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Abstract—In this paper, we investigate the delay-aware dy-
namic resource management problem for multi-service transmis-
sion in high-speed railway wireless communications, with afocus
on resource allocation among the services and power control
along the time. By taking account of average delay requirements
and power constraints, the considered problem is formulated
into a stochastic optimization problem, rather than pursuing the
traditional convex optimization means. Inspired by Lyapunov op-
timization theory, the intractable stochastic optimization problem
is transformed into a tractable deterministic optimization prob-
lem, which is a mixed-integer resource management problem.
By exploiting the specific problem structure, the mixed-integer
resource management problem is equivalently transformed into
a single variable problem, which can be effectively solved by the
golden section search method with guaranteed global optimality.
Finally, we propose a dynamic resource management algorithm
to solve the original stochastic optimization problem. Simulation
results show the advantage of the proposed dynamic algorithm
and reveal that there exists a fundamental tradeoff betweendelay
requirements and power consumption.

I. I NTRODUCTION

For the last decade, high-speed railway (HSR) has become
the future trend of railway transportation worldwide, and
attracted a lot of attentions as a fast, convenient and green
public transportation system. With the continuous construction
of HSR in recent years, the demand for mobile communication
on high-speed trains is increasingly growing [1]. More and
more services related with the railway controlling information
need to be transmitted between the train and the ground in
order to guarantee the train moving safety. Meanwhile, the
passengers have an increasingly high demand on wireless
Internet services when they are onboard. To fulfill the high
demand for wireless data transmission, the study on efficiency
of HSR communications is critical.

There have been some recent works to improve the trans-
mission performance in HSR communication systems. From
the network architecture perspective, a relay-assisted HSR net-
work architecture has been proposed in [2] and [3], which can
provide better performance than direct transmission in case of
large penetration loss. To better utilize the network resources,
[4] and [5] considered control/data signaling decoupled and
cellular/infostation integrated HSR network architectures, re-
spectively. From the transmission technology perspective, the
radio-over-fiber (RoF) technology for HSR communications
was proposed in [6], which can improve handover performance
effectively. Multi-input Multi-output technology (MIMO)was

introduce into HSR scenarios in order to increase the network
throughput [7]. However, when considering the multiple ser-
vices transmission between the train and the ground, more in-
vestigations on resource management are necessary to further
improve the transmission performance.

In HSR communications, many types of services need to be
transmitted between the train and the ground [8]. In particular,
these HSR services are classified into four categories [9], i.e.,
pure passenger internet, passenger comfort services, security-
related services and cost saving applications. The effective
transmission for these heterogenous services is a technical
challenge. First, the channel condition cannot remain at the
same level due to the fast-varying distance between the train
and the ground, which causes that the power control along
the time has a large influence on transmission performance.
Second, there exist heterogeneous quality-of-service (QoS)
requirements in HSR communications, especially the end-
to-end delay requirements since the security-related services
should be delivered in time. The resource allocation plays a
key role in enhancing the QoS performance by making full use
of the limited resources. Based on the above two aspects, the
power control along the time and resource allocation among
the delay-aware services in HSR wireless communications are
still interesting and challenging problems.

To the best of our knowledge, resource allocation and power
control in HSR communications are usually considered as
separate problems. In this paper, we jointly optimize them
for delay-aware multi-service transmission in HSR communi-
cations. Specifically, the main contributions are summarized
as follows.

• A stochastic optimization framework for multi-service
transmission in HSR communication systems is devel-
oped, which focuses on dynamic resource management
under the heterogeneous delay requirements and power
constraints. The proposed framework is based on a
cross-layer design to improve the efficiency of resource
management, which involves the interactions between
physical (PHY) layer and media access control (MAC)
layer.

• Inspired by the stochastic network optimization approach,
the intractable stochastic optimization problem is trans-
formed into a tractable deterministic optimization prob-
lem. A static resource management algorithm is proposed
to solve it with guaranteed global optimality, by using
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the golden section search method. Based on the static
algorithm, we propose a dynamic resource management
algorithm to solve the original stochastic optimization
problem.

• The algorithm performance is evaluated by simulations
under realistic assumptions for HSR communication sys-
tems. Simulation results show that compared with the
traditional power control schemes, the proposed dynamic
algorithm can effectively improve delay performance. In
addition, we notice there exists a fundamental tradeoff
between delay requirements and power consumption.

The remainder of the paper is structured as follows. In Sec-
tion II, we review the related works. Section III describes the
system model. The problem formulation and transformation
are provided in Section IV. We propose a dynamic resource
management algorithm in Section V. Numerical results and
discussions are shown in Section VI. Finally, some conclusions
are drawn in Section VII.

Notations: In this paper,E[·] denotes expectation.⌊x⌋ =
max{n ∈ Z|n ≤ x}. ⌈x⌉ = min{n ∈ Z|n ≥ x}. R, Z andN
denote the sets of real numbers, all integers and all positive
integers, respectively.

