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Low Complexity Coefficient Selection Algorithms

for Compute-and-Forward
Qinhui Huang and Alister Burr

Abstract—Compute-and-Forward (C&F) has been proposed
as an efficient strategy to reduce the backhaul load for the
distributed antenna systems. Finding the optimal coefficients in
C&F has commonly been treated as a shortest vector problem
(SVP), which is N-P hard. The point of our work and of
Sahraei’s recent work is that the C&F coefficient problem can
be much simpler. Due to the special structure of C&F, some
low polynomial complexity optimal algorithms have recently
been developed. However these methods can be applied to real
valued channels and integer based lattices only. In this paper,
we consider the complex valued channel with complex integer
based lattices. For the first time, we propose a low polynomial
complexity algorithm to find the optimal solution for the complex
scenario. Then we propose a simple linear search algorithm
which is conceptually suboptimal, however numerical results
show that the performance degradation is negligible compared
to the optimal method. Both algorithms are suitable for lattices
over any algebraic integers, and significantly outperform the
lattice reduction algorithm. The complexity of both algorithms
are investigated both theoretically and numerically. The results
show that our proposed algorithms achieve better performance-
complexity trade-offs compared to the existing algorithms.

Index terms— Compute-and-Forward; algebraic integers;

shortest vector problem

I. INTRODUCTION

Due to their very high density, the next generation of wire-

less communication systems will require enormous backhaul

load to support the data transmission between the access

points and the central hub station. Physical layer network

coding (PNC) [1] has been proposed as a promising strategy

to reduce the backhaul load. Among many PNC schemes,

compute and forward (C&F), as proposed in [2] has attracted

the most interest. It employs a structured lattice code for

PNC. Each relay infers and forwards a linear combination of

the transmitted codewords of all users. The lattice structure

ensures the combination of the codewords is a codeword

itself; hence cardinality expansion is avoided. Additionally,

the abundant members of the “lattice family” brings more

flexibility to PNC.

The key aspect which dominates the performance of C&F is

the selection of the coefficient vectors. The process of selecting

the optimal coefficients consists of two stages:

• local selection: each relay selects an integer vector to

maximise its computation rate (achievable rate region)

locally.
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• global selection: in order to recover the data without

ambiguity, the vectors provided by the relays have to form

a matrix whose rank is at least the number of sources.

Much work has been carried out in the last few years

on both stages. For the local selection, the original paper

of C&F [2] provided a bound for the coefficient vectors,

and the optimal solution can be obtained by performing an

exhaustive search within that boundary. The authors in [3]

stated that the coefficient selection issue is actually a shortest

vector problem (SVP). Any lattice reduction algorithm, such

as the Lenstra-Lenstra-Lovasz (LLL) algorithm [4] and the

Fincke-Pohst algorithm [5] can be utilised to acquire the sub-

optimal solution. There are two main drawbacks of these

lattice reduction algorithms: 1) the complexity increases ex-

ponentially as the number of user terminals increases. 2) it

becomes less accurate for large numbers of users. In 2014,

a polynomially optimal algorithm proposed by Sahraei and

Gastpar [6] significantly reduced the number of candidate

vectors of [2]. It translated the optimisation problem over

multiple variables to one variable. Based on the idea of [6],

some improvements are proposed in [7], [8] to further reduce

the complexity.

Unfortunately, the methods in [6]–[8] are suitable for real

valued channels and integer lattices (Z-lattice) only. Finding

the optimal solution in polynomial time over complex integer

based lattices is still an open problem. For the Gaussian

integer1 (Z[i]) based lattices, the sub-optimal lattice reduc-

tion based algorithms: such as the complex-LLL [9] and its

extensions [10], [11] still work. However, they have the same

drawbacks as in the real channel scenarios. Recently, much

focus was given to the Eisenstein integer2 (Z[ω]) based lattice:

which has the densest packing strcuture in the 2-dimensional

complex plane [12]–[14]. A lattice reduction method over the

Z[ω]-lattice is proposed in [14], though for a two way relay

system only. An extended version of the algorithm in [6] for

both Z[i] and Z[ω] is proposed in [15], however it might miss

the optimal solution sometimes. The latest research in [16]

illustrated that the C&F can be operated over many algebraic

number fields (not only restricted to Gaussian and Eisenstein

integers). Unfortunately, efficient approaches for coefficient

selection over these non-cubic lattices are not available in the

existing literature.

For the second stage, the most commonly used approach

to meet the requirement of unambiguous decodability is: each

1Gaussian integers are complex numbers whose real and imaginary parts
are both integers.

2Eisentein integers are complex numbers of the form c = a+ bω where a

and b are integers and ω = 1
2
(−1 +

√
3i)
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relay forwards more than one linear equation to the hub. The

global optimal full rank matrix is selected by the hub and then

fedback to the relays [17]. An alternative approach is that the

integer vector provided by each relay is forced to include at

least two users. This can significantly reduce the possibility

of rank deficiency [18].

Distributed massive MIMO (or cell free massive MIMO)

[19], [20] is probably the most promising application of C&F.

