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Abstract—In this paper, energy efficient power allocation for
downlink massive MIMO systems is investigated. A constrained
non-convex optimization problem is formulated to maximize the
energy efficiency (EE), which takes into account the quality
of service (QoS) requirements. By exploiting the properties of
fractional programming and the lower bound of the user data
rate, the non-convex optimization problem is transformed into
a convex optimization problem. The Lagrangian dual function
method is utilized to convert the constrained convex problem into
an unconstrained convex one. Due to the multi-variable coupling
problem caused by the intra-user interference, it is intractable
to derive an explicit solution to the above optimization problem.
Exploiting the standard interference function, we propose an
implicit iterative algorithm to solve the unconstrained convex
optimization problem and obtain the optimal power allocation
scheme. Simulation results show that the proposed iterative
algorithm converges in just a few iterations, and demonstrate
the impact of the number of users and the number of antennas
on the EE.

I. INTRODUCTION

With rapid increase in the requirement of data intensive ser-
vices, huge traffic has been introduced into wireless commu-
nication networks in recent years. As a promising candidate,
large scale multiple-input multiple-output (also called massive
MIMO) technology is proposed to enhance system capacity
[1]. However, the energy consumption in massive MIMO
systems is nearly proportional to the number of antennas.
Excessive energy consumption of wireless communication
networks induces both the increasing carbon emission and un-
affordable operational expenditure. As a result, energy efficient
system designs have recently drawn much attention.

An energy efficiency (EE) model involving both the up-
link and downlink of a single-cell massive MIMO system
was established in [2]], and the interaction among system
parameters was analyzed by means of the convex theory. In
[3]], joint resource allocation including power allocation, data
rate adaptation, antenna allocation, and subcarrier allocation
was investigated for an orthogonal frequency division multiple
access (OFDMA) downlink massive MIMO network. In [4],
the relationship between spectral efficiency (SE) and EE was
studied. The convex optimization theory was used to derive the
optimal EE with respect to a given SE in [5]]. Within the above
literature, the intra-user interference, which couples variables

with each other, makes resource allocation a challenging work
in the massive MIMO system.

Motivated by the aforementioned observations, energy effi-
cient power allocation scheme for downlink massive MIMO
systems is investigated. Taking the sum user transmit power
and user data rate constraints into consideration, we first
formulate a constrained non-convex optimization problem.
Then, by exploiting the properties of fractional programming
and the bound of the user rate, a convex optimization problem
is derived. Lagrangian dual function is introduced to transform
the constrained problem into a non-constrained one. Based on
standard interference function (SIF-based), a low complexity
algorithm based on implicit iterations is proposed.

The rest of the paper is organized as follows. The system
model of massive MIMO systems is described in Section II.
In Section III, the optimization problem is formulated and
the energy efficient power allocation scheme is proposed. In
section IV, simulation results are shown. Final conclusions are
drawn in Section V.

II. SYSTEM MODEL

We consider the downlink massive MIMO systems as shown
in Fig. 1. It is assumed that there are one base station (BS)
with M antennas and K single-antenna users sharing the
same resource block (RB). Here, one RB refers to one time-
frequency resource block which contains 1 time slot and 12
subcarriers (as in Long Term Evolution (LTE)).
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Fig. 1. System model of the massive MIMO systems.



Let G denote the flat-fading channel matrix between the BS
and the K users , then it can be written as:

G = HD'? (1)

where H € CM*K is the fast channel matrix with its elements
modeled as i.i.d. complex Gaussian random variables, i.e.
CN(0,1), and D = diag{B1,B2, -, Bk, , Bk} denotes
the large scale fading matrix with its elements 8 = ¢s/dg
which are composed of path loss and shadow fading, ¢ is a
constant related to the carrier frequency and antenna gain, dy,
is the distance between the BS and the k-th user, « is the
path loss exponent, and ¢ represents the shadow fading with
lognormal distribution 10log;,s ~ N(0, 0?).

Let y;. denote the received symbol of the k-th user, then it
can be expressed as:

K
Uk = VPEGE kS + Y V/PrGh VeSk + i,
rk=1,k#k

ke{l,2,..K} (2

where py, is the transmit power allocated to the k-th user, gy
is the k-th vector of G, vy, is the precoding vector for the k-th
user, sy is the transmit data symbol of the k-th user, and ny
is the additive white gaussian noise (AWGN) at the k-th user
with distribution N (0, Ny), and Ny denotes the noise power
spectral density.

In order to balance the performance and the complexity,
maximum ratio transmitting (MRT) precoding is adopted.
Hence, the precoding vector for the k-th user can be written
as [3[]:

o 9k 3)
gl
where ||-|| represents the L2-norm.