II. RELATED WORK

A. Resource Allocation

Resource allocation plays an important role in enhancing
the data transmission efficiency and improving the QoS per-
formance. In the literature, the resource allocation problem
in HSR communications has attracted great research interest.
For example, [10] and [11] investigated rate maximization
resource allocation problem under the limited resource con-
straint. Different energy-efficiency resource allocationmethods
were developed in [12] and [13] to minimize the total transmit
power while satisfy QoS requirements. However, a typical
assumption in these works is the infinite backlog and the delay-
insensitive services. As a result, these works focus only on
optimizing the PHY layer performance metrics such as sum
throughput and total transmit power, and the resultant resource
allocation schemes are adaptive to the channel condition only.

In practical HSR communications, it is important to focus
on cross-layer optimization design, which considers random
bursty arrivals and delay performance metrics in addition to
the PHY layer performance metrics. There is also plenty
of literature on cross-layer resource optimization in HSR
communications. [5] and [14] investigated the resource al-
location problem for delivering multiple on-demand services
while considering their deadline constraints. A cross-layer
design approach was proposed in [15] to improve video
transmission quality by jointly optimizing application-layer
parameters and handoff decisions. In addition, [16] and [17]
studied the downlink resource allocation problem with the
delay constraint and packet delivery ratio requirement in relay-
assisted HSR communications. All the above works treat the
resource allocation problem with the assumption of a constant
transmit power. When delivering multiple services betweenthe

ground and the train, the total resource allocated to the services
is controlled by the instantaneous transmit power. Thus, itis
necessary to jointly consider the resource allocation among
the services and the power control along the time.

B. Power Control

There are three unique features in HSR communications
[18], i.e., the deterministic moving direction, relatively steady
moving speed and the accurate train location. The data trans-
mission rate is highly determined by the transmit power and
the distance between the ground and the train, thus these
features make it necessary and feasible to implement power
control along the time. Under the total power constraint,
[19] presented four power allocation schemes to achieve
different design objectives. As an extension, [20] investigated
the utility-based resource allocation problem, which jointly
considers the power allocation along the time and packet allo-
cation among the services. The delay-aware power allocation
policy has been proposed in [21] under the assumption of
constant-rate data arrival. Moreover, [22] and [23] studied the
energy-efficient data transmission problem in HSR commu-
nications, with the purpose of minimizing the total transmit
power. However, these above works only take account of the
time-varying channel state while do not consider the dynamic
characteristics of the service or packet arrivals, which causes
that the above power control schemes are not practical.

Dynamic power control is necessary to improve the perfor-
mance of HSR communication systems, where the transmit
power should be adaptive to the time-varying channel state
and queue state. The work [24] investigated a joint admis-
sion control and resource allocation problem, which aims to
maximize the system utility while stabilizing all transmission
queues. Different from [24], our work in this paper focuses
on the delay-aware dynamic resource allocation and power
control problem under power constraints.

III. SYSTEM MODEL

As shown in Fig. 1, we consider a HSR communication
network consisting of a linear cellular network and a backbone
network. The linear cellular network deployed near the rail
line can provide data transmission between the ground and the
train. In the backbone network, the distributed content servers
(CSs) are deployed in order to offload data traffic [25] and a
central controller (CC) is responsible for resource management
[5]. The base stations (BSs) in the cellular network are
connected to the CSs via wireline links, thus BSs and CSs
can communicate with a negligible delay. Considering the
downlink transmission from the ground to the train, the data
packets of the requested services are first delivered from the
CSs to the vehicle station via the BSs, and then the vehicle
station installed on the train transfers these data packetsto
the users on the train. Since the communication between the
ground and the vehicle station suffers from the fast-varying
wireless channel and may become the bottleneck in this
network architecture. Therefore, this paper mainly considers



the multi-service downlink transmission from the BSs to the
vehicle station.
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Fig. 1. System model

A. Deterministic Train Trajectory

The deterministic train trajectory in HSR communication
systems is a unique feature, which represents the train location
at a specific time [5]. The train trajectory information can be
obtained accurately due to the following two reasons. First,
since the train moves on a predetermined rail line and the
velocity is relatively steady. Second, many train positioning
techniques are applied into railway communications, such as
the global positioning system (GPS) and digital track maps
[26].

In this paper, we develop a time-distance mapping function
to describe the deterministic train trajectory. As shown inFig.
1, we consider a train travels from the origin station to the
destination station within the time duration[0, T ] at a constant
speedv. The whole time duration is partitioned into slots of
equal durationTs. The distance which the train has traveled
until slot t is s(t) = vt and the train location between two ad-
jacent BSs iss(t) mod 2R, whereR is the cell radius. Define
a time-distance mapping functiond(t) : [0, T ] → [d0, dmax],
where dmax =

√

R2 + d20 and d0 is the distance between
each BS and the rail line. With the help of the train trajectory
information, the distanced(t) at slot t can be obtained based
on the geometry knowledge.