It deploys many more access points than user terminals. By

exploiting the “redundant” relays, the rank deficiency is not

a big issue even if each relay forwards only the locally best

equation without feedback [21]. Therefore in this paper, we

focus on choosing the local optimal coefficient since it plays

a fundamental role in the entire process of C&F. The main

contributions of this paper are as follows:

• For the first time, we propose a low polynomial complex-

ity algorithm to ensure the optimal integer vector can be

acquired for both Z[i] and Z[ω] lattices. We also derive

a theoretical upper bound of the complexity.

• We propose a suboptimal linear search algorithm for

the coefficient selection which has lower complexity.

Compared to the optimal approach above, it aims to

discard the “unnecessary” candidates by employing a pre-

defined step size which is related to the number of users

and SNR. The theoretical complexity is also investigated.

• We evaluate the performance and complexity of our

proposed two algorithms numerically, and compare them

with other existing approaches. Simulation results indi-

cate that our proposed algorithms have better complexity-

performance tradeoff.

• Our proposed algorithms can be easily extended to the

lattices over any other algebraic integers without addi-

tional complexity.

The rest of this paper is organised as follows. We review

the C&F strategy and some existing selection algorithms as

benchmarks in section II. In section III, we propose an optimal

search and analyse its complexity. We introduce our linear

search method and analyse its complexity in Section IV. In

section V, we give the numerical results in terms of both

computation rate and complexity for different types of lattices.

Conclusions and future work are given in section VI.

Unless noted, we use plain letters, boldface lowercase letters

and boldface uppercase letters to denote scalars, vectors and

matrices respectively, and all vectors are column vectors. The

sets of real numbers and complex numbers are denoted by R

and C respectively. We use Z, Z[i] and Z[ω] to represent in-

tegers, Gaussian integers and Eisenstein integers respectively.

Fp denotes the finite field of size p. ⌊·⌉, ⌈·⌉, ⌊·⌋ denote the

round, ceil and floor operations respectively. We use ‖ · ‖ to

represent the Euclidean norm.

II. PRELIMINARIES

A. Compute and Forward

We consider a general local optimisation problem in C&F.

As shown in Fig. 1, we assume that L users transmit signals

to the relay simultaneously. The original transmitted message

of the l-th user is denoted as wl ∈ Fk
p , which is a length

ϕ
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Fig. 1: The system model of compute and forward

k vector over GF(p). By employing a k
n

-rate lattice encoder,

wl is mapped to a length n codeword, denoted xl ∈ Cn.

Each component of xl is drawn from a quotient ring A/πA
which is isomorphic to GF(p). The term A denotes an integer

domain, and usually refers to a principal ideal domain (PID)3.

The codebook of xl is defined by a lattice partition of Λ/Λ′4.

We use Rayleigh fading hl ∼ CN (0, 1) to model the channel

vector h = [h1, h2, · · · , hL]
T . The received superimposed

signal at the relay can be expressed as

y =

L
∑

l=1

hlxl + z, y ∈ C
n, (1)

where the noise z ∼ CN (0, σ2In) is a length n circularly

symmetrical complex Gaussian random vector. We assume the

power constraint of the codeword is P per symbol, written as

E[‖xl‖2] ≤ nP . The signal to noise ratio is represented as

SNR=P/σ2.

The received signal vector y is first scaled by a factor α ∈
C. Each relay attempts to choose an integer linear combination

of the transmitted codewords to represent the scaled received

signal, written as QΛ(αy) =
∑L

l=1 alxl. QΛ quantises αy
to its closest fine lattice point in Λ. The quantisation error

contributes to the effective noise of C&F, expressed as

zeff =
L
∑

l=1

(αhl − al)xl + αz, (2)

where al is an integer in A. Let a = [a1, a2, · · · , aL]T
to denotes the coefficient vector of the linear function. The

scaling factor α aims to force the scaled channel vector αh to

approximate an integer vector a. The effective noise comprises

2 components:

• Self noise: zself =
∑L

l=1(αhl − al)xl: caused by the

mismatch between the selected integer vector and the

scaled channel.

• Scaled Gaussian noise zsg = αz: the received Gaussian

noise is scaled by the scaling factor α.

For a given coefficient vector a, the achievable computation

rate per complex dimension is given as [2]

R(h, a) = max
α∈C

log+
( P

α2σ2 + P‖αh− a‖2
)

, (3)

3The most commonly used PIDs for complex valued case are Gaussian
integers Z[i] and Eisenstein integers Z[ω], hence their respective xl can be
expressed as xl ∈ (Z[i]/πZ[i])n and xl ∈ (Z[ω]/πZ[ω])n.

4Λ and Λ′ denote the fine lattice and the coarse lattice respectively. Note
that A/πA corresponds to symbol, whereas Λ/Λ′ corresponds to codeword,
their respective cardinalities are p and pk . The design of the codebook is
beyond the scope of this paper, see [3] for details.



where log+(·) = max(log(·), 0), and the term

α2σ2 + P‖αh − a‖2 is the variance of the effective

noise, denoted by σ2
eff . The Minimum Mean Square Error

(MMSE) solution of α is given by

αMMSE =
SNRhHa

1 + SNR ‖ h ‖2 , (4)

and hence equation (3) can be rewritten as

R(h, a) = log+(
1

aHMa
), (5)

where M = IL − SNR
SNR‖h‖2+1hh

H , and IL denotes an L× L
identity matrix. The target of each relay is to find its local best

integer vector a to maximise the computation rate, expressed

as

aopt = argmax
a∈AL\{0}

R(h, a). (6)

B. Existing Coefficient Selection Algorithms

1) Exhaustive-I Algorithm: In the original paper of C&F

[2], the authors stated that the Euclidean norm of the optimal

coefficient vector has an upper bound, written as ‖aopt‖ ≤
Φ =

√

1 + SNR‖h‖2, hence an exhaustive search over all

possible a within that range can be employed to obtain aopt.

