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Abstract—This paper considers the issue of passive localization
based on time of arrival (TOA) measurement in the presence
of receiver detection failures. In passive localization, the signal
sent from the transmitter is reflected or relayed by “passive”
target and then received at several distributed receivers. The
target’s position can be determined by collecting range mea-
surements from all receivers. With a linearized model for range
measurements, we build a factor graph model and implement
Gaussian message passing algorithm to obtain target location
and detect link failures. The Cramér-Rao bound (CRB) is also
derived to evaluate the performance of the proposed algorithm.
Simulation results verify the effectiveness of the proposed factor
graph approach.

Index Terms—Passive Localization, Time of Arrival, Factor
Graph, Message Passing, Detection Failure, Cramér-Rao bound

I. INTRODUCTION

For many applications in wireless networks, to obtain the lo-
cations of nodes is demanded and therefore has attracted much
interest in the recent years. Generally, the locations of nodes
are determined based on some nodes with known positions
and range measurements. The measurement techniques can be
divided into three categories: angle of arrival (AOA), time of
arrival (TOA) and received signal strength (RSS). Amongst all
techniques, TOA measurement using ultra-wideband (UWB)
signaling can provide high-precision distance estimation [1].
In this paper, we mainly focus on the TOA-based methods.

Different from conventional ‘active’ localization problems,
in passive localization, the signal sent from the transmitter is
reflected or relayed by the target and then acquired by the
receivers, as shown in Fig. 1. The observed range measure-
ments trace out serval ellipses with the target and receivers as
foci. The location estimate of the passive target is given by
the intersection of those ellipses. Most existing localization
methods are designed for active localization. For TOA based
passive localization, only a few papers can be found in the
literature from the views of inaccurate positions of receivers
and synchronous networks [2]–[4].

In practical implantations, the receivers may fail to obtain
the range measurements in harsh environmental conditions.
Such failures have to be detected in order to ensure the quality

Receiver TargetTransimitter

Fig. 1. In passive case, the signal is reflected by the target and acquired at
receivers and the location is determined based on the measurements collected
at receivers.

of measurements and localization accuracy. For localization, a
detection approach based on RSS measurements is proposed in
[5], which is effective in indoor environment. Based on graph
embeddability and rigidity theory, the authors in [6] build a
theoretical foundation to identify detection failures. However,
there is little work found in the literature which considers the
problem of joint passive localization and link failure detection.

In this paper, we propose a factor graph approach [7] to
the joint passive localization and receiver failure detection
problem. Based on the factor graph representation, message
passing algorithm is employed to determine the “belief” of
target’s location. Due to the nonlinear Euclidean norm in
range measurement, the integration in conventional message
updating is intractable. Monte Carlo methods, e.g., particle
filtering [8], can solve this problem but with huge complexity.
To tackle this problem, we linearize the square root terms in
range measurement. Consequently, a linear state space model
is derived and Gaussian message passing [9] is employed.
Since only multiplication and addition operations are involved
in message updating, the computational complexity is reduced
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significantly. Furthermore, the Cramér-Rao bound is derived
to evaluate the performance of the proposed algorithms. Sim-
ulation results show that the proposed algorithm can improve
the performance of passive localization in the presence of
detection failures.

Notation: (·)T and (·)−1 denote the transpose and the
inverse operator, respectively; ∥·∥ denotes the Euclidean norm;
·̂ denotes the estimate of an unknown variable; E denotes the
expectation operator; δ(·) denotes the Dirac delta function; ∝
denotes the function on the left hand is proportion to the right
hand; the ∇x denotes the differential operator with respect to
x; A ≽ B denotes that A−B is positive semi-definite.

II. PRELIMINARIES

Consider a network with one moving target, one static
transmitter and M = |M| fixed receivers, where M is the
set of all receivers, as shown in Fig. 1. Without loss of
generality, we denote the location of the target at time k by
xk = [xk, yk]T , the location of transmitter by xt = [xt, yt]

T ,
the location of the ith receiver xi = [xi, yi]

T . The range
measurement from transmitter via the target to the ith receiver
is

z̄ki = dki + nki = ∥xk − xt∥+ ∥xk − xi∥+ nki , (1)

where the noise nki is typically modeled as Gaussian with zero
mean and variance σ2

i . Thus the likelihood function is given
by

p(z̄ki |xk) =
1√
2πσ2

i

exp

(
−
(
z̄ki − ∥xk − xt∥ − ∥xk − xi∥

)2
2σ2

i

)
.

