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Abstract—Cooperative localization with map matching has
been shown to reduce Global Navigation Satellite System
(GNSS) localization error from several meters to sub-meter
level by fusing the GNSS measurements of four vehicles in our
previous work. While further error reduction is expected to be
achievable by increasing the number of vehicles, the quantitative
relationship between the estimation error and the number of
connected vehicles has neither been systematically investigated
nor analytically proved. In this work, a theoretical study is
presented that analytically proves the correlation between the
localization error and the number of connected vehicles in two
cases of practical interest. More specifically, it is shown that,
under the assumption of small non-common error, the expected
square error of the GNSS common error correction is inversely
proportional to the number of vehicles, if the road directions
obey a uniform distribution, or inversely proportional to loga-
rithm of the number of vehicles, if the road directions obey a
Bernoulli distribution. Numerical simulations are conducted to
justify these analytic results. Moreover, the simulation results
show that the aforementioned error decrement rates hold even
when the assumption of small non-common error is violated.

I. INTRODUCTION

Low cost Global Navigation Satellite Systems (GNSS)

are used for most mobile applications, whose localization

accuracy are typically in the range of several meters. Im-

proving the localization accuracy of these widespread GNSS

without incurring additional hardware and infrastructure costs

has motivated recent research activities on Cooperative Map

Matching (CMM). CMM has been shown able to improve

Global Navigation Satellite System (GNSS) positioning of

a group of connected vehicles through estimation and cor-

rection of the common GNSS localization error. Since the

error caused by atmospheric delay and satellite clock error is

almost the same to all the vehicles in the same area, this

common error can be estimated by matching the vehicle

positioning results to a digital road map, assuming that

all the vehicles travel on lanes. With a properly estimated

common error, the positioning of vehicles can be corrected,

thus improving the localization accuracy. The improvement

would largely depend on the quality of the common error

estimation, which is determined by the CMM algorithm and

the configuration of the road constraints.

Recently, two different CMM algorithms have been devel-

oped for GNSS common error estimation problem, i.e., a non-

Bayesian particle-based approach in Rohani et. al. [1] and a

Bayesian approach based on a Rao-Blackwellized Particle

Filter in our previous work [2], [3].

In contrast, the effects of road configuration on the com-

mon error estimation have not been reported in open litera-

ture. Intuitively, in order to produce a good estimation of the

common error, the road constraints should be rich enough

so that common error in different directions can be detected.

This richness is expected to be enhanced with the number of

vehicles and the diversity of the road directions.

In this work, the correlation between the estimation quality

of the common error and the richness of the road constraints

is quantified analytically. More specifically, the functional

relationships between the mean square error of the common

error estimation and the number of connected vehicles are de-

rived under two different assumptions about road configura-

tions. The results provide a guideline for the implementation

of CMM and a foundation for the development of algorithms

that intelligently select vehicles to include for maximal error

reduction.

In the following sections, details of the derivation of the

error bounds are presented with justification through Monte

Carlo simulations. In Section 2, an analytic expression of

the estimation error as a function of the road configura-

tion and the non-common error is derived. In Section 3,

asymptotic formulas of the expectation of the estimation

error with respect to Gaussian distributed non-common error

are derived for uniformly or Bernoulli distributed road di-

rections. Nonetheless, most of the results are derived under

the assumptions of large number of vehicles and small non-

common error. In Section 4, simulation results are presented

to demonstrate and justify the applicability of the theoretical

results to realistic scenarios where both the number of

connected vehicles and the non-common error are finite. In

Section 5, the contributions and conclusions are summarized.

II. ESTIMATION ERROR OF THE COMMON ERROR

In this section, we propose a framework of vehicle po-

sitioning within a reference road framework to facilitate

the analytic investigation. The GNSS measurement will be
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Fig. 1. Illustration of the deviation from the lane center (yellow arrow), the
common error (red arrow), the non-common error (black arrow), the lane
center point (blue dot) and the GNSS positioning (red dot)

decomposed into four components and one estimator of the

common error will be formulated and the corresponding

estimation error will be represented as an integral depending

on the non-common error and the road constraints.