The time complexity of this algorithm is O(Φ2L).

2) Exhaustive-II Algorithm (Real-valued only): The authors

in [6], [22] proposed an exhaustive search algorithm with

polynomial complexity5. They stated that it suffices to search

over the integer vectors generated by ⌊αh⌉ only rather than

considering all possible a in ZL. Therefore, the optimisation

problem with an L-dimensional variable a is translated to

an optimisation problem over the one-dimensional variable α.

The candidate vectors can be obtained by dividing all possible

α ∈ R into several intervals, and each interval corresponds to

a unique candidate a. The time complexity of this algorithm

is O(LΦlog(LΦ)).

3) Lattice Reduction Algorithm: Using lattice reduction

based algorithms for coefficient selection was first proposed

in [3]. As shown in equation (5), maximising the computation

rate is equivalent to minimising aHMa. The matrix M can

be decomposed as M = LLH by employing the Cholesky

decomposition. Hence the equation (5) can be rewritten as

R(h, a) = log+( 1
‖LHa‖2 ). This is exactly a shortest vector

problem (SVP) of an L-dimensional lattice generated by LH .

The LLL and Complex-LLL lattice reduction algorithms are

most commonly used for dealing with the SVP in Z-lattice

and Z[i]-lattice respectively. However, these algorithms only

ensure the selected vector is less than 2
L−1

2 times the actual

optimal solution. Hence, they become less accurate as the

number of users increases.

4) Quantised Search: : For Z[i]-lattice, an intuitive ap-

proach for coefficient selection is to employ some quantised

(sampled) values of α to generate the candidate set of a,

expressed as a = QZ[i](αh). The question is how to choose

5In this paper, we focus on the the complex valued case only. Hence some
improved versions of this method are omitted here, see [7], [8] for details.

the quantiser. Since α ∈ C, the authors in [23]6 allocate step

sizes for both the magnitude and the phase of α. Clearly, this

method is equivalent to the exhaustive search when both of the

step sizes tend to zero. However, zero step size is definitely

infeasible in practice. The core aspect of such a quantised

algorithm is the choice of the step size, which is not analysed

in [23].

The method described above leads to an oversampling for

the small magnitudes and undersampling for the large mag-

nitudes. In section IV, we will propose an uniform quantiser

and describe how to choose the optimal step size.

5) L-L Algorithm: : Very recently, Liu and Ling proposed

an efficient algorithm (denoted as L-L algorithm) for the

complex valued channel in [15]. The authors adapted the idea

in [6] directly for the complex integer based lattices. However,

the algorithm in [15] does not ensure the selected coefficients

are optimal for all channel realisations. A detailed discussion

of this approach will be presented in section III-C.

III. EXHAUSTIVE-II IN COMPLEX VALUED CHANNEL

Since the Exhaustive-II selects the optimal coefficients with

low polynomial complexity in the real channel case. Hence

it is worthwhile to investigate the feasibility of Exhaustive-II

in the complex valued channel. This section comprises three

parts: we firstly propose the complex exhaustive-II algorithm,

followed by the complexity analysis in section B, and then a

comparison with the L-L method is given in section C.

A. Complex Exhaustive-II Algorithm

By substituting αh for a in (3), the rate expression becomes

R(h, α) = log+
( P

α2σ2 + P‖αh−QA(αh)‖2
)

, (7)

where α ∈ C. Actually, it is not necessary to evaluate α over

the whole complex plane.

Proposition 1. The amplitude of αopt is upper bounded by√
SNR, and it suffices to restrict the phases of α to 0 ∼ π

2
and 0 ∼ π

3 for Z[i]-lattice and Z[w]-lattice respectively.

Proof. According to (7), we have

R(h, α) = log+
( P

α2σ2 + P‖αh−QA(αh)‖2
)

≤ log+(
P

α2σ2
) = log+(

SNR

α2
). (8)

Apparently, the computation rate is zero when ‖α‖ ≥
√
SNR,

where the equality holds iff the selected integer vector matches

the scaled channel perfectly. Hence we have an upper bound

of ‖αopt‖ <
√
SNR.

Assume u is a unit in A, we have:

R(h, α) = log+
( P

α2σ2 + P‖αh−QA(αh)‖2
)

= log+
( P

(uα)2σ2 + P‖uαh−QA(uαh)‖2
)

= R(h, uα) (9)

6Actually, the concept of utilising Q(αh) instead of a was first proposed
in [23]. However, rigorous prove and detailed analysis are not given in [23]



Hence the complex plane of α is divided into several “equiv-

alent regions” due to the existence of units. As the number of

units in Z[i] and Z[w] are 4 and 6 respectively, it suffices to

restrict the phase within 0 ∼ 2π
4 and 0 ∼ 2π

6 respectively.