B. PHY Layer Model

The newly-built HSR routes are mainly composed of wide
plain and viaduct, which yield a free space with few reflec-
tors or scatterers. Most of the time, only the direct signal
path between BS and vehicle station is available, which was
confirmed by engineering measurements [27], [28]. Similar to
[19], [21], [29], we assume that the channel condition variation
results only from the time-varying distance between BS and
train. Given the transmit powerP (t) and the distanced(t), the
received signal-to-noise ratio (SNR) at slott can be denoted
by

SNR(t) =
P (t)d−α(t)

BN0
=

P (t)

N(t)
, (1)

where B is the system bandwidth,N0 is the noise power
spectral density,α is the pathloss exponent, andN(t) is
defined asN(t) , BN0d

α(t) for brevity.
Based on the SNR expression (1), the downlink transmission

rate at slott is expressed by

R(t) = B log2

(

1 +
P (t)

N(t)

)

bits/s. (2)

Suppose that a packet is the transmission unit, hence the link
capacity at slott can be denoted as the maximum number of
packets, which can be expressed by

C(t) =

⌊

TsR(t)

L

⌋

=

⌊

1

η
log2

(

1 +
P (t)

N(t)

)⌋

, (3)

whereL is the packet size in bits,η = L
TsB

> 0, and Ts

is a slot duration. Based on (3), we can see that the link
capacityC(t) is determined by transmit powerP (t). Although
the equal packet size and equal time duration at each slot are
considered, the results presented herein can be extended tothe
unequal scenarios.

We consider the erasure coding based service transmission
in PHY layer, which has been adopted in [5], [17] to simplify
the protocol design for HSR communications. The advantage
is that no recovery scheme is required for the transmission
error or loss of specific packets due to highly dynamic wireless
channels.

C. MAC Layer Model

A set K , {1, . . . ,K} of delay-constrained services are
supported over the trip. We assume thatCSk is equipped
with a buffer and can provide servicek. Thus, we can see
K delay-constrained queues in MAC layer, as shown in Fig.
1. The maximum size of each bufferQmax is assumed to be
sufficiently large. LetQ(t) = (Q1(t), . . . , QK(t)) represent
the current queue backlogs vector, whereQk(t) denotes the
number of packets at the beginning of slott in the queue
of CSk. Let A(t) = (A1(t), . . . , AK(t)) represent the packet
arrival vector, whereAk(t) denotes the number of packets
arriving into the buffer ofCSk at slot t. Suppose in general,
Ak(t) follows Poisson distribution with average packet arrival
rateλk for servicek.

The MAC layer is responsible for the resource allocation
among the services. Letµ(t) = (µ1(t), . . . , µK(t)) be the
resource allocation action vector at slott, where µk(t) is
the number of packets allocated to servicek. Since the total
number of allocated packets can not exceed the link capacity,
the resource allocation at each slott must satisfy the constraint
0 ≤

∑

k µk(t) ≤ C(t). In addition, the dynamics for all
queues are given by

Qk(t+ 1) = Qk(t)− µk(t) +Ak(t), ∀k ∈ K. (4)

Since the arrival packets at slott can only be transmitted after
slot t, we have0 ≤ µk(t) ≤ Qk(t), ∀k ∈ K.



IV. PROBLEM FORMULATION AND TRANSFORMATION

In this section, we first present a detailed description of the
delay-aware multi-service transmission from the perspective of
cross-layer design. The average delay constraint and average
power constraint are formulated in terms of long-term time
average. Then auxiliary variables are introduced to transform
these long-term average constraints into the queue stability
constraints. Based on the Lyapunov drift theory, we formulate
the delay-aware resource allocation and power control problem
as a stochastic optimization problem. Finally, the intractable
stochastic optimization problem is transformed into a tractable
deterministic optimization problem.

A. Problem Statement

This paper considers the delay-aware multi-service trans-
mission in HSR communication systems, with a focus on
dynamic resource allocation and power control problem. Based
on the model in Section III, the problem can be stated as fol-
lows: During a trip, considering system dynamic characteris-
tics, i.e., the random packet arrivals and time-varying wireless
channels, how to dynamically optimize resource allocationand
power control to satisfy the heterogenous delay requirements
of multiple services under power constraints along the time.

To enhance the efficiency of resource utilization and im-
prove delay performance of service transmission, it is neces-
sary to dynamically control resource in a cross-layer way. Fig.
2 presents an illustration of cross-layer resource management,
which involves the interactions between the PHY layer and the
MAC layer. At the PHY layer, the channel state information
(CSI) allows an observation of good transmission opportunity.
At the MAC layer, the queue state information (QSI) provides
the urgency of data packets. The control actions, including
power control actionP and resource allocation action vector
µ, should be taken dynamically based on the PHY layer
CSI and the MAC layer QSI. Specifically, the power control
action decides the link capacity, i.e., the total allocatedpackets.
The resource allocation action decides how many packets are
allocated for each service.

Resource

Allocation
QSI

CSI

MAC Layer

PHY Layer

Cross-layer

Resource

Management

Controller

PHY State

MAC State

Control Actions

Power Control

Fig. 2. Cross-layer design for dynamic resource management

B. Constraint Formulation

We define the following notation for the long-term time
average expectation of any quantityx,

x , lim
t→∞

1

t

t−1
∑

τ=0

E[x(τ)], (5)

Based on the definition (5),Qk andP are denoted as average
queue backlog for queuek and average power consumption,
respectively.

