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Abstract—For DFT-spread-OFDM or OFDM, if the delay
spread varies in a wide range and the symbol duration is
relatively short, adapting the cyclic prefix (CP) duration rather
than using a fixed one may significantly improve the spectral
efficiency while preventing inter-symbol interference (ISI). In
practice, it may be beneficial to have a constant overall DFT-
spread-OFDM/OFDM symbol time, which is the sum of the
duration of a CP and the duration of a data portion. We propose
to adapt the CP duration to the delay spread without changing
the overall symbol time for DFT-spread-OFDM or OFDM, and
address implementation challenges. In particular, we propose
changing the clocking rate of ADC and DAC or using a Farrow
filter to reduce the computational complexity of arbitrary-size
DFT/IDFT resulting from the adaptation.

I. INTRODUCTION

Cyclic prefix (CP) has been widely used in practice to mit-

igate inter-symbol interference (ISI), for example, for OFDM

in the UMTS long-term evolution (LTE) downlink and in IEEE

802.11a/g/n/ac, and for DFT-spread-OFDM in the LTE uplink.

To fully eliminate ISI, the length of the CP should be at least

as long as the delay spread. On the other hand, to maintain

good spectral efficiency, the CP length cannot be too long.

It has long been noted that the delay spread may vary signif-

icantly from user to user, and from cell to cell. That motivated

the definition of two CP lengths in LTE: a normal CP of length

4.7 µs and an extended CP of length 16.7 µs [1]. The extended

CP is intended to be used in environments of extensive delay

spread (e.g., in large cells) or in the Multicast/Broadcast over

Single Frequency Network (MBSFN) where the effective delay

spread could be large due to the difference in propagation

delays from different base stations.

Recent measurement studies show that for millimeter-wave

wireless channels at 28GHz and 73GHz, the maximum root-

mean-quare (RMS) delay spread (defined as the RMS of the

power delay profile) could be tens of times greater than the

average RMS delay spread and hundreds of times greater

than the minimum [2]. For the millimeter wave, the symbol

duration tends to be short. Therefore, if we use a fixed CP

length to prevent ISI, we have to make the CP long enough to

accommodate the maximum RMS delay spread, resulting in

very inefficient use of the transmission time. As an example,

take the maximum RMS delay spread to be 200.3ns and

the average 12.1ns at 73GHz from Table 2 of [2]. Let the

subcarrier spacing be 0.5MHz, which implies a data portion of

2µs within an overall symbol time. We set the CP length to be

a multiple, say, six times, of the RMS delay spread. This setup

would ensure that 99.7% of the delay lines to be covered by the

CP if the delay lines follows a Gaussian distribution. To use a

common CP length targeting the maximum, the CP would be 6

× 200.3ns and the overhead would be 1.2/(2+1.2) = 37.5%.

In contrast, the overhead could be reduced to 3.5% if the CP

length is set to 6 times of the actual RMS delay spread.

There has been a large amount of research on optimizing

the CP duration for maximizing the spectral efficiency [3][4].

However, to our knowledge, in the existing works the duration

of a DFT-spread-OFDM/OFDM symbol, which in this paper

includes a CP and a data portion as done in [1, p. 322],

changes with the CP duration because the duration of the

data portion is fixed, making it hard to compose fixed-duration

frame structures while maintaining desired spectral efficiency.

One needs to be aware that in the literature the DFT-spread-

OFDM/OFDM symbol may refer to the data portion only.

In practice, it is desirable to have a fixed subframe dura-

tion for synchronous communication systems such as LTE.

For one thing, it simplifies resource allocation and inter-cell

interference management [5] by having a common time unit.

For another, it helps with backward compatibility with older

systems that allocate network resource to a user in some basic

time units, for example, the transmission time interval (TTI)

of 2ms in HSPA and of 1 ms in LTE [1].

