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Abstract—This paper studies two different multiplexing prob-
lems for Device to Device (D2D) asynchronous communications
with different multi-carrier modulations. Several D2D pairs may
be multiplexed on the same Resource Blocks (RB) if they are
jointly able to reach a high Signal to Interference plus Noise
Ratio (SINR). In asynchronous communications, inter-channel
interference (ICI) is present on top of co-channel interference,
and the multiplexing problem can consequently not be split per
RB since RB are no longer orthogonal. In this paper, we derive
the system model that takes into account ICI and then study
the maximum multiplexing problem. Two heuristics based on
the Frobenius and the infinity norms that lead to lower bounds
on the multiplexing gain are proposed. Then, the maximum sum
SINR problem is studied with the infinity norm, showing that
higher rates are achieved with Filter Bank Multi-Carrier (FBMC)
modulation than with Orthogonal Frequency Division Multiplex
(OFDM).

I. INTRODUCTION

Device to Device (D2D) transmissions are new means to
achieve very high individual and sum data rates through multi-
plexing on the same frequency resources. Devices of the same
pair benefit from low propagation losses but some interfering
D2D pairs may be close to each others. Consequently, it is
necessary to find resource allocation algorithms that determine
which D2D pairs should be multiplexed on which Resource
Blocks (RB). These algorithms should lead to good trade-offs
between frequency orthogonality and full frequency reuse.

In this paper, we focus on the resource allocation prob-
lem for D2D pairs when interferences are received asyn-
chronously at each receiver. It is assumed that there is no
global synchronization reference, and that devices may start
their transmission independently. Then device receivers not
only have to cope with co-channel interference from the
devices that are multiplexed in the same RB, but also from
inter-channel interference (ICI) coming from adjacent RB.
Because of ICI, resource allocation cannot be performed
independently per RB, but must take into consideration the
whole bandwidth. This generates additional complexity and
requires new techniques, since this issue has not yet been
studied in the literature.

When ICI is not taken into account, the D2D multiplexing
problem has been investigated under the mathematical frame-
work of graph coloring in several recent papers [1]–[3]. The
vertices of the graph are D2D pairs, and an edge joins two
vertices if two D2D transmitters are not allowed to transmit in
the same RB because they would highly interfere each other’s
receivers. In [1], the edges in the graph are built depending
on the distance between D2D pairs and from D2D pairs to
cellular users. A weighted graph is defined in [2]. The weight
of an edge represents the interference between two vertices k

and j, summed over both transmit-receive k to j and j to k
directions. A heuristic is then proposed to maximize the sum
rate of cellular and D2D pairs, that iteratively selects the best
clustering in the graph and optimizes D2D power allocation for
a given clustering. An iterative algorithm based on branch-and-
bound has also been proposed in [3] when only one D2D pair
can be multiplexed with a cellular user per RB. Graph-coloring
was also used in our previous letter [4] for RB allocation in
asynchronous D2D communications, but this letter focused on
power allocation and did not propose new techniques for D2D
multiplexing.

On the contrary, this paper is fully dedicated to the D2D
multiplexing problem subject to a minimum target Signal to
Interference plus Noise Ratio (SINR) per subcarrier. Since
the initial problem is too complex, we determine two lower
bounds on the initial problem, one of them leading to a dis-
tributed solution. The proposed algorithms are valid whether
transmission is synchronous or not, and their performance is
evaluated with two multi-carrier modulations with different
ICI characteristics: Orthogonal Frequency Division Multiplex
(OFDM) and Filter Bank Multi-Carrier (FBMC) modulation.
The paper is organized as follows: section II introduces the
system model and provides a summary of the per-RB alloca-
tion system model derived in [4]. Then Section III determines
two D2D multiplexing heuristics for maximum multiplexing
and Section IV extends the second methodology to the sum
SINR maximum problem. The performance results of these
algorithms are compared in section V and conclusions are
given in Section VI.

II. SYSTEM MODEL

The studied scenario is D2D overlay, with K autonomous
D2D pairs sharing a bandwidth B which is different from
the cellular bandwidth. The bandwidth is separated in N RB
composed of M adjacent subcarriers, with L = M × N the
number of subcarriers. We assume that all D2D transmitters
are synchronous with their receiver, and asynchronous with
any other receiver. This is due to the varying propagation
durations from any transmitter to any other receiver, that may
be larger than the cyclic prefix in OFDM. Then, asynchronous
interferences are not fully handled by the cyclic prefix, and ICI
appears.