Recall the exhaustive-II search in the real channel case:

the range of α ∈ R is divided into several intervals. The

quantised value ⌊αh⌉ is invariant within each interval. Hence

each interval corresponds to an unique candidate vector a

(the interval is called the Voronoi region or decision region

of its corresponding a), and the candidates can be acquired

by choosing a representative of α for each interval.

For the complex channel case, we use hmax to denote the

channel coefficient with the largest amplitude in h. Let υ0
denote the fundamental region of A, and υl,al

denote the

Voronoi region of α for QA(αhl) = al. Their respective areas

are represented by Aυ0
and Aυl

. Note that the size of υl,al
is

invariant with different al. Clearly, we have

Aυl
= Aυ0

/‖hl‖2, (10)

hence we have the following results:
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Fig. 2: An example with Z[i]: h = [1, 1+i√
2
]T , a = [2+2i, 3i]T

Proposition 2. The complex plane of α is divided into several

convex polygon regions, and each region corresponds to a

unique vector a. The area of each region is upper bounded by

Aυ0
/‖hmax‖2.

Proof. For a given candidate vector a = [a1, a2, · · · , aL]T ,

the value of α has to meet the conditions of QA(αh) = a

which is equivalent to

QA(αh1) = a1 ∩ QA(αh2) = a2 · · · ∩ QA(αhL) = aL, (11)

hence the Voronoi region for QA(αh) = a, denoted as υa is

the intersection region of υl,al
for all l. Since the intersection

of convex sets is also convex, hence the Voronoi region υa
is also a convex polygon (the shape of each individual υl,al

depends on the fundamental region of A: they are square and

hexagon for Z[i] and Z[ω] respectively). As an intersection of

polygons, the area of υa is therefore upper bounded by the

smallest size among all υl,al
which is Aυ0

/‖hmax‖2.

We take a simple example to interpret the above proposition.

We consider a 2 user system employing the Z[i]-lattice, with

the channel vector h = [1, 1+i√
2
]T . Since the fundamental

region of Z[i] is square, therefore the shape of each υl,al
is

also square. As shown in Fig. 2, the real and imaginary parts

of α are represented by the x-axis and y-axis respectively,

and each red (blue) square corresponds to an unique a1 (a2)

respectively. For example, the red (blue) solid square in the

centre denotes a1 = 2 + 2i and a2 = 3i respectively. Hence

in order to acquire QZ[i](αh) = [2 + 2i, 3i], the value of α
has to be chosen within the region of the black octagon in the

centre.

Algorithm 1 Complex-Exhaustive-II Algorithm

Input: channel vector h = [h1, h2, · · · , hL] ∈ CL, SNR,

integer domain A (Z[i],Z[ω], etc) with basis BA

Output: optimal coefficient vector aopt
Phase 1: obtain the representatives of α, stored in set S.

The initial S = ∅
1: calculate the range of α according to Proposition. 1

2: for l = 1 : L do

3: find all lattice points generated by 1
hl

BA over the range

obtained in step.1. The acquired lattice points are stored

in Ωl = {α∗
l,1, α

∗
l,2, · · · , α∗

l,Kl
}

4: for k = 1 : Kl do

5: find the vertices of the corresponding υl,al
with al =

α∗
l,khl, calculated by α∗

l,k + 1
hl

z0
2

z0 = ±1± i for Z[i]

z0 = ±1±
√
3
3 i, ± 2

√
3

3 i for Z[ω]
6: store these vertices into set Sl

7: calculate the linear equation of each edge of υl, save

them into set Ψl

8: end for

9: S = S ∪ Sl

10: end for

11: for l̄ = 1 : L− 1 do

12: for l̂ = l̄ + 1 : L do

13: find all combinations of {c1, c2}, with c1 ∈ Ψl̄ and

c2 ∈ Ψ
l̂
. Calculate the crossing point of c1 and c2:

the crossing points which are not in the valid range

of α should be discarded. Store the remaining in set

S
l̄,l̂

14: Sl̄ = Sl̄ ∪ S
l̄,l̂

15: end for

16: S = S ∪ Sl̄

17: end for

Phase 2 select the optimal integer vector

18: for all representative α in S do

19: acquire candidate of a by Q∗
A
(αh), discard the repeated

outputs.

20: calculate R(h, a) by equation (5)

21: end for

22: Return aopt = argmaxR(h, a)



The exhaustive-II requires the selection of a representative

α within each polygon to obtain the candidate set of a. In the

real channel case, each a corresponds to an one-dimensional

interval, therefore we can simply choose the end point (which

is the discontinuity of the function f(α) = ⌊αh⌉) of each

interval as the representative. However, in the complex channel

case, the one-dimensional interval becomes a two-dimensional

region, the discontinuities become the edges of the polygon.

Hence the number of discontinuities becomes infinite. Now

the vertices of each polygon are most easily calculated among

all discontinuities: can we therefore use these vertices as the

representatives?