We propose Adaptive CP to adapt the CP duration to the

delay spread without changing the overall DFT-spread-OFDM

or OFDM symbol time, as illustrated in Fig. 1, where Tc is

the CP duration and Td is the data portion duration. With

Adaptive CP, a constant subframe duration is easily achieved

and essentially there is no constraint on the granularity of the

CP duration. It was considered infeasible in [5] to adapt the

CP duration with fine granularity to the delay spread while

meeting the constraint of a fixed subframe duration under the

implicit assumption that Td is fixed. To see it, suppose that

the subframe duration is equal to 500 µs and Td = 66.7µs as

in LTE. Let n be the integer number of symbols that fill up

a subframe. Then Tc must satisfy n(66.7+ Tc) = 500, which

gives only two solutions 4.7 µs and 16.7 µs that have relatively

low overhead among all possible solutions. In our present

work, we remove the constraint that Td is fixed, and as a

result we are able to achieve fine granularity in adapting the CP
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duration to the delay spread. However, removing the constraint

also leads to challenges in system design and implementation,

which we will address in this paper.
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Fig. 1. Adapt the CP duration while keeping the symbol duration constant.

Besides the CP, the zero tail is also proposed for delay

spread adaptation as in zero-tail DFT-spread-OFDM [5]. How-

ever, the tails are not exactly zeros and are data dependent,

and as a result exact cyclic convolution is not achieved, which

may lead to significant bit error rate (BER) performance

degradation at high SNR.

Unique Word (UW) is an alternative to mitigate ISI for

OFDM [6] and in principle can be made to adapt to the

delay spread. A redundant signal is added in the frequency-

domain signal to generate a zero tail in the time-domain signal,

and then a unique word is superposed on the zero tail. At

the receiver, the channel-transformed unique word needs to

be subtracted, and that requires an accurate estimate of the

channel, which may be hard to do in practice. Recently, the

idea of unique word is extended to DFT-spread-OFDM [7].

The remainder of the paper is organized as follows. Section

II presents the adaptation scheme without regard to computa-

tional complexity, Section III proposes solutions to reduce the

computational complexity. Lastly, Section IV concludes the

paper.

II. ADAPTING THE CP DURATION

A. Single user support

The system architecture is shown in Fig. 2. QAM symbols

are fed to the system in blocks of length M . Consider an

arbitrary block u = (u0, u1, · · · , uM−1)
T , where T stands

for transpose. Let the output of the M -point DFT module

be U = DFT(u) = (U0, U1, · · · , UM−1)
T , where Uk =∑M−1

n=0 une
−j2πnk/M , where k = 0, 1, · · · ,M − 1. Let P be

an N × N permutation matrix used in subcarrier mapping.

Let 01×(N−M) be a 1 × (N − M) vector with all entries

being 0. The subcarrier mapping results in an N -vector

D = P(UT ,01×(N−M))
T , which is fed to the N -point DFT

module, resulting in d = IDFT(D) = (d0, d1, · · · , dN−1)
T ,

where dk =
∑N−1

n=0 Dne
j2πnk/N , where k = 0, 1, · · · , N − 1.

Let the channel impulse response (CIR) be K + 1 samples

long. The addition of a CP of K samples results in the

signal x = (dN−K , dN−K+1, · · · , dN−1, d0, d1, · · · , dN−1)
T

of length (N +K), which is then passed to the DAC module,

carrier modulated, and transmitted across the continuous-time

channel which induces a discrete-time CIR h. The received

signal y = h⊗d+z, where ⊗ stands for circular convolution

and z for noise. Y = DFT(y), and W is equal to elements 1

through M of P−1Y, where P−1 is the inverse permutation.

The equalization output is Û, and the M -point IDFT output

is û.

Now we consider how to determine the CP duration Tc (in

seconds) and the data portion duration Td (in seconds). The

overall symbol time T is chosen such that it is long enough to

have a reasonably high efficiency Td/T while not being too

long in order to satisfy other requirements such as limiting

carrier-frequency offset and having an almost constant channel

during T . The procedure of adapting Tc to the delay spread is

as follows. A statistic about the delay spread, for example the

RMS delay spread τ , is measured at the receiver, and fed back

to the transmitter. Then, Tc could be set as a multiple of τ .