Based on prior work from [5], ICI is modelled as interfer-
ence weights to apply on the power vector. In each subcarrier,
all D2D receivers are subject to co-channel as well as inter-
channel interference. We assume that bandwidth and power
allocations is performed per RB. However, ICI is defined per
subcarrier. In our previous letter [4], we have derived a system



model’s formulation that allows to take into account the per-
RB allocation constraint and ICI, and still obtain a simple
expression of the data rates. In this paper however, we use
the per-subcarrier model at first, and then include the per-RB
allocation constraint directly in the RB allocation algorithm.

The ICI weights are modelled as a vector V = [V0, ...VL−1]
of size L, whose coefficients are set to zero whenever their
index exceeds the ICI spread. For instance, if we use LTE
parameters with symbol duration T = 66.6µs and cyclic prefix
duration is ∆ = 4.69µs, the ICI weight for OFDM when the
timing offset if uniformly distributed in [0;T +∆], is equal
to:

VOFDM =
[
6.89× 10−1, 9.47× 10−2, 2.37× 10−2,

1.05× 10−2, 5.9× 10−3, 3.8× 10−3, (1)

2.6× 10−3, 1.9× 10−3, 1.5× 10−3, 1.12× 10−3
]

Similarly, the ICI weights if we use FBMC as the multi-
carrier modulation with PHYDYAS filter [6], and if the timing
offset is uniformly distributed in [0;T ], is given by:

VFBMC =
[
8.23× 10−1, 8.81× 10−2

]
(2)

These expressions imply that with FBMC, ICI is generated in
only one adjacent subcarrier, whereas with OFDM, 9 adjacent
subcarriers are subject to ICI when a transmitter is active in a
single subcarrier.

Vector V is inserted in the L×L matrix Ḡkq representing
the channel gains from transmitter q to receiver k as follows:{

Ḡkq(i, j) = gkq(j)V|i−j| ∀k ̸= q

Ḡkk(i, j) = gkk(j)δi−j ∀k
(3)

where gkq(j) is the channel gain from transmitter q to receiver
k in subcarrier j and δx is the Kronecker delta. The global
channel gain matrix of size KL×KL is then:

G̃ =


Ḡ00 Ḡ01 . . . Ḡ0(K−1)

Ḡ10 Ḡ11 . . . Ḡ1(K−1)

...
. . .

...
Ḡ(K−1)0 Ḡ(K−1)1 . . . Ḡ(K−1)(K−1)

 (4)

Let p̃ be the stacked KL × 1 power vector, where P̃ l
k =

p̃(l + kL) is the power transmitted by D2D transmitter k in
subcarrier l. Then the SINR at D2D receiver k in subcarrier l
is:

SINRl
k =

G̃lk
lkP̃

l
k

nl
k +

∑K−1
j=0
j ̸=k

∑L−1
l′=0 G̃

lk
l′jP̃

l′
j

(5)

where nl
k is the noise at receiver k in subcarrier l.

The per-RB allocation constraint implies that the same
power should be allocated in all the subcarriers of a given
RB, for each user. Let Rr be the index set of subcarriers
corresponding to RB r and P r

k be the per-RB power allocated
by transmitter k in RB r. Then the following constraint holds:

P̃ l
k = P r

k ,∀r ∈ Rr (6)

III. D2D MULTIPLEXING MAXIMIZATION

A. Feasibility criterion

We consider the multiplexing problem of all K devices
on N RB, subject to a minimum SINR constraint. Let ark
be a binary value ark ∈ {0, 1}. Let γ be the target SINR
per subcarrier. If ark = 1, then D2D pair k is active in RB
r with its SINR in all subcarriers l ∈ Rr larger than γ.
Otherwise, ark = 0 and D2D pair is not allocated in RB r.
The objective of RB allocation is to determine the vector a
such that a(r + kN) = ark providing the optimum value of
a given optimization problem. Vector a must be optimized
considering co-channel and inter-channel interference coming
from all interfering D2D pairs.