The coordinate of GNSS positioning of the i-th vehicle

can be decomposed into superposition of the coordinate of a

point on the corresponding lane center, the deviation of the

vehicle from the lane center (yellow arrows), the common

error (red arrows) and the non-common error (black arrows)

as illustrated in Fig. 1. The blue and red dots represent the

true positions and the GNSS positioning, respectively. This

relationship can be expressed mathematically as

xG
i = xL

i + xD
i + xC + xN

i , i = 1, 2, ..., N, (1)

where xG
i is the GNSS positioning of the i-th vehicle, xL

i is

the closet point on the center of the lane from the vehicle,

xD
i is the deviation of the vehicle coordinates from xL

i , xC is

the GNSS common localization error, xN
i is the GNSS non-

common localization error including receiver noise error and

multipath error and N is the number of connected vehicles.

The fact that all the vehicles travel on the roads can be

expressed as a set of inequalities

gi(x
G
i − xC − xN

i ) < 0. (2)

In reality, the geometry of the road sides can be so com-

plicated that the constraints cannot be expressed analytically.

But frequently, the road sides can be approximated as straight

lines such as those shown in Fig. 1. In these cases, the

constraint functions gi have simple analytic forms

gi(x) = (x− xL
i ) · ni − w, (3)

where {·} is the dot product operator, ni is the unit vector

normal to the lane center point towards outside of the road

and w is the half width of the lane.

Alternatively, (2) can be interpreted as the feasible set of

the common error given the GNSS positioning and the non-

common error. The non-common error is unknown, however,

to the implementation of CMM. Thus, an approximation of

the feasible set by neglecting the non-common error is used

instead of the exact feasible set, which is

Ω = {τ |
N
⋂

i=1

gi(x
G
i − τ)}

= {τ |
N
⋂

i=1

gi(x
L
i + xC + x̃N

i − τ)}

= {τ |
N
⋂

i=1

g̃i(x
C + x̃N

i − τ)},

(4)

where

x̃N
i , xD

i + xN
i (5)

and

g̃i(x) , gi(x+ xL
i ) = x · ni − w (6)

A point estimator of the common error can be taken as the

average over the approximate feasible set Ω,

x̂C =
1

S

∫

Ω

τdA, S =

∫

Ω

dA, (7)

where τ is the dummy integration variable and dA is the area

element.

The estimation error of the common error is of practical

interest, which can be evaluated as

e = xC − x̂C

= xC − 1

S

∫

Ω

τdA

=
1

S

∫

Ω

(xC − τ)dA

=
1

S

∫

Ω′

τ ′dA,

(8)

where

τ ′ = xC − τ, (9)

and

Ω′ = {τ ′|
N
⋂

i=1

g̃i(x̃
N
i + τ ′) < 0}. (10)

Eq. (8) and (10) states that the estimation error equals to

the geometric center of the intersection of the road constraints

perturbed by the composite non-common error x̃N
i .

It has been shown by experimental data that the GNSS

non-common error can be well approximated as Gaussian

random variable in [2]. The Safety Pilot dataset collected in

Ann Arbor shows that statistically the deviations from the

lane center also obey Gaussian distribution. As a result, the

composite error x̃N
i is a Gaussian random variable.



The expectation of the square estimation error is of prac-

tical interest. In two special cases, analytic approximations

to this expectation valid for large number of vehicles can be

established.

III. ASYMPTOTIC ANALYSIS FOR THE EXPECTED SQUARE

ERROR

In this section, we derive the asymptotic decay of the mean

square error with respect to the number of vehicles in two

typical cases of the road configuration, whose examples are

shown in Fig. 2. In the first case, the road configuration is

modeled as cross roads where the roads are either parallel

or orthogonal. In the second case, it is modeled as randomly

oriented roads where the direction angles obey a uniform

distribution.

A. Orthogonal road directions

In the first case, it is assumed that each road is parallel to

one of the two orthogonal axes of the global reference frame.

As a result, the direction angles θ of the vehicles relative to

the reference frame belong to a set with four elements:

θi ∈ {0, π
2
, π,

3π

2
} (11)

This case can be viewed as a simplified model for the

urban areas where most roads are orthogonal to each other.