For the erasure coding based service delivery, the average
delay constraint is considered since the decoding delay will
be closely related to all encoded packets. Mathematically,the
average delay constraint for queuek can be expressed by

W k ≤ W av
k , (6)

whereW k andW av
k represent the average delay and maximum

average delay for queuek, respectively. Based on Little’s law,
the average delay can be obtained byW k = Q

k

λk

. Thus, the
constraint (6) is equal to

Qk ≤ W av
k λk. (7)

The data transmission between the train and ground is sub-
ject to the transmit power constraints, including the maximum
power constraint and average power constraint. Mathemati-
cally, the maximum power constraint at any slott is given
by P (t) ≤ Pmax and the average power constraint can be
expressed by

P ≤ Pav, (8)

wherePav andPmax denote the maximum average power and
the maximum instantaneous power, respectively.

The objective of this paper is to investigate the dynamic re-
source allocation and power control problem under the average
delay constraints (6), the average power constraint (8) andthe
maximum power constraint. In order to better characterize the
considered problem, we consider the constraint transformation
in the following subsection.

C. Constraint Transformation

To facilitate satisfaction of the constraint (7), we define a
virtual queueXk(t) for eachk with the update equation

Xk(t+ 1) = max[Xk(t)−W av
k λk, 0] +Qk(t+ 1) (9)

whereQk(t+ 1) is defined in (4) and the initial condition is
assumedXk(0) = 0 for all k. Intuitively,Qk(t+1) andW av

k λk

can be viewed as the “arrivals” and the “offered service” of
queueXk(t), respectively.

Lemma 1: If the virtual queueXk(t) is rate stable, i.e.,
satisfieslim

t→∞
Xk(t)

t
= 0, thenW k ≤ W av

k holds and the queue

Qk(t) is stable.
Proof: From (9), we haveXk(τ+1) ≥ Xk(τ)−W av

k λk+
Qk(τ + 1), i.e., Xk(τ + 1) −Xk(τ) ≥ Qk(τ + 1) −W av

k λk

for any τ . Summing the above overτ ∈ {0, . . . , t − 1}
yields Xk(t) − Xk(0) ≥

∑t−1
τ=0(Qk(τ + 1) − W av

k λk).
Dividing by t and taking limit ast → ∞, we can get
limt→∞ Xk(t)/t ≥ Qk − W av

k λk. Thus, if limt→∞ Xk(t)/t
= 0, then Qk ≤ W av

k λk holds, which implies the queue
Qk(t) is stable. In addition, based on Little’s law, we have
Qk = λkW k andW k ≤ W av

k for k ∈ K.
The intuition behind Lemma 1 is that if the excess backlog

in the virtual queue is stabilized, it must be the case that the
time average arrival rateQk is not larger than the service rate



W av
k λk. Based on the Lemma 1, the constraint (6) can be

transformed into a single queue stability problem.
Similarly, for the constraint (8), we define the virtual queue

Yk(t) for eachk with the update equation

Yk(t+ 1) = max[Yk(t)− Pav, 0] + P (t). (10)

Thus, stabilizingYk(t) ensuresP ≤ Pav.

D. Problem Formulation

DefineX(t) andY(t) as a vector of all virtual queuesXk(t)
and Yk(t), respectively. We denoteΘ(t) as the combined
vector of all virtual queues,Θ(t) , [X(t),Y(t)]. Define the
quadratic Lyapunov function [30]

L(Θ(t)) ,
1

2

(

∑

k∈K
Xk(t)

2 + ω
∑

k∈K
Yk(t)

2

)

, (11)

where ω ≥ 0 represents the weight on how much we
emphasize the average power constraint.

Next, ∆(Θ(t)) is defined as the one-slot conditional Lya-
punov drift at slott

∆(Θ(t)) = E[L(Θ(t+ 1))− L(Θ(t))|Θ(t)], (12)

which can help to ensure that the virtual queues are stable
and the desired constraints are met. At each slott, observing
the virtual queue vectorΘ(t) and real queue vectorQ(t), the
resource allocation action vectorµ(t) and power control action
P (t) should be jointly decided to minimize the drift (12).
Thus, the resource management problem at slott is formulated
as

min
P (t),µ(t)

∆(Θ(t)) (13a)

s.t. 0 ≤ P (t) ≤ Pmax (13b)

0 ≤ µk(t) ≤ Qk(t), µk(t) ∈ N, ∀k (13c)
∑

k∈K
µk(t) ≤ C(t) (13d)

The problem (13) is a stochastic optimization problem
[30], but it cannot be solved efficiently since the difficulty
from the form of the objective function (13a). In order to
better characterize the problem (13) and develop an efficient
algorithm to solve it, we consider the problem transformation
in the following subsection.

E. Problem Transformation

To make the objective function (13a) easily handled, we
have the following lemma.