The SINR condition is written as follows, for r ∈
{0, ..., N − 1} , l ∈ Rr, k ∈ {0, ...,K − 1}:

SINRl
k ≥ arkγ (7)

The set of constraints (7) is equivalent to KL equations:

P̃ l
k − arkγ

K−1∑
j=0
j ̸=k

L−1∑
l′=0

G̃lk
l′j

G̃lk
lk

P̃ l′

j ≥ arkγn
l
k

G̃lk
lk

(8)

In order to obtain a feasible solution to equations (8),
the allocation variable must be set per subcarrier ã such
that ã(l + kL) = alk. The per-RB allocation constraint is
written as: ãlk = ark,∀l ∈ Rr. Our objective is to maximize∑K−1

k=0

∑L−1
l=0 ãlk subject to the set of SINR constraints. We

can notice that at optimal value of the allocation vector ã, all
inequalities become equalities in the SINR constraints. Then
the KL equations can be written with matrix notations as
follows: (

IKL − ΓG̃−1
dir G̃int

)
p̃ = G̃−1

dir Γn (9)

where:
• G̃dir is the KL×KL diagonal matrix extracted from G̃

by only taking its diagonal values. It thus corresponds to
all direct channel gains.

• G̃int = G̃ − G̃dir is the KL ×KL matrix of interfering
channel gains.

• Γ is a diagonal KL×KL matrix such that Γ(l+kL, l+
kL) = ãlkγ

• n is the KL× 1 noise vector with n(l + kL) = nl
k,

To simplify notations, in the following, we note Ψ =
ΓG̃−1

dir G̃int. By Perron-Frobenius therorem, a feasible positive
power allocation leading to ãlkγ for all users and subcarriers
(k, l) exists if and only if the spectral radius of matrix Ψ, is
strictly less than 1 [7]. The spectral radius is noted ρ (Ψ) and
is defined as the largest absolute value of the eigenvalues of
matrix Ψ.

The maximum multiplexing problem aims at maximizing
the number of D2D pairs multiplexed on the RB. It is written
as follows:

arg max
ã∈{0,1}K×L

K−1∑
k=0

L−1∑
l=0

ãlk

s. t. ρ (Ψ) < 1

s. t. ãlk = ark,∀l ∈ Rr,∀k ∈ {0, ...,K − 1} (10)



This problem is highly complex since there are 2KN com-
binations in vector a and for each combination, computing
the spectral radius of Ψ requires O

(
(KL)3

)
operations. The

combinations can of course be ordered so as to test those with
largest number of active D2D pairs at first, and stop as soon
as one valid combination is obtained. However, in some cases,
the number of active D2D pairs that allow to fulfill the spectral
radius criterion may be low due to high interference, and the
number of tested combinations may increase in such a way
that complexity eventually becomes prohibitive.

In order to override these limitations, we propose two
heuristics of lower complexity based on the Frobenius and
the infinity norm. They are based on the following property
of the spectral radius: the spectral radius is upper bounded by
any norm of matrix Ψ.

B. Heuristic based on Frobenius norm

We first consider the Frobenius norm ∥.∥F and impose the
constraint: ∥Ψ∥2F < 1. This constraint implies that ∥Ψ∥F < 1.
Then as ρ (Ψ) < ∥Ψ∥F , the spectral radius constraint ρ (Ψ) <
1 to ensure multiplexing feasibility is fulfilled. The following
problem is consequently studied:

arg max
ã∈{0,1}K×L

K−1∑
k=0

L−1∑
l=0

ãlk

s. t. ∥Ψ∥2F < 1

s. t. ãlk = ark,∀l ∈ Rr,∀k ∈ {0, ...,K − 1} (11)

The solution of problem (11) provides a lower bound in terms
of multiplexing on the solution of the initial problem (10).

The squared Frobenius norm of matrix Ψ is:

∥Ψ∥2F =

K−1∑
k=0

L−1∑
l=0

K−1∑
j=0

L−1∑
l′=0

(Ψ)
2
(l + kL, l′ + jL)

= γ2
K−1∑
k=0

L−1∑
l=0

ãlk

K−1∑
j=0
j ̸=k

L−1∑
l′=0

(
G̃(l + kL, l′ + jL)

G̃(l + kL, l + kL)

)2

(12)

since
(
ãlk
)2

= ãlk. Moreover, by including constraint ãlk =
ark ∀l ∈ Rr in equation (12), the squared Frobenius norm
becomes:

∥Ψ∥2F = γ2
K−1∑
k=0

N−1∑
r=0

ark
∑
l∈Rr

K−1∑
j=0
j ̸=k

L−1∑
l′=0

(
G̃(l + kL, l′ + jL)

G̃(l + kL, l + kL)

)2

(13)

Let us define

βr
k =

∑
l∈Rr

K−1∑
j=0
j ̸=k

L−1∑
l′=0

(
G̃(l + kL, l′ + jL)

G̃(l + kL, l + kL)

)2

(14)

The optimization problem (11) is finally written as:

arg max
a∈{0,1}K×N

K−1∑
k=0

N−1∑
r=0

ark

s. t. γ2
K−1∑
k=0

N−1∑
r=0

βr
ka

r
k < 1 (15)

This is a binary knapsack problem with non-integer weights
β. The variables set has been reduced to KN binary elements.
This problem can be solved with linear integer programming
techniques of pseudo-polynomial complexity [8].

