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Abstract—The autocorrelation demodulator (ACD) for DDPSK
is an offset tolerant demodulator which has been introduced for
applications where the signal experiences large Doppler shift.
Moreover, emerging ultra-narrowband solutions for Internet of
Things and Wireless Sensor Networks can exploit DDPSK to
avoid the use of costly crystal or power hungry thermal compen-
sators. However, to tolerate frequency offset the bandwidth of the
lowpass or bandpass filter before the demodulator must increase
which leads to a larger noise bandwidth and degrades BER
performance. This work proposes a new method to overcome
this problem. Instead of one path of ACD, samples at the output
of the filter go through multiple paths with adjusted delay and
interval for correlation in the ACD. The sum of the outputs of
these paths provide the input to the detector with an increased
SNR compared to conventional structure. Using the proposed
method, the SNR per bit required for a certain BER remains
independent of filter bandwidth if the target BER is less than
0.01.

I. INTRODUCTION

Autocorrelation demodulation (ACD) of second-order dif-
ferential PSK also known as Double Differential PSK
(DDPSK) is a demodulation method independent of frequency
offset [1]. In low data rate applications, where Doppler shift
reaches up to multiple times the data rate, offset tolerant
demodulation has been utilized as an interesting solution. It
removes carrier recovery which takes long time and consumes
considerable power in these scenarios [2], [3]. Moreover,
it can be applied in ultra-narrowband (UNB) schemes for
Internet of Things (IoT) and Wireless Sensor Network (WSN)
applications where the frequency offset challenge becomes
crucial. In these systems a frequency offset equal to a fraction
of the data rate (which then can be estimated and compensated
in the digital domain) necessitates a costly crystal with thermal
compensation [4]. A frequency offset tolerant demodulator
can be a solution in order to avoid extra cost and power
consumption.

Simplified carrier recovery for DDPSK receiver comes at
the cost of loss in BER performance. Various methods have
been proposed to improve BER performance of DDPSK. In
[5], a multiple symbol detection (MSD) scheme for DPSK
[6] is utilized to improve BER performance. Deriving a MAP
detector metric, a decision feedback based multiple symbol
detection is introduced in [7]. In [8] and [9] three methods
for MSD in DDPSK are compared and it is concluded that
the simple method suggested in [5] is the best as the huge
complexity added by other methods overweighs their BER
performance gain which is less than 0.5 dB.

In addition to offset tolerant demodulation in the receiver,
the bandwidth of the filter before the demodulator should
increase in accordance with expected frequency offset. Other-
wise, the frequency offset pushes the signal out of the filter. On
the other hand, as the noise bandwidth is proportional to the
filter bandwidth, BER performance deteriorates in presence of
a wide filter [5]. In low data rate applications where Doppler
shift exists the frequency offset may range from 10 to 100
times the data rate [3]. Despite efforts to improve the BER
performance of DDPSK, the mentioned techniques suffer from
performance degradation in presence of a wide filter and their
BER performance is dependent on filter bandwidth.

In this paper a novel method is proposed to overcome the
effect of a wide filter in DDPSK. The only requirement is that
the sample rate after the filter must be the same as the filter
bandwidth so that the noise samples are uncorrelated. The
proposed method can effectively reduce the effect of noise
included by the wide filter at the cost of additional digital
complexity. As a result, the BER performance of the pro-
posed demodulator is independent of the filter bandwidth. In
addition to simulations, a mathematical approach is followed
to analyze noise components and prove effectiveness of the
proposed method. Before explicating the proposed method,
a conventional ACD for DDPSK is briefly explained in the
next section and the problem is defined. Section III elaborates
on the proposed method and its BER performance. Simulation
results are presented in section IV while conclusions are drawn
in section V.