Lemma 2: Under anyµ(t), P (t) andΘ(t), we have

∆(Θ(t)) ≤
1

2
D + E[G(t)|Θ(t)], (14)

whereD is a finite constant defined as

D =
∑

k∈K

[

Q2
max + (λkW

av
k )2 + ω(P 2

max + P 2
av)
]

, (15)

andG(t) is defined as

G(t) ,
∑

k∈K

[

Xk(t)
(

Qk(t)− µk(t) +Ak(t)− λkW
av
k

)

+ ωYk(t)(P (t)− Pav)
]

. (16)

Proof: By squaring the equation (9), we have

Xk(t+ 1)2 −Xk(t)
2

= (max[Xk(t)− λkW
av
k , 0] +Qk(t+ 1))2 −Xk(t)

2

≤ Qk(t+ 1)2 + (λkW
av
k )2 + 2Xk(t)(Qk(t+ 1)− λkW

av
k )

(17)

where we use the fact that for anyx, y ≥ 0, (max[x, 0])2 ≤ x2

andmax[x− y, 0] ≤ x in the inequality.
Similarly, it can be shown for anyk ∈ K

Yk(t+1)2−Yk(t)
2 ≤ P (t)2+P 2

av+2Yk(t)(P (t)−Pav) (18)

Based on (12), (17) and (18), we have

∆(Θ(t)

= E

[

1

2

∑

k∈K

[

Xk(t+ 1)2 −Xk(t)
2 + ωYk(t+ 1)2 − ωYk(t)

2
]

|Θ(t)

]

≤ E

[

1

2

∑

k∈K

[

Qk(t+ 1)2 + (λkW
av
k )2 + ω(P (t)2 + P 2

av)

+ 2Xk(t)(Qk(t)− µk(t) +Ak(t)− λkW
av
k )

+ 2ωYk(t)(P (t) − Pav)
]

|Θ(t)

]

≤ D + E [G(t)|Θ(t)] (19)

whereG(t) is defined by (16) and the last inequality can be
obtained by

E

[

∑

k∈K

[

Qk(t+ 1)2 + (λkW
av
k )2 + ω(P (t)2 + P 2

av)
]

|Θ(t)

]

≤ E

[

∑

k∈K

[

Q2
max + (λkW

av
k )2 + ω(P 2

max + P 2
av)
]

|Θ(t)

]

=
∑

k∈K

[

Q2
max + (λkW

av
k )2 + ω(P 2

max + P 2
av)
]

= D (20)

where the inequality holds based onQk(t + 1) ≤ Qmax and
P (t) ≤ Pmax, and the equality holds since the constant in the
square bracket is independent ofΘ(t).

Based on Lemma 2, the problem (13) can be simplified
to minimize the drift upper bound, i.e., the right-hand-side
of inequality (14). We notice that the control actions are
independent of the first term and only affect the second term on
the right-hand-side of the inequality (14). Thus, the objective
turns to the minimization of the expressionE[G(t)|Θ(t)]. This
conditional expectation is with respect to the virtual queue
vectorΘ(t) and the possible control actions. Then, using the
concept of opportunistically minimizing an expectation [30],
the control actions are chosen to minimizeG(t) by observing



Θ(t) andQ(t) at each slott. Next, isolatingµ(t) andP (t)
in (16) leads to the following expression

∑

k∈K

[

ωYk(t)P (t)−Xk(t)µk(t)
]

. (21)

Therefore, the intractable stochastic optimization problem (13)
can be transformed into a deterministic optimization problem
at each slot, which is expressed by

max
P,µ

∑

k∈K

[

Xkµk − ωYkP
]

(22a)

s.t. 0 ≤ P ≤ Pmax (22b)

0 ≤ µk ≤ Qk, µk ∈ N, ∀k (22c)
∑

k∈K
µk ≤ C =

⌊

1

η
log2

(

1 +
P

N

)

⌋

(22d)

Note that the time index is omitted in problem (22) for brevity.
Let µ∗ = (µ∗

1, . . . , µ
∗
K) andP ∗ denote the optimal resource

allocation action vector and the optimal power control action
for problem (22), respectively.

V. DYNAMIC RESOURCEMANAGEMENT ALGORITHM

The problem (22) is a mixed integer programming (MIP)
problem. A common way of solving it is to relax the integer
constraints and then the problem becomes a convex optimiza-
tion problem, which can be solved by CVX [31]. In addition,
the optimization solvers, such as CPLEX and LINDO, have
been successfully applied to MIP problems. However, the
above methods often have a high computational complexity.
Thus, to overcome this disadvantage, we consider the problem
transformation and then propose a static resource management
algorithm to effectively solve problem (22). Finally, a dynamic
resource management algorithm is proposed to solve the
original problem (13).

A. Static Resource Management Algorithm

In this subsection, the problem (22) is equivalently trans-
formed into a single variable problem, which will be discussed
below. First, we focus on analyzing the constraints in problem
(22). Specifically, we notice that the optimal solution will
always achieve the equality in constraint (22d), which can be
given by

∑

k∈K
µk = C =

1

η
log2

(

1 +
P

N

)

. (23)

Otherwise we can reduce the value ofP so as to increase the
objective value without any violation of the constraints (22b)
and (22c). Based on the first equality in (23) and the constraint
(22c), the link capacityC should satisfy0 ≤ C ≤

∑

k Qk.
In addition, since the link capacityC is the sum of integers,
it is also an integer, i.e.,C ∈ N. From the second equality in
(23), there exists a one-to-one relationship betweenP andC.
Thus, the power consumptionP can be expressed by

P = N(2ηC − 1). (24)

Based on (24), the constraint (22b) is equivalent to0 ≤
C ≤ Cmax, whereCmax ,

1
η
log2

(

1 + Pmax
N

)

. From the above
analysis, the link capacityC should satisfy

0 ≤ C ≤ min

(

∑

k∈K
Qk, Cmax

)

. (25)

Then, the problem (22) can be transformed into a single
variable problem as shown below

max
C∈N

M(C) , M1(C)−M2(C) (26a)

s.t. (25), (26b)

whereM1(C) is given by

M1(C) , max
µ

∑

k∈K
Xkµk (27a)

s.t. 0 ≤ µk ≤ Qk, µk ∈ N, ∀k ∈ K, (27b)
∑

k∈K
µk = C, (27c)

andM2(C) is given by

M2(C) ,
∑

k∈K
ωYkP = β

(

2ηC − 1
)

, (28)

with β , ωN
∑

k∈K Yk.
Lemma 3: Problems (22) and (26) are equivalent.