Invoking (8), the square error can be expressed analytically

as

e2 =
X2

1 +X2
2 +X2

3 +X2
4 − 2X1X3 − 2X2X4

4
, (12)

where Xj, j = 1, 2, 3, 4 are the largest projections of the

composite non-common error on each of the four normal

vector:

Xj = max{x̃N
j1
·nj1 , x̃

N
j2
·nj2 , ..., x̃

N
jNj

·njNj
}, j = 1, 2, 3, 4.

(13)

Nj , j = 1, 2, 3, 4 are the numbers of vehicles traveling in

each of the four directions.

If all the x̃N
i · ni, i = 1, 2, ...N are independent and

identically distributed, then according to the Fisher-Tippett-

Gnedenko theorem [4], the limit distribution of Xj for large

Nj is Gumbel distribution whose cumulative distribution

function is given by

F (Xj) = exp(−exp(−(Xj − µj)/βj)). (14)

Moreover, The leading order of the normalization constants

µj and βj are related to the variance of the Gaussian

distribution σ through [5]

µj ∼ σ
√

2log(Nj), βj ∼ σ
1

√

2log(Nj)
. (15)

Using the property of Gumbel distribution, the expectation

of e2 with respect to Xj can be evaluated:

EX [e2] =
π2

24

4
∑

j=1

β2
j +

1

4
[µ1 − µ3 + γ(β1 − β3)]

2

+
1

4
[µ2 − µ4 + γ(β2 − β4)]

2,

(16)

where γ ≈ 0.5772 is the Euler-Mascheroni constant.

With the assumption that all the four Nj are large number

of the same order and using the asymptotic formulas (15),

it can be readily shown that the first term in (16) is of

O( 1
log(Nj)

) and the following two terms are of O( 1
Nj log(Nj)

).
Thus, the leading order asymptotic approximation is

EX [e2] ∼ π2σ2

48

4
∑

j=1

1

log(Nj)
. (17)

B. Uniformly distributed random road directions

In the second case, each direction angle is assumed to be

randomly distributed within [0, 2π). In addition, it is assumed

that the non-common error is small enough such that (8) can

be linearized with respect to the non-common error:

e = e0 +∆e = e0 +
CX̃

S0
, (18)

where

e0 =
1

S0

∫

Ω0

τ ′dA, (19)

Ω0 = {τ ′|
N
⋂

i=1

g̃i(τ
′) < 0}, (20)

X̃ = [x̃N
1 · n1, x̃

N
2 · n2, ..., x̃

N
N · nN ]T , (21)

and

C = S0
∂e

∂X̃
. (22)

C is a 2 × N matrix whose components are related to the

geometric quantities of the road constraints.

The condition under which the linearization (18) is valid

is

||X̃ ||∞ ≪ 2πw

N
, (23)

where w is the half width of the lane.

With the assumption that each non-common error obeys

independent Gaussian distribution with zero mean, i.e., X̃ ∼
N(0N×1, diag(σ

2
1 , σ

2
2 , ..., σ

2
N )), the expectation of the square

error is

EX [e2] = e20 +
1

S2
0

tr(LTCTCL), (24)

where L = diag(σ1, σ2, ..., σN ) is the Cholesky decomposi-

tion of the joint Gaussian covariance matrix.

Eq. (24) is quite useful in practice as it implicitly provides

a measurement of the road configurations. Given any road

configurations specified by e0 and C, the mean square

error can be evaluated. An optimization technique can be

developed to select the best road configuration so as to

optimize the localization accuracy. On the other hand, the

theoretical value of this equation is demonstrated through the

derivation of asymptotic error decrement shown as follows.

As both e0, S0 and C depends on the road direction angles

θi, EX(e2) is also a random variable. It can be shown that



(a) Orthogonal road model (b) Random road model

Fig. 2. Examples of road configurations that can be modeled by the presented two road angle distributions, images from OpenStreetMap

the expectation of EX(e2) with respect to θi, i = 1, 2, ..., N
is of O( 1

N
) (See Appendix). More specifically,

Eθ[e
2
0] =

2w2

9N
+ o(

1

N
) (25)

and

Eθ[
1

S2
0

tr(LTCTCL)] =
3
∑N

i=1 σ
2
i

2N2
+ o(

1

N
) (26)