Assume αv is a vertex, clearly, αv is shared by its adjacent

polygons. Hence the element αvh is singular to the quanti-

sation operation QA(·) (due to the fact that at least one of

Real(αvh) and Imag(αvh) is precisely a half integer). In the

real valued channel with Z-lattice, the singular quantisation

is not a problem. Each interval has two ends, and hence if

QZ(αh) is open at one end, then it has to be closed at the other

end as long as QZ rounds αh in the same direction at both

ends. This is because each interval has redundancy (2 ends)

to compensate the quantisation uncertainty (2 possibilities:

round up or down), and they are balanced for all intervals.

However, for the complex channel, the redundancy and the

quantisation uncertainty are not always balanced. Take the

Z[i]-lattice for example: each QZ[i](αvh) has four possible

values, while the number of vertices of each polygon is un-

certain. Particularly, for the triangle regions, the redundancy (3

vertices) is apparently not able to compensate the quantisation

uncertainty. This means if we set the quantiser to round αvh in

a specific direction for all vertices, we might miss that triangle

polygon. Hence, we propose a “full direction” quantiser Q∗
A
(·)

to replace QA(·). Q∗
A
(·) returns all equal likely a. For example,

Q∗
Z[i](0.5+1.5i) = {1+2i, 1+1i, 0+2i, 0+1i}. The modified

quantiser ensures there exists at least one representative within

each polygon. In the next section we will see this modification

only increases the complexity slightly.

The only issue remaining is to calculate the coordinates of

the vertices. Clearly, each vertex is a crossing point of two

lines, and each line is exactly an edge of υl,al
. Since all υl,al

have regular shapes, hence it is easy to acquire the function

of each edge according to the coordinates of the centre point.

The centre points are represented by the dots in Fig. 2, they

are exactly the lattices points generated by the basis of 1
hl

BA,

where BA is the basis matrix7 of A. Since the range of α
is given at the beginning of this section, the centre points

can be easily obtained. The whole procedure of the Complex-

Exhaustive-II is summarised in Algorithm. 1.

B. Complexity of Complex-Exhaustive-II Algorithm

The complexity mainly depends on the number of candi-

dates a, and this number is upper bounded by the outputs of

Q∗
A
(αh) for all α in S (step 18-19 in Algorithm 1). Since

the number of quantiser outputs for each α, denoted as ξ is

7The basis of Z[i] and Z[ω] are BZ[i] = [1 0; 0 1] and BZ[w] = [1 0; 0 ω]
respectively

a constant (ξ = 4 for Z[i], ξ = 4 or 6 for Z[ω])8, hence the

number of candidates a is bounded by ξ|S|, where |·| denotes

the cardinality of a set. The α in S can be divided into 2 sets:

• S-I: vertices of individual υl,al
(step 2-10 in Algorithm

1).

• S-II: intersections of two sets of parallel lines, where one

set belongs to Ψl̄ and the other belongs to Ψ
l̂,l̂ 6=l̄

(step

11-17 in Algorithm 1).

Intuitively, the former indicates the vertices of the red/blue

squares in Fig.2, while the latter indicates the vertices of the

parallelograms in Fig. 2 (labelled by the black shading). Since

the area of the valid range of α is bounded by SNR, the total

number of υl,al
for all l is therefore expected to be

∑

l

E

[SNR

Aυl

]

=
∑

l

SNRE[‖hl‖2]
Aυ0

=
SNRL

Aυ0

, (12)

where Aυ0
is a constant as described previously, and the

second equality is due to the assumption of hl ∼ CN (0, 1).
For each pair of sets of parallel lines from Ψl̄ and Ψ

l̂,l̂ 6=l̄
,

the expected number of parallelograms is

E

[ SNR

Apara

]

=
SNRE[|hl̄||hl̂

|sin(θ
l̄,l̂
)]

Aυ0

(13)

=
SNRE[|hl̄|]E[|hl̂

|]E[sin(θ
l̄,l̂
)]

Aυ0

(14)

= 0.5
SNR

Aυ0

. (15)

Here Apara denotes the area of the parallelograms, and θ
l̄,l̂

denotes the intersection angle of the two sets of lines which

is randomly distributed within 0 ∼ π
2 , hence E[sin(θ

l̄,l̂
)] =

2
π

. The expression (14) comes from the independence of the

variables. Since the expected value of |h| equals
√

π
4 with

h ∼ CN (0, 1), the simplified expression is therefore written as

(15). Since there are respectively 2 (3) sets of parallel lines for

Z[i] (Z[ω]) in each Ψl, the total number of the parallelograms

is therefore expected to be
(

L

2

)(

2

1

)(

2

1

)

E

[ SNR

Apara

]

and

(

L

2

)(

3

1

)(

3

1

)

E

[ SNR

Apara

]

(16)

for Z[i] and Z[ω] respectively. The expressions (12) and (16)

also respectively represent the expected values of |S-I| and

|S-II|. Since the total number of candidates is ξ(|S-I|+ |S-II|)
and the computation rate can be calculated in O(L) for each

candidates, hence the overall time complexity can be expressed

as

O(SNRL2(L− 1)) +O(SNRL2). (17)

Note that the constant components are omitted in (17), and

their effect will be evaluated numerically in section V.