II. CONVENTIONAL ACD AND PROBLEM STATEMENT

The block diagram of a double differential encoder together
with conventional autocorrelation demodulator (ACD) for dou-
ble differential PSK are shown in Fig.1. The double differential
encoder is composed of two differential encoders in series. In
the receiver, the samples of the double differentially encoded
signal are filtered and pass through two consecutive differential
decoders. The first stage of the ACD converts the frequency
offset to a constant phase offset by correlating each symbol
with the previous symbol. Subsequently, the second stage
removes the remaining phase offset [1]. Thus, the output dn
of the demodulator is independent of frequency offset.

A simple modification to DDPSK achieved without addi-
tional complexity was introduced in [5]. It is obtained by
increasing the delay of the second stage of the encoder and the
first stage of the demodulator in Fig. 1 by one symbol period
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Fig. 1. (a) Block diagram of double differential encoder with phase relations
and (b) ACD for DDPSK, T is symbol period and N is the number of samples
per symbol and (∗) denotes complex conjugate

(changing them to 2T and 2N , respectively). This method,
denoted by 2T-DDPSK improves the BER performance as it
decreases correlation between noise samples in the two stages
[5].

Considering an approach similar to [5], it is assumed that
the signal passes through a low pass filter with single side
bandwidth F before the demodulator. In case of an ideal filter
and neglecting ISI for a signal with zero frequency offset, the
filter bandwidth can be F = 1/T where T is symbol period
[5]. In presence of frequency offset a wider filter (F > 1/T )
is required and the BER performance declines. The proposed
method aims at overcoming the impact of a wider filter on
DDPSK via modifying the autocorrelation stage. The proposed
method is explained for DDPSK but it can be directly used in
case of 2T-DDPSK. In the next section, first, improvement
of a single-stage autocorrelation demodulator is explicated.
Thereafter, the same idea is exploited to design a demodulator
for double differential detection.

III. THE PROPOSED DEMODULATOR

A. Single-Stage ACD
The proposed demodulator is designed for DDPSK since

the issue of a large filter will be a concern only when the
demodulator is supposed to afford large frequency offset. A
single-stage ACD is, in fact, a DPSK demodulator (and not
a DDPSK demodulator) which just eliminates phase offset.
Nevertheless, it is elaborated here to clarify the proposed
idea. In the following, it is assumed that the single side
bandwidth of the filter (F ) is a multiple of the data rate, similar
to [5]. The minimum sampling rate after the filter must be
F (according to the Nyquist theorem) for complex samples.
Thus, there are N = FT complex samples per symbol after
filter and at the input of ACD. Considering an AWGN channel,
such a sampling frequency ensures that noise samples are
white circularly symmetric Gaussian random variables. The
baseband equivalent of samples for a DPSK signal during the
nth symbol is:

rk,n = sk,ne
jθ + ηk,n (1)

Where rk,n is the kth sample from the nth symbol (k =
1, ..., N ); considering rectangular pulse shaping and neglecting
ISI (which is reasonable for large F ) sk,n = sn = ej2πi/M ,
i = 1, 2, ,M − 1 for MPSK; θ is phase offset and ηk,n for
all k are independent circularly symmetric Gaussian random
variables. Here, just the phase offset is included in the model
and frequency offset is assumed to be zero. In a conventional
demodulator the received samples of consecutive symbols are
correlated over a symbol period. This provides the output of
the ACD as follows.

Xn =

N∑
k=1

rk,nr
∗
k,n−1 (2)

Now, let us define XR
n,p and XL

n,p as:

XR
n,p =

N∑
k=p+1

rk,nr
∗
k−p,n−1 (3)

XL
n,p =

N−p∑
k=1

rk,nr
∗
k+p,n−1 (4)

This can be interpreted as increasing and decreasing (respec-
tively for XR

n,p and XL
n,p ) the delay of N samples in Fig.

1 while adjusting the limits of summation to make sure that
each term in the summation corresponds to the same pair of
symbols. It is, indeed, adding duplicate paths of correlation
between signal and its delayed version with adjusted delay
and summation blocks. In the proposed method for single-
stage ACD, the decision is made based on the sum of all
X

R(L)
n,p (XR

n,p or XL
n,p) values and Xn denoted by Xn,Tot.