Proof: We prove the equivalence from both the objective
function and the constraints. On one hand, we can observe
that the objective functions of problem (22) and problem (26)
are same, although the objective function of problem (26)
is divided into two parts, i.e., (27a) and (28). On the other
hand, as for the constraints on the variableµk, the constraint
(22c) is the same as the constraint (27b) and the constraint
(22d) is equivalent to (27c) based on the necessary condition
of optimality (23). As for the constraints on the variableP ,
based on the expression (24), the constraint0 ≤ P ≤ Pmax in
(22b) is equivalent to0 ≤ C ≤ Cmax in (25). From the above
analysis, we can conclude that problem (22) is equivalent to
problem (26).

Thus, we can solve the problem (26) instead of (22). Let
C∗ denote the optimal solution of the problem (26). Before
solving the problem (26), we first focus on the subproblem
(27) with any givenC. It is worth noting that the maximum
value of M1(C) can always be achieved by allocating link
capacityC to the services in the descending order ofXk. For
convenience, all the services are sorted in descending order of
Xk with the set{k1, k2, . . . , kK}. Mathematically, the optimal
solution to the subproblem (27) is given by

µkn
= min

{

max

{

C −

n−1
∑

m=0

Qkm
, 0

}

, Qkn

}

, ∀n, (29)

whereQk0
= 0.

After solving the subproblem (27), we focus on how to solve
the problem (26). We relaxC ∈ N to C ∈ R in problem (26),
and then the property of the objective functionM(C) will be
exploited in the following lemma.



Lemma 4: M(C) is concave over[0,
∑K

m=0 Qkm
].

Proof: On one hand, for a sufficiently smallδ > 0, since
∆M1(C) = M1(C + δ)−M1(C) = δXkn

for
∑n−1

m=0 Qkm
≤

C <
∑n

m=0 Qkm
, ∀n ∈ [1,K], ∆M1(C) is a non-increasing

function ofC. On the other hand, since∆M2(C) = M2(C +
δ) −M2(C) = β2ηC(2ηδ − 1), ∆M2(C) is a monotonically
increasing function ofC. Therefore,∆M(C) = ∆M1(C) −
∆M2(C) is a monotonically decreasing function ofC, which
implies thatM(C) is concave over[0,

∑K
m=0 Qkm

].
Based on [32], ifM(C) is concave, thenM(C) is uni-

modal. SinceM(C) is an unimodal function ofC over
[0,
∑K

m=0 Qkm
], the golden section search method [33] is very

suitable for searching without derivative for the maximum
of objective functionM(C) with unimodal. Then the static
resource management algorithm is proposed based on the
golden section search method, as described in Algorithm 1.

Algorithm 1 Static Resource Management Algorithm

Input: Xk, Qk, β, the golden ratioϕ =
√
5−1
2 ;

1: Initialize two endpoints, i.e.,Ĉ = 0 and Č =
min{Cmax,

∑K
m=0 Qkm

};
2: Determine two intermediate pointsC1 andC2 such that

C1 = Ĉ + ϕ(Č − Ĉ) andC2 = Č − ϕ(Č − Ĉ);
3: while Č − Ĉ > ε do
4: ObtainM1(C1) andM1(C2) by solving (27), respec-

tively;
5: ComputeM2(C1) andM2(C2) based on (28);
6: M(C1) = M1(C1) − M2(C1), M(C2) = M1(C2) −

M2(C2);
7: if M(C1) ≥ M(C2) then
8: Ĉ := C2, C2 := C1, C1 := Ĉ + ϕ(Č − Ĉ);
9: else

10: Č := C1, C1 := C2, C2 := Č + ϕ(Č − Ĉ);
11: end if
12: end while
13: C̃ := 1

2 (Č + Ĉ);
14: ObtainC∗ by solving (30);
15: CalculateP ∗ by (24) whenC = C∗;
16: Obtainµ∗

k by (29) whenC = C∗;
Output: P ∗, µ∗

From step 1 to step 13, the golden section search method is
used to get the optimal solution while relaxingC as a positive
real number in problem (26). Specifically, two endpoints and
two intermediate points in the search region are determined
in step 1 and step 2, respectively. The iterative calculation of
the golden section search is implemented from step 3 to step
12 until Č − Ĉ ≤ ε, where ε is the iterative accuracy. In
each iteration,M(C1) and M(C2) are calculated from step
4 to step 6 and then are evaluated from step 7 to step 11.
The endpoints and intermediate points are updated during the
evaluation. When the iteration converges, the optimal solution
C̃ after relaxation is obtained in step 13. In step 14, the optimal
solution of problem (26) is obtained by considering the integer
nature of optimal variableC. Due to the concavity ofM(C)