Let B denote the bandwidth of one RB. From (2)) and (),
the received signal to interference and noise ratio (SINR) of
the k-th user for a given g; can be expressed as:
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Then, the achievable rate for the k-th user can be written
as:
rr = Blogy(1 4+ i) 5)

The EE metric is defined as the total average number of
bit/Joule successfully delivered to the users. Therefore, the
system EE of downlink massive MIMO systems is given by:

M=

Tk

=~
Il

EE = (6)

1
K M
Z Dk + Z Pc,m
k=1 m=1
where P.,, is the constant circuit power consumption per

antenna. It includes the power dissipations in the baseband
processing, transmit filter, mixer, frequency synthesizer, and

digital-to-analog converter, which are independent of the ac-
tual transmit power.

III. THE PROPOSED POWER ALLOCATION ALGORITHM
BASED ON STANDARD INTERFERENCE FUNCTION

In this section, the energy efficient power allocation problem
is formulated, and a series of transformation are carried out
to obtain a computationally efficient algorithm.

A. Problem formulation

The optimal transmit power for all the users can be derived
by solving the following optimization problem:

EE

max
{p1,p2,-- P}
K

s.t. C1: Zpk < Pr (7
k=1
C2:ry, > Ryry, k=1,2..,K

where Pr denotes the maximum sum transmit power for the
BS and Rt denotes the minimum data rate requirement for
the k-th user.

Note that the optimization problem in is a constrained
non-convex optimization problem. In general, we need an ex-
haustive search algorithm to obtain the global optimal solution.
However, the exhaustive search algorithm has an exponential
complexity with respect to (w.r.t.) the number of users, and it
is computationally impracticable even for a small size system.
Furthermore, tens of users sharing the same RB in massive
MIMO systems makes the number of variables in increase
accordingly. Therefore, we propose a series of transformations
to obtain a computationally efficient power allocation scheme.

B. Problem transformations

1) Convex transformation: The fractional objective func-
tion in (7) can be classified as a non-linear fractional program-
ming. Let ¢* denote the maximum EE. By following a similar
approach as in [6], the maximum EE ¢* can be achieved if
and only if:

max
{p1,p2,--,PK }

K K M
{ ’I"k—q*<zpk+zpc,m>}:0
k=1 k=1 m=1
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For massive MIMO systems, the random matrix theory takes
effect, as the dimension of channel vector goes high [7]. With
perfect channel state information (CSI), Rayleigh fading and
MRT precoding, the downlink data rate for the k-th user
can be lower bounded by exploiting the properties of high-

dimensional channel vector as follows [8]
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In high SINR region, the received SINR in (9) is much larger
than 1, therefore, the lower bound of r; can be deduced as:

M
Tk Z fk Z Fk = B10g2 I ﬁkpk
6]6 Z Pk + BNO
rk=1,k#k

(10)

In low SINR region, the lower bound of r; can be deduced
as [9]]:

TR > Tk 2

M Brpr

K
Bk Z Pk + BNO
k=1,k#k

Tr=DB | a+blogy (11

where a and b are the approximation constants relating to
the received SINR. In this paper, we consider the hot spot
scenario where high demand on transit data rate is required.
Correspondingly, the lower bound in (I0) is adopted in the rest
of this paper. By comparing (I1)) with (I0), it can be observed
that the former keeps consistent with the latter in terms of
convexity. Therefore, energy efficient power allocation scheme
in low SINR region can be developed in a similar way by
adopting the lower bound in (TT).

Let g denote the value of the EE. By using the lower
bound in (I0), the original optimization problem in (7) can
be simplified as:

K K M
max Z{fk—q<2pk+zpc,m>}
k=1 m=1

{p17p27~~spK}k:1

K (12)
stt. C1: Zpk < Pr
k=1
C2: fk Z RT,ka k= 1,2...,K.

The simplified optimization problem in (I2) is a convex
problem, which is proved in Appendix A.

2) Elimination of constraints: The Lagrangian dual func-
tion can be utilized to transform the constrained problem in
(12) into an equivalent unconstrained problem [3]]. Let ® be
the Lagrangian dual function of (I2)), then it can be written
as:

®(P,w, p) [Zrk —q (szﬁ Z Pcm>
—w <PT —Zm) —Zpk (7x — Rrx)
[EK: L+ pi)7 — 4 (prr >, Pcm>
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where P denotes the feasible set of power variables, w > 0
is the Lagrangian multiplier corresponding to the transmit
power constraint, and p is the Lagrangian multiplier vector
corresponding to the data rate constraints with its element
pr > 0.