IV. SIMULATION JUSTIFICATION

In this section, simulation results are presented to justify

the validity of the asymptotic formulas derived in Section

3. The expectations are calculated by averaging over 5000

samples of e2. Each sample value for the orthogonal road

case is calculated through two approaches. One approach

is the analytic formula (12), and the other approach is a

Monte Carlo integration where the proposal distribution

is a two-dimensional uniform distribution. Besides, the

number of vehicles in each direction is the same. For the

uniformly random road angle case, each sample value of e2

is calculated by the Monte Carlo integration. The number

of samples to implement each Monte Carlo integration is

10000. The road half width is w = 2 m in the simulation.

A. Small non-common error: σ = 0.3 m

Fig. 3 shows the comparison of the orthogonal road case.

The asymptotic formula is in good agreement with the

numerical results as the number of vehicles increases. The

results using the two numerical approaches are also different,

which should be caused by the random error resulted from

the Monte Carlo integration used to calculate e2. Therefore,

the one that uses (8) is expected to be closer to the underlying

true expectation. Compared with this result, the asymptotic

formula slightly overestimates the error. This difference may

be the result of the fact that the convergence to the Gumbel

distribution is rather slow [5].

Fig. 4 shows the comparison of the random road angle
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Fig. 3. Comparison between the asymptotic formula and numerical simu-
lation results on the orthogonal road angle case

case. Fig. 5 shows the corresponding difference between the

asymptotic formula and the simulation results using Monte

Carlo integration. The difference reaches its minimum around

N = 25 ∼ 30 and increases with the further increase of N .

This result can be expected for the following two reasons.

First, the asymptotic formula is derived for large N . As a re-

sult, the difference at small N should be significant. Second,

the linearization (18) based on the small non-common error

assumption (23) eventually becomes invalid for fixed σ and

increasing N .

B. Large non-common error: σ = 1 m

The analytic results shown in Section 3 do not apply to

the large non-common error case because the approximate

feasible set described by (4) may be an empty set.

Nonetheless, this problem can be addressed by assigning a

weight to each hypothesis of the common error according

to its compatibility with the road constraints. The weighted

road map approach proposed by Rohani et. al. is applied
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lation results on the uniformly distributed random road angle case
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Fig. 5. Difference between the asymptotic formula and the numerical
simulation result in Figure 3

to generate simulation results because of its simplicity for

implementation.

Fig. 6 shows the error decrement in the two different

cases of road configuration when the non-common error

variance is large. As can be observed from the figure, the

slope of the decrement curve in the uniformly distributed

road case is steeper than that corresponding to the orthogonal

road case. This result is expected from intuition as in the

former case, the road angles are more diverse, thereby,

providing more constraints to correct the GNSS bias. This

can also be understood from another point of view from

the mathematical expression (10). The estimation error is

equal to the deviation of the geometric center enclosed by

the road constraints. As the directions of the road angles

become diverse, there is a large probability that the error in

different directions cancels out. As a result, the expectation

of the error become small. In contrast, if there exists some
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Fig. 6. Numerical results of the error decrement in the two cases of road
configuration with large non-common error

dominant directions, the expectation of the error would be

large as the probability that the error cancels out becomes

small.

V. CONCLUSIONS

In this paper, the impact of road configuration on the

CMM localization accuracy is studied theoretically. The

correlation between the mean square error of the common

error estimation and the number of connected vehicles is

proved analytically and shown through numerical simulation.

The main results and findings are summarized:

1) A closed form expression of the mean square estima-

tion error in terms of the road configuration and the

non-common error is derived for the evaluation of the

impact of road configuration on CMM.

2) The mean square error of the common error estimation

is inversely proportional to the logarithm of the number

of connected vehicles asymptotically if the random

road angles are either parallel or orthogonal.

3) The mean square error of the common error estimation

is inversely proportional to the number of connected

vehicles asymptotically if the road angles obey a uni-

form distribution.
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APPENDIX

The detail with respect to the derivation of (25) and (26)

is presented here.