C. L-L Algorithm vs Complex-Exhaustive-II Algorithm

The L-L algorithm in [15] is described as an optimal de-

terministic algorithm. Actually, it does not ensure the optimal

solution for all channel realisations. In this section, we will

8In principle, the possibility that more than 2 lines intersect at the same
point is infinitesimal.



present an example to compare the L-L algorithm and our

proposed complex exhaustive-II algorithm.

The main difference between these two algorithms is the

elements of representative α. The exhaustive-II algorithm

considers both S-I and S-II, while the L-L algorithm considers

the individual υl,al
only. Specifically, the vertices and the

midpoints of sides of individual υl,al
are considered for L-

L, hence the representatives of α can be regarded as an

extended version of S-I (though the L-L algorithm is not

interpreted in such a manner in [15]). Fig.3 illustrates an

intuitive comparison of these two algorithms. A Z[i]-lattice

based system is considered, with L = 5 and SNR = 10dB.

The channel components hl and their corresponding υl,al

are denoted by different colours. The representatives of α
utilised in L-L are marked by the black dots, which result

in aopt = [1i,−1i, 1,−1,−1] and R(aopt,h) = 0.585. How-

ever, the actually optimal solution is aopt = [1i, 1i, 1,−1,−1]
with R(aopt,h) = 0.702. The corresponding optimal Voronoi

region is the blue solid polygon (labelled as Exhaustive-II)

which is generated by the points marked with circles from the

set S-II. Since none of the black dots are located within this

region, hence aopt is missed by the L-L algorithm.
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Fig. 3: An example of a 5-user system, with SNR = 10dB

IV. LINEAR SEARCH ALGORITHM

In this section, we propose a simplified approach using a

linear search algorithm to reduce the complexity. It maintains

almost the same performance as the exhaustive search does.

The complexity reduction comes from the following aspects.

• The exhaustive method in section III requires the calcu-

lation of the vertices of all irregular polygons in order

to obtain a complete candidate set. In this section we

simply employ some sampled values of α to acquire the

candidates.

• We set a low sampling rate (or large step size) to ignore

the “unnecessary candidates”, the step size can be drawn

from an off-line acquired table.

• We set a break condition for the online search.

A. Off-line Search: Obtain The Optimal Step Size

The corresponding polygons of a are uniformly distributed

over the range of α with random sizes. Hence we utilise the

simplest uniform sampler to generate α as

αsample = ∆(k1 + k2i), k1, k2 ∈ Z, (18)

where the positive real number ∆ denotes the step size which

controls the sampling rate. The key factor is to choose a proper

step size.

Fig. 4: σ2
eff(α) of example.1 with SNR = 30dB

Fig. 4 gives an intuitive view of determining the step size.

We adopt the same channel and axis labelling as in Fig. 2.

Again the x-axis and y-axis denote the real and imaginary

parts of α respectively, and the corresponding effective noise

calculated by

σ2
eff(α) = ‖α‖2σ2 + P‖αh−QZ[i](αh)‖2 (19)

is shown in the colour bar. The 1st order derivative of (19) is

expressed as

dσ2
eff

dα
= 2ασ2 + 2Pα‖h‖2 − 2hHQZ[i](αh). (20)

Since QZ[i](αh) is invariant within each polygon, the 2nd

order derivative is therefore expressed as

d2σ2

dα2
= 2σ2 + 2P‖h‖2 ≥ 0. (21)

Clearly, there is a local minimum within each polygon since

σ2
eff(α) is convex. More importantly, the 2nd derivative is

the same for all candidate vectors, which means the global

minimum is more likely to be located in one of the larger

polygons. As shown in Fig. 4, the dark blue regions correspond

to the large polygons in Fig. 2. Their corresponding a can

be regarded as “necessary candidates” since they have lower

effective noise.

Let υopt denote the corresponding Voronoi region of aopt,

and υopt has g edges. Actually the υopt of the example above
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corresponds to the black octagon labelled in Fig. 2. Assume

the largest square (with all sides vertical or horizontal) that

fits in υopt has width dopt, as shown in Fig. 5. The region

υopt will definitely be visited if ∆ ≤ dopt. Finding the largest

square in υopt is a convex optimisation problem described as:

maximise
m

mTQm

subject to Am ≤ b

and m1 +m2 = m3 +m4,

where Q =







0 1 0 −1
1 0 −1 0
0 −1 0 1
−1 0 1 0






, and the vertices of the

square are denoted by m = [m1,m2,m3,m4]
T , as labelled

in Fig. 5. The restriction Am ≤ b comprises 4g linear

equations which corresponding to the condition that the 4

vertices of the square should be located within the g-edge

convex polygon. Such an optimisation problem is linearly

solvable, with complexity O(g).
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Given SNR and L, the optimal ∆ can be determined

by exploiting the statistical characteristic of dopt. As dis-

cussed in section III, the area of υopt is upper bounded by

Aυ = Aυ0
/‖hmax‖2 for a particular h, hence we define the

normalised dopt as γopt = dopt/
√Aυ . We use υrand to denote

a random polygon within the range of α, and drand denotes

the width of the largest square that fits in υrand. Similarly

γrand = drand/
√Aυ . It is obvious that 0 < γopt(γrand) ≤ 1.