C. Heuristic based on infinity norm

The second heuristic is obtained by using the infinity norm
∥.∥∞ as an upper bound to the spectral radius. The heuristic
providing a lower bound to the solution of the initial problem
is:

arg max
ã∈{0,1}K×L

K−1∑
k=0

L−1∑
l=0

ãlk

s. t. ∥Ψ∥∞ < 1

s. t. ãlk = ark,∀l ∈ Rr,∀k ∈ {0, ...,K − 1} (16)

The infinity norm ∥Ψ∥∞ is defined as follows:

∥Ψ∥∞ = max
0≤k≤K−1
0≤l≤L−1

K−1∑
j=0

L−1∑
l′=0

(Ψ) (l + kL, l′ + jL)

= max
0≤k≤K−1
0≤l≤L−1

K−1∑
j=0
j ̸=k

L−1∑
l′=0

ãlkγ
G̃(l + kL, l′ + jL)

G̃(l + kL, l + kL)
(17)

To simplify notations, let us define El
k :

El
k = γ

K−1∑
j=0
j ̸=k

L−1∑
l′=0

G̃(l + kL, l′ + jL)

G̃(l + kL, l + kL)
(18)

Constraint ∥Ψ∥∞ < 1 is then equivalent to ãlkE
l
k < 1 for all

(k, l). This constraint is only fulfilled if ãlk = 0 whenever
El

k ≥ 1. This solution is optimal since all values of ãlk
are equal to 1, except those that would violate condition
∥Ψ∥∞ < 1. The sum of ãlk under this constraint is then at
its maximum. Finally, since resource allocation is performed
per RB, if El

k ≥ 1 on at least one subcarrier l ∈ Rr,
then D2D pair k is not multiplexed on RB r. The infinity
norm provides a distributed algorithm: at each receiver, El

k

is computed depending on local information, that is deduced
from the received interfering channel gains. This feature is
quite appealing for future implementation of this algorithm in
practical D2D networks.

After RB allocation has been performed, the power vector is
directly obtained by inverting matrix (IKL −Ψ) in equation
(9) :

p̃∗ = (IKL −Ψ)
−1

G̃−1
dir Γn (19)

Since this power vector is defined per subcarrier, the transmit
power of transmitter k in RB r is finally chosen as the
maximum transmit power of k in all subcarriers of RB r.

IV. D2D DISTRIBUTED SUM SINR MAXIMIZATION

We now assume that a can take any integer value. Then,
the SINR per D2D receiver and RB is a multiple of γ. With
the same reasoning as in the previous section, all D2D pairs
k can jointly achieve their SINR arkγ in all subcarriers of RB
r if ρ(Ψ) is lower than 1. Then, the maximum sum SINR



optimization problem with SINR multiple of γ is written as
follows:

arg max
ã∈NK×L

K−1∑
k=0

L−1∑
l=0

ãlk

s. t. ρ(Ψ) < 1

s. t. ãlk = ark,∀l ∈ Rr (20)

In order to obtain a distributed criterion, the spectral radius is
upper-bounded by the infinity norm. The optimization problem
becomes:

arg max
ã∈NK×L

K−1∑
k=0

L−1∑
l=0

ãlk

s. t. max
0≤k≤K−1
0≤l≤L−1

ãlkE
l
k < 1

s. t. ãlk = ark,∀l ∈ Rr (21)

where El
k is defined by eq. (18). The first constraint is

equivalent to the following set of constraints:

ãlkE
l
k < 1 ∀(k, l) ∈ {0, ...,K − 1} × {0, ..., L− 1} (22)

Let ϵ be a very small positive value. The optimal integer value
for ãlk is equal to:

ãlk =

⌊
1− ϵ

El
k

⌋
(23)

Then ark is obtained as the minimum of all ãlk, ∀l ∈ Rr, so
that the same minimum SINR is reached on all subcarriers l
in RB r.

ark = min
l∈Rr

{
ãlk
}

(24)

The transmit power values are then computed with eq. (19).