C. Iterative algorithm

The Lagrangian dual function in (I3) can be proved to be
convex by exploiting the similar approach in Appendix A.
Therefore, the necessary and sufficient condition to obtain the
optimal transmit power can be expressed as:
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From (I4), it can be seen that it is a challenging work to
derive the optimal transmit power in an explicit manner due to
the multi-variable coupling problem caused by the intra-user
interference. Alternatively, the optimal transmit power for the
k-th user can be obtained in an implicit manner as:

Pr =
1+ px

5)
K

Z 1+pn
(
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Let the right side hand of be denoted by T'(px). Then,
T'(pi) can be proved to be a standard interference function
with properties of positivity, scalability, and monotonicity,
which is shown in Appendix B. Therefore, we propose to
obtain the optimal transmit power implicitly based on standard
interference function.

Let 7 denote the predetermined positive threshold for
the terminating condition, n denote the iteration number,
61 and 0 denote the positive step sizes. Then, the SIF-
based algorithm is summarized in Algorithm 1. The iteration
pty = T(p}cn)) is guaranteed to converge to the optimal
point quickly [[10].

IV. SIMULATION RESULTS

In this section, the performance of the proposed SIF-
based power allocation scheme is evaluated through sim-
ulation. A single cell with a radius 500m is considered.
The users are uniformly located within the cell. Without
loss of generality, let P.,, = P.(m=1,2,...,M) and
Rryi = Rp(k=1,2,..,K). The main parameters used in
the simulations are listed in Table I.

In Fig. 2, we show the performance of the SIF-based
algorithm compared with that of the two existing algorithms in



Algorithm 1 The SIF-based Iterative Algorithm

1: Initialize the transmit power and Lagrangian multipliers
PO () p(0),

2: Calculate the initial EE ¢(® = =t

(98]

K Ko M

while > 7" — ¢ (Z P+ Y Pc,m> > 7 do
k=1 k=1 m=1

4: fori=1: K do

In2 .p](€n+1) _
1+ py”
K (n)
Z — 14+p5 + q(n) + w(n)
r=1,r#k ( > pg;erNo/ﬁk,) In2
k' =1,k'#r
5: end for
Update
n n+1
o =5,

K
0+ — max (0.0 — 6, (Pr— 5 p,g">)),
k=1

o = max (0,0 = b2 (7" = Rr)),

E
(n+1) _ kgl—rk
q - K M >
Z péﬂ)"!‘ E Peom
k=1 m=1
n=n++1.
6: end while
7: End
ABLE 1. SIMULATION PARAMETERS
Parameter Value
The radius of the cell 500m
RB bandwidth B 120kHz
Number of transmit antennas M 128
Number of users K 3
Variance of log-normal shadow fading o 10dB
Factor ¢ 1
Path-loss exponent o 3.8
Noise spectral density Ny -170dBm/Hz
Constant power per antenna P, 0.01W
User rate constraint Ry 6bit/s/Hz

[8]], [[11f], which are based on convex theory and game theory,
respectively. From the figure, it can be observed that the SIF-
based algorithm has better performance than that in ], [11].
The reason is that the instantaneous intra-user interference
is taken into consideration, and the maximum EE can be
achieved by the SIF-based algorithm.

In Fig. 3, we show the convergency of the SIF-based
algorithm and the impact of the transmit power constraint on
the system EE. It can be seen that the iterative algorithm can
always converge to the maximum EE achieved by using the
exhaustive search algorithm. It can also be seen that the larger
Pr, the larger EE. It can be observed from the red curve
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Fig. 3. EE versus the number of iterations with different Pr.

in the figure that the SIF-based algorithm intends to achieve
a higher EE than the exhaustive search algorithm during the
iteration process. However, the transmit power is restrained to
be located in the feasible solution. Therefore, the EE value
obtained by the SIF-based algorithm finally is lower than that
obtained by the exhaustive search algorithm.

In Fig. 4, we show how the number of users and that of
antennas influence the EE with maximum per-user transmit
power 20dBm. Serving more users can always obtain the gain
in SE, however, it may be different when referring to EE. We
can observe from the figure that there is an optimal number
of users leading to the maximum EE for a specific M. We
can also observe that more antennas supported more users in
order to achieve the maximum EE. Therefore, in future cellular
network which contains BSs with hundreds of antennas and
a large number of users, it is necessary to combine antenna
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with P, = 10dBm.