based on Lemma 4,M(C) has a non-negative slope atC =
⌊C̃⌋. Thus,M(⌊C̃⌋) ≥ M(⌊C̃⌋− ǫ) for 0 ≤ ǫ ≤ C̃. Similarly,
we haveM(⌈C̃⌉) ≥ M(⌈C̃⌉ + ǫ) for 0 ≤ ǫ ≤ C̃ due to the
non-positive slope ofM(C) at C = ⌈C̃⌉. Thus, the optimal
integer value ofC is either ⌊C̃⌋ or ⌈C̃⌉. Mathematically, it
can be obtained by

C∗ = argmax
C∈{⌊C̃⌋,⌈C̃⌉}

M(C). (30)

Finally, the optimal solutionsP ∗ andµ
∗ can be obtained in

step 15 and step 16, respectively.

B. Dynamic Resource Management Algorithm

In this subsection, we propose a dynamic resource man-
agement algorithm to solve the original problem (13) based
on the static resource management algorithm. Specifically,
by observing the queue states at each slot, the dynamic
algorithm is designed to choose control actions via solving
problem (26). The detailed steps are described in Algorithm
2. All system parameters should be initialized before the
transmission process begins. At the beginning of each slot,
the problem (26) is solved by calling Algorithm 1. At the end
of each slot, the queuesQk(t+ 1), Xk(t+ 1), andYk(t+ 1)
are updated according to (4), (9) and (10), respectively. The
algorithm will be repeated until all service transmissionsare
finished.

Algorithm 2 Dynamic Resource Management Algorithm

1: Initialize Ts, B, N0, ω, η, Qk(0) = Xk(0) = Yk(0) = 0
for all k;

2: Obtain the trajectory informationd(t);
3: for t = 0 to T do
4: Calculateβ(t), N(t), andCmax(t);
5: ObtainP (t) andµ(t) by calling Algorithm 1;
6: UpdateQk(t+1), Xk(t+1), andYk(t+1) according

to (4), (9), and (10), respectively;
7: end for

VI. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Setup

We consider a real train schedule based on the Huhang
high-speed railway [5], [14]. The simulations in this paperare
built on the train G7302 and the train trajectory is generated
according to the mobility model proposed in [34]. The other
parameters are summarized in Table I.

For the purpose of comparison, we evaluate two related
static power allocation schemes as reference benchmarks, i.e.,
constant power allocation (CPA) scheme and water filling
power allocation (WFPA) scheme [19]. In the static CPA
scheme, BS maintains a constant transmit power at all times,
i.e.,P (t) = Pav. In the static WFPA scheme, the water filling
method is used to maximize the total throughput along the
time. Since the power allocation in these two static schemesis
determined in advance, we modify them to the corresponding
dynamic schemes in order to adapt to the variations of data
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Fig. 3. The dynamic performance along the time, whereλk = 20 packets/slot,W av

k
= 15 slots,Pmax = 50 W andω = 0.8.

TABLE I
SIMULATION PARAMETERS

Parameter Description Value

Pav maximum average power 36 W
B system bandwidth 5 MHz
L packet size 240 bits
Ts slot duration 1 ms
α pathloss exponent 4

N0 noise power spectral density -174 dBm/Hz
v constant moving speed 360 km/h
R cell radius 1.5 km
d0 distance between BS and rail 50 m
K number of services 6

traffic and channel state. Specifically, the dynamic schemes
can be obtained by replacing the maximum powerPmax in
proposed dynamic algorithm with the static power allocation
results. The resultant dynamic schemes are denoted as dynamic
CPA scheme and dynamic WFPA scheme, respectively.

B. Performance Comparison

Fig. 3 shows the dynamic performance along the time for
different power allocation schemes. For the sake of perfor-
mance comparison, we only plot the simulation results during
a time period when the train moves from the center of one
cell to that of adjacent cell.

Fig. 3(a) shows the power allocation along the travel time
for different schemes. We can see that the predetermined
power allocation results in the static CPA scheme and static
WFPA scheme are independent of random packet arrivals.
Considering the packet arrival process, the transmit power
changes dynamically in the three dynamic schemes. Specif-
ically, when the train moves towards the cell edge, the power
consumption increases in all dynamic schemes since the
wireless link quality degrades. When the train moves at the cell
edge (from1× 104th slot to2× 104th slot), nearly maximum
transmit power is consumed in the proposed algorithm, while
the power consumptions in the dynamic CPA scheme and
dynamic WFPA scheme are limited by the predetermined
power allocation.