Xn,Tot = Xn +

N−1∑
p=1

(XR
n,p +XL

n,p) (5)

According to (1) since sk,n is equal for all k in a symbol,
the individual signal components in Xn and all X

R(L)
n,p are

the same and just dependent on the phase difference between
two consecutive symbols. In Xn,Tot, signal components are
added coherently while noise components are added incoher-
ently. Therefore, the effective SNR increases leading to better
BER performance. If X

R(L)
n,p values are calculated and added

together for all p = 1, 2, ..., N − 1, the BER performance will
be exactly the same as in the FT = 1 case for arbitrarily large
N . This is shown in the next subsection.

B. Error Probability

It is difficult (if not impossible) to derive a closed form
expression for the error probability of the proposed method.
Therefore, to prove the effectiveness of the above method, an
alternative approach is adopted. The signal and noise com-
ponents of Xn,Tot are modeled. Then, the ratio of the signal
power to the power of each noise component is calculated
for FT = 1 and FT = N . As the distributions of noise
components are the same in both cases (it is shown in the
sequel), equal signal to noise ratio is equivalent to similar error
probability. First, the two basic assumptions are repeated:



(I). The sampling frequency equals F for each real and
imaginary part (FT = N complex samples per
symbol). This means that all noise samples (ηk,n)
are independent circularly symmetric Gaussian noise
CN (0, σ2) i.e. Re{ηk,n} and Im{ηk,n} are indepen-
dent Gaussian random variables N(0, σ2/2).

(II). Rectangular pulse shaping is assumed and ISI is ignored
which is reasonable when FT is large. So the signal
component of all samples in a symbol are the same.

Using the signal model (1) and replacing terms within (5) with
their expansions, after simple manipulations we have:

Xn,Tot = STot + (Hs)Tot + (Hη)Tot (6)

Where STot is signal component while (Hs)Tot and (Hη)Tot

are two noise components resulting from signal-by-noise and
noise-by-noise multiplication, respectively. These three com-
ponents in (6) are as follows:

STot =

N∑
k=1

sk,ns
∗
k,n−1

+

N−1∑
p=1

(

N∑
k=p+1

sk,ns
∗
k−p,n−1 +

N−p∑
k=1

sk,ns
∗
k+p,n−1)

= N2sns
∗
n−1 (7)

(Hs)Tot =

N∑
k=1

(sk,nη
∗
k,n−1 + s∗k,n−1ηk,n)

+

N−1∑
p=1

N∑
k=p+1

(sk,nη
∗
k−p,n−1 + s∗k−p,n−1ηk,n)

+

N−1∑
p=1

N−p∑
k=1

(sk,nη
∗
k+p,n−1 + s∗k+p,n−1ηk,n)

=

N∑
k=1

Ns∗n−1ηk,n +

N∑
k=1

Nsnη
∗
k,n−1 (8)

(Hη)Tot =

N∑
k=1

ηk,nη
∗
k,n−1 +

N−1∑
p=1

N∑
k=p+1

ηk,nη
∗
k−p,n−1

+

N−1∑
p=1

N−p∑
k=1

ηk,nη
∗
k+p,n−1

=

N∑
k=1

N∑
i=1

ηi,nη
∗
k,n−1 (9)

As a result of assumption (I) all individual terms within (8),
namely, Ns∗n−1ηk,n and Nsnη

∗
k,n−1 are independent circu-

larly symmetric Gaussian random variables CN (0, N2σ2);
thus, (Hs)Tot is CN (0, 2N3σ2). In (Hη)Tot, all terms
(ηi,nη∗k,n−1) are also independent complex random variables
where the real and imaginary parts have the same distribution.
In Re{(Hη)Tot} each component can be written as follows:

Re{ηi,nη∗k,n−1} = ηRe
i,nη

Re
k,n−1 + ηImi,n η

Im
k,n−1 (10)

Where the superscripts Re and Im denote real part and
imaginary part, respectively. ηRe

i,n, ηRe
k,n−1, ηImi,n and ηImk,n−1 are

independent Gaussian random variables (N(0, σ2/2)) accord-
ing to assumption (I). To obtain the distribution of the product
of two independent Gaussian random variables x and y with
zero mean and similar variance (σ2

x), xy can be written as
xy = (x + y)2/4 − (x − y)2/4 where x + y and x − y
are independent Gaussian variables with zero mean and 2σ2

x

variance. The square of such a Gaussian random variable
has a Gamma distribution with shape and rate parameters
equal to 1/2 and 1/σ2

x, respectively (Γ(1/2, 1/σ2
x)) [10].

Thus, the two terms of xy are independent Gamma distributed
random variables Γ(1/2, 4/σ2

x). Moreover, the sum of two
Gamma random variables, Γ(α1, β) and Γ(α2, β), is a Gamma
random variable with shape parameter α1 + α2 and rate
parameter β, (Γ(α1+α2, β)) [10]. Considering the distribution
of the components in (10) (which is N(0, σ2/2)) and the
above calculations, Re{ηi,nη∗k,n−1} is the difference of two
independent random variables with a Γ(1, 8/σ2) distribution.
Hence, Re{(Hη)Tot} is obtained as:

Re{(Hη)Tot} =

N2∑
i=1

Ri −
N2∑
i=1

Qi (11)

where Ri and Qi are independent random variables
with Gamma distribution (Ri, Qi ∼ Γ(1, 8/σ2)). Conse-
quently, the distribution of Re{(Hη)Tot} will be equal
to difference of two independent random variables with
Γ(N2, 8/σ2) distribution. The difference between two inde-
pendent Gamma random variables Γ(1/λ, 1/

√
λθ) is a ran-

dom variable with Double Gamma Difference (DGD(λ, θ))
distribution with a variance of 2θ [11]. So, the over-
all distribution of Re{(Hη)Tot} is a Double Gamma Dif-
ference distribution, DGD(1/N2, N2σ4/64). The variance
(power) of the noise component with such a distribution is
N2σ4/32. Doing similar calculations, Im{(Hη)Tot} also has
a DGD(1/N2, N2σ4/64) distribution. Since the real and the
imaginary parts are independent, the total power of (Hη)Tot

is N2σ4/16. Following the same procedure, the power of the
noise components for FT = 1 are 2σ2

1 and σ4
1/16 for (Hs)Tot

and (Hη)Tot, respectively, where σ2
1 is the noise power (at the

input of ACD) when the filter bandwidth is 1/T (FT = 1).
According to (7), the Power of the signal component in

Xn,Tot when FT = N is N4 times its value in the FT =
1 case. Besides, it is clear that σ2 = Nσ2

1 (for FT = N ,
the noise spectral density is the same while its bandwidth is
multiplied by N ). Taking all aforementioned into account, we
have the following equations for the SNR corresponding to
different noise components in the proposed decision variable
when FT = N :

SNRHs
=

N4Ps,1

2N3(Nσ2
1)

=
Ps,1

2σ2
1

(12)

SNRHη
=

N4Ps,1

N2σ4/16
=

Ps,1

σ4
1/16

(13)

Where Ps,1 is the power of the signal component in Xn,Tot

when FT = 1. As can be seen, the SNR corresponding to
both noise components ((Hs)Tot and (Hη)Tot) in the proposed



method when FT = N are the same as SNR values in case
of FT = 1. It means that the BER performance for the
proposed method is equal for both FT = 1 and FT = N . To
clarify the difference between the proposed method and the
conventional method, the SNR values corresponding to both
noise components in the output of a conventional single-stage
ACD with FT = N are calculated. In this case p = 0 and
there is only one path so the output is simply equal to Xn .