V. SIMULATION RESULTS

We consider a varying number of D2D pairs K = 12 to
24 whose transmitters are uniformly located in a cellular area
of radius 500 m. Each D2D receiver is uniformly located at
most at 50 m from its D2D transmitter. Thermal noise n0

is white additive Gaussian with power spectral density −174
dBm/Hz. Shadowing follows a log-normal distribution with
standard deviation equal to 4 dB. γ is equal to 10 dB. The path
loss model is small cell’s path loss: LdB = 140+36.8 log10(d),
where d is expressed in km. Multi-path fading is computed
with Indoor Channel-B model [9]. The number of RB is N =
25, which in LTE corresponds to a 5 MHz bandwidth. The
ICI weights were given in Section II.

A. Maximum multiplexing problem

The performances of maximum multiplexing heuristics
are compared with a Frequency Division Multiple Access
(FDMA) solution, where each D2D pairs gets the same amount
of RB, and RB are randomly allocated to D2D pairs. Each
D2D transmitter then uses equal power allocation on its
allocated RB.

Fig. 1 shows that the average data rate is greatly improved
by multiplexing. Moreover, using the infinity norm instead of
the Frobenius norm is also beneficial, in terms of multiplexing
(see Fig. 2) as well as in average data rate. When the Frobenius
norm is used, the number of multiplexed pairs depends on
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∥Ψ∥F
2, which is lower than ∥Ψ∥F when this latter is lower

than 1. Consequently, constraint ∥Ψ∥F
2
< 1 is too severe

and highly decreases the multiplexing gain. It can be further
inferred that any l-norm with l > 2 would lead to even
worse results. The infinity norm and the 1-norm are the only
norms that allow avoiding this issue. Yet, the infinity norm
has the great advantage of leading to a distributed algorithm,
contrary to the 1-norm. The average data rate achieved with the
infinity norm is higher with FBMC than with OFDM because
there is no overhead due to cyclic prefix. Since power values
and interferences are very low, the influence of ICI is almost
negligible in this scenario, contrary to what was obtained with
larger rates and power control in [4]1.

B. Maximum sum rate problem

Fig. 3 and 4 show the Cumulative Distribution Function
(CDF) of the average data rate and of the transmit power,
respectively, when the maximum sum rate problem is studied.
The achieved data rate is highly unfair because some D2D

1Moreover, the same algorithm has been tested with Fast Fourier Transform-
FBMC (FFT-FBMC) [10], that has even better frequency localization than
FBMC, and similar results have been obtained.
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pairs obtain very high values of ark, while some others obtain
no RB at all. High data rates are achieved for the D2D pairs
that are almost isolated. The average transmit power increases
with the number of D2D pairs due to larger interference values
that must be compensated for by power. However, the transmit
power remains very low thanks to small transmitter-receiver
distance.

C. Distance to the optimal solution

Finally, in this section, we compare the average data rate
obtained with the infinity norm criterion, by solving problem
(21), and the optimal maximum multiplexing solution achieved
when solving the initial problem (10) using the spectral radius.
We do not test the Frobenius norm criterion since it was
shown to be less efficient than the infinity norm criterion.
Due to the large complexity of solving (10) when the number
of combinations to be tested is large (which corresponds to
high interference cases and takes place when some D2D pairs
are close), lower parameters are set: the number of RB is
limited to 6 and the number of D2D pairs varies from 4 to 6.
Only the FBMC case is evaluated, but similar results would
be obtained with OFDM. Table I shows that the distance in

terms of average data rate between the optimal solution and
the solution obtained with the infinity norm heuristic is quite
low. It is limited to 9%. With larger number of D2D pairs
and of RB, this gap would most probably increase, but then
the complexity of solving the initial problem becomes highly
impractical.

TABLE I
AVERAGE DATA RATE DEPENDING ON THE CHOSEN ALGORITHM

(MBITS/S)

K Optimal algorithm Infinity norm criterion Rate decrease

4 3.62 3.30 8.98%

5 3.66 3.35 8.35%

6 3.51 3.22 8.31%

VI. CONCLUSIONS

This paper has investigated the maximum multiplexing and
the maximum sum SINR problems for asynchronous D2D
communications. The system model including ICI has been
obtained, and three heuristics have been proposed for RB
allocation. The heuristic based on the infinity norm provides
far larger multiplexing gains and data rates than that based
on the Frobenius norm. The achieved data rates are within
a reasonable distance to the ones obtained by solving the
optimal initial problem, that should not be used due to its large
complexity. Moreover, very high average data rates can be
obtained when considering the maximum sum SINR problem,
which emphasizes the benefits of D2D communications.
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