Fig. 6 illustrates the cumulative distribution of γopt in a 5-user,

Z[i]-lattice based system. The results are acquired over 1000

channel realisations. The blue, red and green lines represent

the scenarios of SNR=20dB, 30dB and 40dB respectively. It

can be seen that γopt ≥ 0.28 for all channel trails when

SNR=20dB, hence we can set γthre = 0.28 as the threshold

to distinguish the necessary and unnecessary candidates, and

therefore set

∆ = γthre
√

Aυv
= γthre

√

Aυ0

‖hmax‖2
(22)

to capture the necessary candidates. Similarly, γthre = 0.39
and γthre = 0.47 can be assigned to SNR=30dB and 40dB

respectively. We also investigated the cumulative distribution

of γrand, which reveals the potential complexity reduction

compared to the exhaustive-II algorithm. There are over 70%

candidates whose corresponding d ≤ 0.47 with SNR=20dB.

That means that 70% of the candidates examined in the

exhaustive search are ignored by the sampled values, hence

the complexity potentially reduces by 70% in this case9. The

corresponding γthre for SNR=30dB and 40dB indicate that the

higher SNR, the more complexity reduction.

It can be observed that γthre increases monotonically with

SNR, for convenience, the γthre obtained for SNR=20dB can

be used in the region of 20dB≤ ∆ <25dB, this does not

change the accuracy. Additionally, the threshold of γopt only

depends on SNR and L, and not on any particular instance of

the channel, hence an off-line table of Θ can be established

to store the values of γthre corresponding to each L and SNR

region, which does not bring extra complexity to the online

search.

B. Online Search: Obtain The Optimal Integer Vector

Based on the table of Θ, the step size for a particular channel

h can be calculated by (22). The task of the online search is

to check the candidates a = QA(αsampleh) one by one, and

select αopt. We perform the following processes to make it

more efficient.

• the values of αsample are sorted in ascending order of

amplitude. Note that the step size ∆ changes the scale

in (18) only, hence the order of αsample is invariant for

different h, and no extra complexity is required.

• we set a break condition as follows: the search terminates

when the scaled Gaussian noise (σ2
sg = ‖α‖2σ2) of

the current sample is already greater than the minimum

effective noise obtained from the preceding samples (It

is impossible to find better α with larger amplitude even

it brings no self noise at all).

9Some of these ignored candidates might still be visited by the sampled
values, hence we call it potential complexity reduction.



TABLE I: A partial table of Θ with L = 5, 8, 10
❳
❳
❳
❳
❳
❳
❳❳

L
SNR in dB

<5 [5 10) [10 15) [15 20) [20 25) [25 30) [30 35) [35 40) · · · +∞

Z[i]
5 E 0.09 0.12 0.21 0.28 0.33 0.39 0.44 · · · 0.71
8 E 0.05 0.07 0.13 0.16 0.25 0.32 0.38 · · · 0.71
10 E 0.05 0.06 0.10 0.12 0.17 0.22 0.29 · · · 0.71

Z[ω]
5 E 0.10 0.12 0.20 0.29 0.33 0.40 0.44 · · · 0.71
8 E 0.05 0.08 0.11 0.16 0.24 0.32 0.37 · · · 0.71
10 E 0.05 0.06 0.09 0.13 0.18 0.23 0.28 · · · 0.71

Algorithm 2 Linear search algorithm

Output: optimal coefficient vector aopt
Offline Search: obtain table of Θ
Given particular L and SNR

1: for trail = 1 : 1000 do

2: generate htrail ∈ C
L

3: obtain aopt,trail = argmaxR(htrail, a) by exhaustive-

II, and acquire its corresponding υopt,trail
4: calculate the normalised width γopt,trail for υopt,trail
5: end for

6: set min1000trail=1 γopt,trail → γthre(L, SNR)
Online Search: obtain aopt for a given h

7: ∆ = γthre

√

Aυ0

‖hmax‖2 (Eq.22) generate αsample in

ascending order, denoted as αindex

8: initialise index = 1, σ2
opt = σ2

eff(αindex) (Eq.19)

9: then index = index+ 1, σ2
sg = ‖αindex‖2σ2

10: while σ2
opt > σ2

sg do

11: if σ2
eff(αindex) < σ2

opt then

12: αopt = αindex, σ2
opt = σ2

eff(αindex)
13: end if

14: index = index+ 1, σ2
sg = ‖αindex‖2σ2

15: end while

16: Return aopt = QA(αopth)

C. Complexity of the Linear Search Algorithm

The complexity of the linear search algorithm can be anal-

ysed from two perspectives. On the one hand, the proportion of

candidates ignored is quite small (γthre ≈ 0) in the low SNR

region, and hence the complexity of the linear search can be

measured by the exhaustive-II search. On the other hand, the

number of candidates for the high SNR case can be expected

to be

SNR

E[∆2]
=

SNR

Aυ0

E[
‖hmax‖2
γ2
thre

] =
SNR

γ2
threAυ0

E[‖hmax‖2], (23)

where the first equality comes from (22), and the second is

due to the fact that the threshold γthre tends to a constant in

the high SNR region: when σ2 → 0, the optimal α is free to

be chosen as the least common multiple of { 1
hl

, l = 1 : L}.

In this case, the centre points of all individual υl,al
(see Prop.