Fig. 3(b) and 3(c) show the instantaneous link capacity
and average queue backlog of services for the three dynamic
schemes, respectively. It can be observed in Fig. 3(b) that
when the train moves at the cell center (from0 to 104th slot),
the link capacity is just around the total packet arrivals 120
packets/slot for all schemes, which results in a small queue
backlog shown in Fig. 3(c). This result can be explained as
follows: Since the channel condition is good at the cell center,
little power will be consumed shown in Fig. 3(a). Thus, the
packets can be transmitted immediately once they arrive at
the buffer, which implies that the queue backlog is small. As
the train moves far from the cell center, the channel condition
turns bad and much power will be consumed for transmitting
one packet. The link capacity decreases for all schemes due
to the power constraint, which causes the increasing queue
backlog. As shown in Fig. 3(b), when the train locates near
the cell edge, the link capacity in the proposed algorithm is
more than that in the other two dynamic schemes due to the
different power allocations in Fig. 3(a). The difference inthe
link capacity results in different queue backlogs among these
dynamic schemes. Furthermore, we can see from Fig. 3(b) that
the three curves suddenly drop after steady increasing, which
implies the queue backlogs have been emptied. Compared with
the other two schemes, less time will be spent on emptying
queue backlogs and less buffer size is needed in the proposed
algorithm.

Fig. 4 shows the average power consumption and average
delay performance with different packet arrival rates, respec-
tively. As expected, the average power consumption in all
the schemes increases with the average packet arrival rates.
Transmitting more packets with the same delay requirement
will lead to more power consumption. However, the increment
in the proposed algorithm is large while that in the other two
schemes is small. This is because that the power consumptions
in the dynamic CPA scheme and dynamic WFPA scheme
are limited by the predetermined power allocation. From Fig.
4(b), we can see that the average delay in all the schemes
also increases with the average packet arrival rates. When the
packet arrival rate increases, the queue backlog gets larger,



which further results in longer queue delay. Furthermore,
we observe that as for the same packet arrival rate, the
average delay in the proposed algorithm is much lower than
the other two schemes. Specifically, when the packet arrival
rate is 25 packets/slot, the average delay in the proposed
algorithm can respectively be 6.3% and 22.2% of that in
the other two schemes, which demonstrates that the proposed
algorithm outperforms the other two schemes in term of delay
performance.
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Fig. 4. Average power consumption and average delay under different packet
arrival rates, whereλk = 20 packets/slot,W av

k
= 15 slots,Pmax = 100 W

andω = 0.8.

C. Effects of the Parameter ω

We show the effects of the weightω on the power con-
sumption and delay performance in the proposed algorithm.
Fig. 5 plots the average power consumption and average delay
versus the weightω. It can be seen that the average power
consumption decreases with increasingω while the average
delay increases with increasingω. The reason is that increasing
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Fig. 5. Average power consumption and average delay under different
weights, whereλk = 23 packets/slot,W av

k
= 15 slots, andPmax = 100 W .

ω leads to more weight putting on average power consumption
constraint and hence less power is utilized for transmitting
buffered packets, which results in longer queue delay. Thus,
we can see thatω plays a key role in balancing the average
delay and average power consumption. Furthermore, to satisfy
the average delay constraint and average power constraint
simultaneously, it is necessary to find the reasonable range
of ω, which is called as “feasible region”. As shown in Fig. 5,
we can find the feasible region ofω is [0.41, 0.53] such that
both the average delay constraint and average power constraint
can be satisfied simultaneously.

D. Effects of the Maximum Transmit Power

We evaluate how the maximum transmit powerPmax effects
the delay performance and power consumption in the proposed
algorithm. Fig. 6(a) shows average power consumption and av-
erage delay with different maximum transmit powers, respec-
tively. As shown in Fig. 6(a), the average power consumption
increases with the maximum transmit power while the average
delay decreases with the maximum transmit power. This can
be explained by the observation in Fig. 6(b). As the maximum
transmit power gets larger, more power is consumed when the
train moves at the cell edge, resulting that the buffered packets
can be transmitted as soon as possible.

VII. C ONCLUSIONS

In this paper, we investigate the delay-aware dynamic re-
source allocation and power control problem in HSR wireless
communications. The problem is formulated into a stochastic
optimization problem, rather than pursuing the traditional
convex optimization means. A dynamic resource management
algorithm is proposed to solve the intractable stochastic op-
timization problem. The novelty of the proposed dynamic
algorithm lies in the applications of stochastic network opti-
mization approach and the ideas such as the virtual queue-
based constraint transformation and opportunistically mini-
mizing an expectation. Simulation results are presented to
show that the proposed dynamic algorithm can reasonably
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Fig. 6. Power consumption and delay performance under different maximum
transmit powers, whereλk = 23 packets/slot,W av

k
= 15 slots andω = 0.6.

use the limited resource and significantly improve the delay
performance under power constraints in HSR communications.

In the future, we plan to broaden and deepen this work
in several directions. First, we attempt to investigate delay-
aware cross-layer design for multi-service transmission with
more practical assumptions in HSR communication systems,
e.g., multi-service resource management problem under more
practical HSR channel model and more realistic packet arrival
model. Second, since the weight parameter plays a key role
in balancing the queue delay and power consumption, we
plan to analyze theoretically how to obtain the feasible region
of the weight parameter. Third, to address the issue that the
delay requirement and power constraint can not be satisfied
simultaneously, we would like to design a dynamic admission
control scheme for supporting multi-service transmission. Fi-
nally, as for the safety-related services transmission in HSR
communications, we also plan to propose a new multi-service
transmission scheme, which can take full consideration of
different priorities and strict delay requirements.
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