Note that the discrete-time signal x enters the DAC module

one sample per Ts, where Ts is the period of the clocking

signal of the DAC. Therefore, Tc = KTs, yielding

K = Tc/Ts, (1)

where we ignore the ceiling operation to simplify the notation.

To maintain the same subframe duration, we keep the overall

symbol duration T = Tc+Td constant. Thus, T −Tc = NTs,

or

N = (T − Tc)/Ts. (2)

To achieve orthogonality among subcarriers, the subcarrier

spacing ∆f = 1/(T − Tc). The bandwidth B (in Hertz) of

the DAC converted signal is

B = N∆f = N/(T − Tc) = 1/Ts. (3)

It follows from (3) and (2) that in order to keep B the same, Ts

must remain the same and N must be proportional to T −Tc.

To enable Adaptive CP for OFDM, we simply remove the

M -point DFT and IDFT and set M = N in Fig. 2.
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Fig. 2. System architecture for direct IDFT/DFT computation

B. Multiuser support

In order to effectively support multiple users, the CP

duration cannot be solely determined by the delay spread

of individual users. Otherwise, multiple users on disjoint

subcarriers with different CP durations may interfere with one

another during simultaneous transmissions. This is shown in



Fig. 3(a), where we consider the receiving of two simultaneous

transmissions at user 2: one intended for user 1 and the other

for user 2. Because the duration of CP1 is shorter than that of

CP2, the superposed signal falling within user 2’s DFT window

is no longer circular, making the convolution non-circular.

A similar problem exists with many other approaches such

as [5][6]. In fact, as long as the CPs, zero-tails, or UWs are

of different lengths, mutual interference may occur between

users. As an example, Fig. 3(b) shows that for zero-tail

OFDM [6] the fact that the two data segments e11 and e12
are almost always different breaks the cyclicity of the received

signal in user 2’s DFT window. Note that the CIRs shown in

the figure are the ones seen by user 2.

Time
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Fig. 3. Transmission intended for user 1 interferes with user 2’s receiving:
(a) Adaptive CP, and (b) in zero-tail OFDM.

One approach to addressing the issue with Adaptive CP

is to take the maximum of RMS delay spreads of only the

users scheduled for simultaneous transmissions and configure

these users with a common CP duration corresponding to

the maximum. With this, significant gains could be achieved

because the maximum of the delay spreads of a small number

of users could be dramatically lower than that of all users in

a cell.

A second approach is to configure a common CP duration

for users of similar delay spreads and schedule only users of

the same CP duration for simultaneous transmissions. A third

approach is to use a filter to select only the desired frequencies

for each intended receiver before doing DFT at the receiver.

The idea of filtering on subcarriers or groups of subcarriers has

been proposed for Filtered OFDM, Filter Bank Multicarrier [8]

and resource block filtered OFDM [9].

III. REDUCING COMPUTATIONAL COMPLEXITY

We now present ways to reduce the complexity of the design

in Section II. The main complexity in Fig. 2 comes from DFT

and IDFT, which have complexity about N2 multiplications.

The complexity is prohibitive for large N . However, if N is

a power of 2, we can use the efficient implementation radix-2

FFT, which has much lower complexity of about (N/2) log2 N
multiplications. On the other hand, if N is not a power of 2,

we need to explore other solutions. Mixed-radix IFFT/FFT

(by factorizing N into the powers of small prime numbers)

has been considered in practice. However, the factorization

changes with N , leading to changes in the hardware, which is

undesirable in practice. We propose two solutions next.

A. Changing the clocking rate for ADC and DAC

We choose Ñ to be a power of 2 and append zeros to D to

get a length-Ñ vector

D̃ = (DT ,01×(Ñ−N))
T (4)

and then apply Ñ -point radix-2 IFFT, as shown in Fig. 4(a).

