to the Riciank-factor of the legitimate
channel.
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