2) overlap, and hence the optimal Voronoi υopt is very likely

to be the smallest individual υl. By employing the moment

generating function of ‖hmax‖2, we have

E[‖hmax‖2] =
1

β
E[logeβ‖hmax‖2

] (β > 0) (24)

≤ 1

β
logE[eβ‖hmax‖2

] (25)

=
1

β
log

∫ ∞

0

Pr(eβ‖hmax‖2 ≥ x)dx (26)

≤ 1

β
log

∫ ∞

0

L
∑

l=1

Pr(eβ‖hl‖2 ≥ x)dx (27)

=
1

β
log

L
∑

l=1

E[eβ‖hl‖2

] (28)

=
1

β
log

L

1− 2β
(29)

where (25) comes from Jensen’s inequality. (26) and (28)

are based on the relation between the expected value and

the survival function. (27) is obtained by the union bound

and (29) is because the moment generating function of a

chi-square variable ‖hl‖2 is 1
1−2β . Since (29) holds for any

β > 0, we can pick β to tighten this bound. By employing

the AM-GM10 inequality (setting logL = log 1
1−2β ), we have

E[‖hmax‖2] ≤ 4logL
1− 1

L

. Again, the corresponding R(a,h) can

be calculated in O(L), the time complexity for the high SNR

can expressed as

O(SNRL
logL

1− 1
L

) (30)

with the constant components omitted.

V. NUMERICAL RESULTS

In this section, we investigate both the computation rate and

the complexity of our proposed algorithms, compared with the

CLLL method [9] and the L-L [15] algorithm. We consider two

scenarios in which 5 and 10 users are employed respectively.

All results are acquired over 10000 channel realisations.

A. Computation Rate Comparison

Fig.7 shows the average R(h) of a 5 user scenario. We use

solid and dashed lines to represent the case of Z[i] (denoted

as GI) and Z[ω] (denoted as EI) based lattices respectively.

Unsurprisingly, the denser structure of Z[ω] leads to a better

performance than the Z[i] based lattice. Previously we have

10 Arithmetic Mean-Geometric Mean:
∑

n

i=1
ai

n
≥ (a1a2 · · · an)1/n for

positive numbers ai, the equality hold iff all the numbers are equal.
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established that both the L-L algorithm and the linear search

method might sometimes miss the optimal solution. However,

the numerical results reveal that the probability of missing

aopt is quite small. The gaps to the exhaustive-II algorithm

are negligible for both algorithms, and they all outperform the

CLLL method. Similarly, Fig. 8 reveals the rate comparison

of a 10 user scenario. Compared to the case of L = 5,

the advantage of our proposed algorithms to the CLLL is

increased.
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B. Complexity Comparison

In this section, we investigate the complexity by counting

the floating point operations (flops). The number of flops

required for each complex addition and multiplication are

2 and 6 respectively, and the round operations are ignored

in the simulation. It suffices to consider Z[i] based lattice

only (any other non-cubic lattices have a similar result). By

considering E[‖h‖2] = L, the complexity of the L-L algorithm

in [15] can be rewritten as O
(

L2(SNRL +
√
SNRL + 2)

)

.

Compared with the expression of (17), we can see that the

L-L algorithm and the exhaustive-II algorithm have almost

the same theoretical complexity, both being dominated by

O(L3SNR). However, numerical results in Fig. 9 and Fig.

10 reveal that our proposed exhaustive-II algorithm has less

complexity than the L-L algorithm. The reasons are as follows:

• the L-L algorithm considers the bound of candidate a as

‖al‖ ≤
√

1 + SNR‖h‖2, (31)

while our complex exhaustive-II considers

‖al‖ = ⌊αhl⌉ ≤ ⌊
√
SNRhl⌉. (32)

Clearly, (32) gives a tighter bound than (31). For example,

assume h = [0.3 0.4] and SNR = 100. By employing (31),

we have a1, a2 ∈ [0, 6], while (32) results in a1 ∈ [0, 3]
and a2 ∈ [0, 4].

• In section III-C, we have established that the S-II set

in the exhaustive-II is not considered in the L-L algo-

rithm. However, many of the candidates a generated by

⌊αh⌉, α ∈ S-II are duplicates of the candidates generated

from the set S-I. These duplicates will not participate in

the calculation of R(h, a). Hence the actual complexity

of the exhaustive-II is slightly less than the expression of

(17).
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As we expected, the linear search has less complexity

than the L-L and exhaustive-II. Since the the complexity

of the linear search varies, the gap increases as the SNR

increases. The comparison of the LLL and the other three

is a tradeoff between L and SNR. In the high SNR region,

the LLL algorithm has the complexity advantage while for

a large number of users, our proposed algorithms have less

complexity.

VI. CONCLUDING REMARKS

In this paper, we have given two algorithms for coefficient

selection in C&F over complex integer based lattices. For the

complex exhaustive search, we extended the idea of interval

partition to Voronoi region partition to ensure the acquired

coefficients are optimal. For the sub-optimal linear search

algorithm, we established an off-line table to allocate the

step size to eliminate unnecessary candidates. We have shown

the theoretical complexity for both algorithms. Numerical

comparisons with other existing algorithms are also given.



We have shown both of our proposed approaches have good

performance-complexity tradeoff.
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