Next, the IFFT output is clocked into the DAC at a rate F̃s =
ÑFs/N and denote the DAC output as d̃(t). Let the DAC

output for the case of direct IDFT computation be d(t). We

claim that:

Theorem 3.1: With the above zero-padding and clocking

rate changing, d̃(t) = d(t).
Proof: The IDFT output in Fig. 2 is

d(n) =

N−1∑

k=0

Dke
j2πkn

N =

N−1∑

k=0

Dke
j2πkt

NTs

∣∣∣
t=nTs

, 0 ≤ n ≤ N−1.

(5)

Since d(n) is fed into the DAC at rate Fs = 1/Ts, by the

Sampling Theorem the DAC output

d(t) =

N−1∑

k=0

Dke
j2π kt

NTs , 0 ≤ t ≤ T − Tc. (6)

This relationship is also explained in texts such as [10].

Now consider Fig. 4(a). Define T̃s = 1/F̃s. With (4), the

Ñ -point IFFT output is

d̃(n) =

N−1∑

k=0

Dke
j2π kn

Ñ =

N−1∑

k=0

Dke
j2πkt

ÑT̃s

∣∣∣
t=nT̃s

, 0 ≤ n ≤ Ñ−1.

(7)

Similarly, by the Sampling Theorem, we have

d̃(t) =

N−1∑

k=0

Dke
j2π kt

ÑT̃s , 0 ≤ t ≤ T − Tc. (8)

Since F̃s = ÑFs/N , we have

Ñ T̃s = NTs. (9)

Comparing (6) with (8), we have that d(t) = d̃(t). �

Let the CP length in samples be K̃, then Tc/(T − Tc) =
K̃/Ñ , which together with (9) yields

K̃ = Tc/T̃s. (10)

The total bandwidth B̃ is

B̃ = N/(T − Tc) = N/(ÑT̃s). (11)

We now look at changing the clocking rate in practice. The

Ñ -point IFFT output d̃(n) is fed to the DAC at a clocking rate

F̃s = Ñ/(NTs) = Ñ/(T − Tc). Thus the clocking rate F̃s

needs to change as Tc adapts to the delay spread. Changing

the clock rate is not new, and it has been used in frequency-

hopping spread spectrum systems. In practice, the change in

F̃s can be achieved by the use of a programmable frequency

synthesizer which typically uses one or more phase-locked

loops (PLLs).



N point

IFFT

Add CP

...

DAC

d x

D
~

...0

0

~
~Output of

N point

Subcarrier

Mapping

~

Clocking rate= Fs

~
N

NN � N zeros
~

(a)

N-point 

IFFT

Add CP 

...
...

DAC

d x

D
~

...0

0

~
Output of 

N-point 

Subcarrier 

Mapping

~

Clocking rate=Fs

N � N zeros
~

Sampling 

rate 

conversion

d

(b)

Fig. 4. Transmitters with zero padding: (a) changing the clocking rate of the
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A performance metric particularly important to our problem

is the PLL lock time, which is defined as the time that it takes

the voltage-controlled oscillator (VCO) output to match the

PLL reference clock signal in both frequency and phase, and

it takes values on the order of tens of microseconds or less

for modern wide-band frequency synthesizers [11]. Although

the channel itself may change significantly on the order of

milliseconds, the delay spread may change very little over

a much longer time interval as the delay spread is primarily

determined by the objects in the scattering environment within

a beam. Under this assumption, the clocking rate of the

DAC may not need to be changed frequently, therefore the

loss of efficiency due to the change in clocking rate can be

made negligible. In the case where the delay spread changes

frequently, we may use two PLLs in a staggered fashion, one

providing the clocking signal for the current communication,

and the other to be turned on to provide a new clocking rate

before the change in clocking rate is needed.

To account for the limited granularity of the clocking rate

provided by a frequency synthesizer, we can work backwards

from a set of L available clocking rates T̃
(1)
s , T̃

(2)
s , . . . , T̃

(L)
s

to determine Tc by (9) and NTs = T − Tc, K̃ by (10), and

B̃ and N by (11).