The direction angles of the roads are denoted by

[θ1, θ2, ..., θN ]. Without loss of generality, it is assumed that



0 ≤ θ1 ≤ θ2 ≤ ... ≤ θN ≤ 2π. The increments of the angles

are defined as

θ̃i =

{

θi+1 − θi for i = 1, 2, ...N − 1

θ1 − θN + 2π for i = N
(27)

e20 can be expressed in terms of the geometric quantities:

e20 =
(
∑N

i=1
2
3w

3tan( θ̃i2 )cos(θi))
2

S2
0

+
(
∑N

i=1
2
3w

3tan( θ̃i2 )sin(θi))
2

S2
0

=
4w2

9

∑N

i=1 tan
2( θ̃i2 )

π2

+
4w2

9

∑N

i=1

∑N

j=1 tan(
θ̃i
2 )tan(

θ̃j
2 )cos(θj − θi)

π2

+Higher Order T erms

(28)

The probability distribution of θ̃i can be derived:

p(θ̃i) =
N

π
(1 − θ̃i

π
)N−1, 0 ≤ θ̃i ≤ π. (29)

Accurate to the leading order:

Eθ[e
2
0] =

4w2

9π2
Eθ[

N
∑

i=1

tan2(
θ̃i
2
)] =

4w2N

9π2
Eθ[tan

2(
θ̃i
2
)]

(30)

The expectation in (30) can be calculated:

Eθ[tan
2(
θ̃i
2
)] =

∫ π

0

tan2(
θ̃i
2
)
N

π
(1− θ̃i

π
)N−1dθ̃i

=

∫ π√
N

0

(
θ̃i
2
)2
N

π
(1 − θ̃i

π
)N−1dθ̃i

+

∫ π√
N

0

[tan2(
θ̃i
2
)− (

θ̃i
2
)2]

N

π
(1− θ̃i

π
)N−1dθ̃i

+

∫ π
2

π√
N

tan2(
θ̃i
2
)
N

π
(1− θ̃i

π
)N−1dθ̃i

+

∫ π

π
2

tan2(
θ̃i
2
)
N

π
(1− θ̃i

π
)N−1dθ̃i.

(31)

The first term after the last equality in (31) can be

integrated analytically and shown that

∫ π√
N

0

(
θ̃i
2
)2
N

π
(1− θ̃i

π
)N−1dθ̃i ∼

π2

2N2
. (32)

The remaining three term will be shown as o( 1
N2 ) terms:

|
∫ π√

N

0

[tan2(
θ̃i
2
)− (

θ̃i
2
)2]

N

π
(1 − θ̃i

π
)N−1dθ̃i|

<

∫ π√
N

0

(
θ̃i
2
)4
N

π
(1− θ̃i

π
)N−1dθ̃i

<
π2

4N

∫ π√
N

0

(
θ̃i
2
)2
N

π
(1− θ̃i

π
)N−1dθ̃i

= O(
1

N3
).

(33)

|
∫ π

2

π√
N

tan2(
θ̃i
2
)
N

π
(1− θ̃i

π
)N−1dθ̃i|

<

∫ π
2

π√
N

N

π
(1− θ̃i

π
)N−1dθ̃i

= (1 − 1√
N

)N − (
1

2
)N .

(34)

As

lim
N→∞

N2(1− 1√
N

)N = lim
N→∞

N4((1− 1

N
)N )N

= lim
N→∞

N4e−N = 0,
(35)

it follows that
∫ π

2

π√
N

tan2(
θ̃i
2
)
N

π
(1− θ̃i

π
)N−1dθ̃i = o(

1

N2
). (36)

|
∫ π

π
2

tan2(
θ̃i
2
)
N

π
(1 − θ̃i

π
)N−1dθ̃i|

<

∫ π

π
2

N

π
(1− θ̃i

π
)N−3dθ̃i

<

∫ π

π
2

N

π
(
1

2
)N−3dθ̃i =

N

2
(
1

2
)N−3 = o(

1

N2
).

(37)

Eθ[
1

S2
0

tr(LTCTCL)] = Eθ̃[
1

S2
0

tr(LTCTCL)]

=

N
∑

i=1

2σ2
i (Eθ̃[tan

2( θ̃i2 )] + E2
θ̃
[tan( θ̃i2 ])

π2
+H.O.T.

=
3
∑N

i=1 σ
2
i

2N2
+ o(

1

N
).

(38)
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