50 , ; , : ! ; : , :

[ e R ....... P S R ....... T

([

o BOp b e Lo ORI ....... TN SO
o { g - 3 : : i
2 -~
E = : ; ! :
T e i T R R PR e ........ s 4
E’, : : : 3
40+ : : ; : B
& : : : i | —&— Actual curve
: ; : : ¢ | —=——Fitting curve
3 i i i 1 1 I i i 1
a 10 18 20 25 30 35 40 45 a0 a5
Number of users
Fig. 5. the number of iterations versus the number of users

with P, = 10dBm.

selection with user management to obtain higher EE.

In Fig. 5, we illustrate how the number of users influence
the iterations of the SIF-based algorithm. It can be observed
that the number of iterations is nearly linear with the number
of users. It indicates that the SIF-based algorithm would
guarantee computation efficiency even with a large number of
users, compared with the exhaustive search algorithm which
has an exponential complexity w.r.t. the number of users.

V. CONCLUSIONS

In this paper, we have formulated the energy efficient
power allocation for massive MIMO systems as a non-
convex optimization problem, in which the sum user transmit
power and minimum data rate constraints were taken into
consideration. A novel iterative method based on standard

interference function has been derived. In order to avoid the
computational infeasibility arising from intra-user interference,
the optimal transmit power has been obtained based on the
implicit iteration. Simulation results have shown that the SIF-
based algorithm can converge within just a few iterations,
and demonstrated the impact of the number of users and the
number of antennas on the EE.
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APPENDIX
A. Proof of the convexity of the problem in (I2))

From the subtractive EE function in , it can be seen

theq(zpk+ Zp(m)
k=1 m=1

is an affine function. As for the

K ~

> 7k term, by replacing pj, by eP* in |i it can be derived
k=1

that:

Mﬂkeﬁk
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> BrePs + Ny

r#k
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K
Z B |log, (Mﬁke”’“) — log, Z BrePs + BN,
k=1

k=1

K#k
(16)
K
If we exclude the irrelevant variables in ) 7, the expression
k=1
corresponding to pj can be expressed as:
f k) =
log, (Mre™) Z g2 | 3 Bue +BN, | (17
n#k 2;;;,1»

By referring to convex theory [12], the first term is affine func-

tion and the second term is log-sum-exp function, hence f(py)

is concave. Restore the problem by manipulating px, = In (pg).

Note that log function is concave and the corresponding op-

eration preserves convexity [12]. Therefore, we can conclude
K

that the sum rate function ) 7 is concave. Consequently,

the subtractive EE function ikni is concave. Besides, it can
be readily established that C1 is a liner constraint and C2 is
a convex constraint. Therefore, we can draw the conclusion
that the simplified optimization problem in is a convex
problem.



B. Proof of standard interference function in

The properties including positivity, monotony and scalabil-
ity are proved as follows.
Positivity: T'(py;) can be written as:

1+ px
T (pr) =
& 14py
n2| > +tg+tw
"ok | S5 putBNe/By | n2

k/=1
k' #k

It can be seen that both the numerator and denominator keep
positive, which guarantee the positivity of T'(p).

Monotony: The first-order deviation of T'(py) can be obtained
as follows:

[2] E. Bjornson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design
of energy-efficient multi-user MIMO systems: Is massive mimo the
answer?” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3059-3075,
June. 2015.

[3] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource
allocation in OFDMA systems with large numbers of base station
antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 3292—
3304, Sept. 2012.

[4] Q. N. Hien, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser MIMO systems,” IEEE Trans. Wireless
Commun., vol. 61, no. 4, pp. 1436-1449, Apr. 2013.

[5] L. Zhao, K. Li, K. Zheng, and M. O. Ahmad, “An analysis of the tradeoff
between the energy and spectrum efficiencies in an uplink massive
MIMO-OFDM system,” IEEE Trans. Circuits and Systems., vol. 62,
no. 3, pp. 291-295, Feb. 2015.

[6] W. Dinkelbach, “On nonlinear fractional programming,” Management
Science, vol. 13, pp. 492-498, Mar. 1967.

[71 A.M. Tulino and S. Verdu, “Random matrix theory and wireless commu-
nications,” Foundation and Trends in Commun. and Information Theory,
vol. 1, pp. 1-182, June 2004.

[8] L. Zhao, H. Zhao, F. Hu, K. Zheng, and J. Zhang, “Energy efficient
power allocation algorithm for downlink massive MIMO with MRT
precoding,” Proc. IEEE Vehicul. Technology Conference, pp. 1-5, Sept.
2013.
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Obviously, the value of the right hand side of (I8) is less than
zero. In turn, T'(py) is monotony.

Scalability: T(py) is monotone decreasing. Given a random
number S > 1, it can be proved that:

T(Bpr) < T(pr) < BT (pk)

Therefore, the scalability is proved.

Consequently, T'(py,) is a standard interference function.
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