SNRHs =
N2Ps,1

2N(Nσ2
1)

=
Ps,1

2σ2
1

(14)

SNRHη =
N2Ps,1

Nσ4/16
=

Ps,1

Nσ4
1/16

(15)

As shown by (15), the ratio of signal power to the power of
(Hη)Tot for the proposed method (see (13)) is N times of
that for conventional single-stage ACD. However, as clarified
by (12) and (14) this ratio for (Hs)Tot is the same for the
proposed method as for the conventional method. In fact, in
the proposed method the individual Hs components that are
summed are completely correlated while the Hη components
are uncorrelated. As can be seen in (14), even for conventional
ACD, SNRHs

is equal for both FT = 1 and FT = N . In
other words, Hη (and not Hs ) is responsible for the difference
in BER performance for various FT values and the proposed
method removes the effect of this component.

C. The Proposed ACD for DDPSK

The block diagram of the proposed demodulator for DDPSK
is depicted in Fig. 2. Although in single-stage ACD, all XR

n,p

and XL
n,p values are added together to form the ultimate output

of the demodulator, these values for DDPSK cannot be simply
added and fed to the next stage of differential demodulation
(second stage of ACD). The reason is the different phase offset
in the signal component for each path resulting from frequency
offset. To solve this problem, it is necessary to first apply the
second differential decoder to each X

R(L)
n,p (to each path in Fig.

2) so that the additional phase offset is removed. Then, the
results can be simply added together to form the final output
of the demodulator, which is dn,Tot. Considering (1) and an
expansion similar to (6) for each X

R(L)
n,p , the output of each

path (dR(L)
n,p ) has nine components. For large SNR, the terms

including multiplication of noise components resulting from
first stage (HsHη and HηHη) are negligible (as the power of
noise sample in them is more than two); thus, dRn,p and dLn,p
can be approximated as follows:

dR(L)
n,p ≈ SR(L)

n,p S
R(L)
n−1,p

+SR(L)
n,p ((Hs)

R(L)
n−1,p)

∗ + (S
R(L)
n−1,p)

∗(Hs)
R(L)
n,p

+SR(L)
n,p ((Hη)

R(L)
n−1,p)

∗ + (S
R(L)
n−1,p)

∗(Hη)
R(L)
n,p (16)

Where S
R(L)
n,p , (Hs)

R(L)
n,p and (Hη)

R(L)
n,p are signal, signal-

by-noise and nois-by-noise components of X
R(L)
n,p , respec-

tively. As shown before, the proposed method does not affect
SNRHs

, so only the effect of noise components with Hη is
analyzed here. The rest of the mathematical calculations focus

Fig. 2. Block diagram of the proposed demodulator for DDPSK

on the sum of S
R(L)
n,p ((Hη)

R(L)
n−1,p)

∗ components (denoted by
S×H∗

η ) and the same can be derived for (SR(L)
n−1,p)

∗(Hη)
R(L)
n,p .

Since S
R(L)
n,p = (N − p)sns

∗
n−1

∆
= (N − p)zn, the correspond-

ing noise component in the demodulator output is:

S ×H∗
η = Nzn(Hη)n +

N−1∑
p=1

zn(N − p)((Hη)
R
n,p)

∗

+

N−1∑
p=1

zn(N − p)((Hη)
L
n,p)

∗ (17)

As explained before, all ηk,nη
∗
i,n−1 are independent random

variables so ((Hη)
R(L)
n,p )∗ for each p are complex random

variables (DGD distirbution for real and imaginary parts)
with a variance of (N − p)σ4/16. As the signal component,
zn(N−p), is a constant complex number, where znz

∗
n = 1(1),

the variance of each term inside the sum over p would be
(N − p)3σ4/16. All terms in the right hand side of (17) are
independent, so the total power is:

P(S×H∗
η )

=
N2(N2 + 1)

2

σ4

16
(18)