B. Fractional sampling rate conversion

In this approach, we keep the clocking rate of the DAC

(and ADC) at Fs, as shown in Fig. 4(b). To ensure that d̃(t)
is of duration T − Tc, we convert d̃(n), which corresponds

to oversampling d(t) at sampling frequency F̃s = FsÑ/N ,

into a shorter sequence d(n) at a reduced sampling rate Fs.

Polyphase filter decomposition [12] can be used, as shown in

Fig. 5, where hi’s are the polyphase filters, i = 1, 2, ..., p. The

complexity is reduced if N/Ñ can be written as a ratio of two

small integers p and q that are relatively prime, i.e., N/Ñ =
p/q. For example, for N = 1536 and Ñ = 2048, we have

p = 3 and q = 4. However, such simplification is not always

available, especially if we want to have fine granularity in the

CP duration adaptation. Additionally, when N changes, the

hardware structure for polyphase decomposition will change

as well, which increases hardware complexity. This is clear

because the original lowpass filter to be decomposed, which

has a passband [−1/(2max(p, q)), 1/(2max(p, q))] in relative

frequency, changes with p and q, and the number of polyphase

filters (which is equal to p) changes with p.

Alternatively, Farrow filter approximation [13, pp. 185-196]

can be used to do arbitrary sampling rate conversion without

changing the hardware structure. It works as follows. First,

choose a constant integer p and solve for q = pÑ/N . Note

that here q may not be an integer any more. Then use lower

order polynomials to approximate successive fragments of the

original lowpass filter. Lastly ‘decimate’ the output of the

polyphase filters in strides of q, corresponding to a step size

of q/(pF̃s) in seconds. A special treatment can significantly

simplify the design. The original lowpass filter is symmetric

in the frequency domain, but the spectrum of the output of

the IFFT module is asymmetric with a support of [0, N/Ñ ]
in relative frequency, resulting in a zero-interpolated signal

with asymmetric spectrum with a support [i/p,N/(pÑ)+i/p],
i = 0,±1, . . . , as illustrated in the top plot of Fig. 6. To resolve

this mismatch, we shift the spectrum of the IFFT output by

multiplying d̃(n) with a phasor exp(−jπnN/Ñ). This phase

shift makes the spectrum of the interpolated signal symmetric

in the frequency domain as shown in the middle plot of Fig. 6.

An inverse phase shift exp(jπnN/Ñ) is applied to the output

of the Farrow filter. The polynomial approximation can result

in very good performance, as illustrated in Fig. 7 for the first

100 data points of the IDFT/IFFT output. The relative MSE is

-44.4dB, well below the effect of noise in a typical operating

environment.
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The Farrow approximation offers attractive complexity re-

duction. Assume that the original lowpass filter has a length

L, and the polynomials are of order α. Then, each polyphase

filter has a length ⌈L/p⌉. Using Horner’s rule [13, p. 196], the

evaluation of a polynomial requires α multiplications. There

are 2 multiplications for phase shifts for each sample. The

total complexity is about (α + 1)⌈L/p⌉ + 2 + Ñ
2N log2 Ñ

multiplications per input sample, as opposed to N in the

direct IDFT/DFT approach. For the example in Fig. 7, L =
231, p = 9, α = 4. We have 146 multiplications per sample

for the Farrow approximation method, as opposed to 1543

multiplications in the direct IDFT computation method.

Note: The Farrow approximation based approach described

here offers a way to efficiently calculate arbitrary-size DFT or
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IDFT, and it can find many applications in practice.

IV. CONCLUSION

We propose to adapt the CP duration to the delay spread

without changing the overall symbol duration for DFT-spread-

OFDM and OFDM to improve the spectral efficiency, and ad-

dress the challenges in practical implementations. In particular,

we propose changing the ADC/DAC clocking rate or comput-

ing arbitrary-size IDFT/DFT using Farrow approximation.
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