The signal component in dn,Tot which is the final output of
demodulator (sum of all paths) equals to:

S(dn,Tot),FT=N = znz
∗
n−1(N

2 + 2

N−1∑
p=1

(N − p)2) (19)

With a simple calculation it can be seen that the signal power
in the output of the proposed demodulator is N2(2N2+1)2/9
times of the signal power for FT = 1. As a result, the ratio of
the SNR corresponding to the S×H∗

η component for FT = N
and FT = 1 can be calculated as:

SNRS×H∗
η ,FT=N

SNRS×H∗
η ,FT=1

=
8N4 + 8N2 + 2

9N4 + 9N2
(20)

The limit of the above ratio when N approaches to infinity
is 0.89 while for N = 2 this ratio is 0.9. Using only Xn



Fig. 3. BER performance of the proposed method for DBPSK and 2T-
DDBPSK

as the output and similar to (15) the same ratio (as in (20))
for conventional DDPSK will be equal to 1/N . Although
SNRS×H∗

η ,FT=N for the proposed method is not completely
matched to the case of FT = 1, it is much higher than its
value for the conventional method. This higher SNR leads to
improved BER performance of the proposed method. Besides,
the minimum SNR, related to the discussed noise components
for the proposed demodulator equals 0.89 of its value for
FT = 1 even in case of arbitrarily large N.

IV. SIMULATION RESULTS

Similar to [5], BER curves are presented for different
values of FT which is the filter bandwidth normalized to
symbol rate. Fig. 3 depicts BER curves for binary DPSK
(DBPSK) and binary DDPSK (DDBPSK) using the proposed
method for FT = 1, 8, 16. In case of DBPSK, the BER
curves for all FT values exactly match the BER curve for
FT = 1 which is equal for both the conventional and the
proposed demodulators. For binary DDPSK, the proposed
method is applied to 2T-DDBPSK and the results are shown
for FT = 1, 8, 16. To demonstrate the improvement achieved
by the proposed method in case of DDBPSK, BER curves of
a conventional demodulator for FT = 8, 16 are illustrated.
It can be seen that for FT = 16 and BER = 10−3 more
than 2dB improvement is obtained. The slight difference in
BER performance for various FT values in the very low SNR
region is caused by the terms generated by higher powers of
noise. These are the same noise components neglected in our
calculations in previous section. For higher SNR, the effect of
these values decreases such that the BER curves get closer to
that of FT = 1. The small deviation from FT = 1 which
remains even for large SNR is due to the 11% decrease in
the SNRS×H∗

η ,FT=N (compared to FT = 1 case) which was
shown in previous section. The loss for all FT values is less
than 0.3 dB when a BER less than 10−2 is the target.

V. CONCLUSION

The BER performance of the autocorrelation demodulator
(ACD) for DDPSK in presence of large frequency offset was
considered. The bandwidth of the filter before the demodulator
should be selected according to the target range for frequency
offset tolerance. Although DDPSK is able to tolerate frequency
offset, the wide filter required in presence of large frequency
offset includes more noise which leads to BER performance
degradation. The proposed demodulator adds additional paths
to the conventional DDPSK demodulator and the sum of
demodulated signals in these paths is sent to the detector. As
shown, the proposed method increases SNR at the input of
the detector and compensates for SNR loss resulting from
the wider filter. Therefore, the BER performance remains
unchanged for all values of the filter bandwidth. The sim-
ulation results revealed that the proposed method leads to
more than 2dB improvement in Eb in case the single side
bandwidth of the filter is 16 times the data rate. For wider
filters i.e. wider range of frequency offset tolerance, this gain is
increasing. In the proposed method, improvement is achieved
at the cost of higher digital complexity. However, it reduces
the transmit power which is a considerable power saving in
a wireless communication link. Moreover, it eliminates the
requirement for a thermal compensated and costly crystal,
making it possible to have a low power and cheap receiver
for WSN applications.
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