(2)

If the receiver is working as expected, the observation is
the range measurement. In contrast, if the faulty receiver
fails to detect the TOA signal, the observation only contains
measurement noise, formulated as

zki =

{
z̄ki Functioning
nki Detection Failure. (3)

III. PASSIVE LOCALIZATION USING FACTOR GRAPH
APPROACH

A. Probabilistic Model

With the prior knowledge of the detection failure occurrence
probability po, the likelihood function is given by

p(zki |xk) ∝ (1− po) · exp

(
−
(
zki − dki

)2
2σ2

i

)

+ po · exp
(
− (zki )

2

2σ2
i

)
. (4)

We further denote the collection of all range measurements
at time k as zk = [zk1 , ..., z

k
M ]T and z = [z1, ..., zn], and the

collection of target location to time n as x = [x1, ...,xn]. With
the assumption that the measurement noise is independent of

time stamps and receivers, the global likelihood function is
formulated as follows,

p(z|x) =
n∏
k=1

M∏
i=1

p(zki |xk). (5)

The goal is to determine the target location in real time by
exploiting all range measurements z at receivers, equivalently,
to determine the posterior distribution of x. Using Bayesian
rule,

p(x|z) = p(x) p(z|x) (6)

where p(x) can be regarded as joint a priori distribution of
target location. Since the target is moving continuously, p(x)
follows the Markov chain,

p(x) = p(x0)

n∏
k=1

p(xk|xk−1), (7)

where p(xk|xk−1) is referred to as state transition probability
which is related to the state transition function and p(x0) is
the initial prior information. The state transition function is
given as

xk = xk−1 + δt ŝ
k−1 +∆s, (8)

where ŝk−1 = [ŝk−1
x , ŝk−1

y ] is the estimated velocity at time
k−1, i.e., ŝk−1 = (x̂k−1− x̂k−2)/c, δt is duration of the time
slot and ∆s is state transition noise with Gaussian distribution
N (∆s,0,Vs). Therefore, (6) is factorized as

p(x|z) = p(x0)

n∏
k=1

p(xk|xk−1)

n∏
k=1

M∏
i=1

p(zki |xk). (9)

Generally, we focus on the target location at time k under
MAP criterion

x̂k = argmax
x

p(xk|z), (10)

which requires the marginal distribution of xk. Direct
marginalization by using p(xk|z) =

∑
x\xk p(x|z) is in-

tractable due to complexity increased exponentially with the
scale of x. The factor graph approach is an efficient way
to solve this kind of problem by leveraging the conditional
independence of variables. However, due to the nonlinear
square root terms in range measurement, conventional message
passing algorithm [7] is infeasible to implement analytically.
To this end, we develop a low complexity algorithm for passive
localization based on Gaussian message passing (GMP).

B. The Proposed Algorithm

Note that the observation zki in (3) can be written in a
general form by introducing a binary state ψki = {0, 1}, which
is shown as

zki = ψki (∥xk − xt∥+ ∥xk − xi∥) + nki , (11)
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k

n1

nM

. . .

. . . ψkMψk1

rk1 rkM

+ +xk−1 ẋk1 xk
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Fig. 2. Factor graph for joint TOA passive localization and receiver failure
detection. The node × denotes the multiplication of two variables, i.e.,
z = x · y.

where ψki = 1 indicates the ith receiver is functioning
whereas ψki = 0 indicates the malfunctioning case. The prior
distribution of ψki is Bernoulli distribution, i.e.,

p(ψki ) = p
1−ψk

i
o (1− po)ψ

k
i . (12)

To tackle the nonlinear square root terms, at time k and
in the lth iteration, we expand the Euclidean distance around
the previously estimated locations of target by the first order
Taylor expansion as,

zki = ψki

(
A
k,(l−1)
i x+B

k,(l−1)
i

)
+ nki , (13)

with A
k,(l−1)
i and Bk,(l−1)

i defined as

A
k,(l−1)
i =

(x̂k,(l−1) − xi)
T

∥x̂k,(l−1) − xi∥
+

(x̂k,(l−1) − xt)
T

∥x̂k,(l−1) − xt∥
(14)

Bk,(l−1) =∥x̂k,(l−1) − xi∥+ ∥x̂k,(l−1) − xt∥
−A

k,(l−1)
i x̂k,(l−1). (15)

Based on the linear state space model given by (8) and
(13), the Forney style factor graph (FFG) for joint passive
localization and receiver failure detection is depicted in Fig. 2.
The Gaussian message passing rules on FFG has been derived
in [9]. We use W = V−1 to denote the weight matrix.
Since the product of two unknown variables is involved in
the factor graph, we use the multiplier node × to denote
the multiplication constraint. In order to apply GMP, we
approximate the discrete variable ψki as a Gaussian variable
by expectation propagation (EP) [10]. Assuming ←−mψk

i
and

←−
V ψk

i
are available from the previous iteration, the mean and

variance of the belief b(ψki ) is given as1

mψk
i
= (1− po)

1√
2π
←−
V ψk

i

exp

(
−
(1−←−mψk

i
)2

2
←−
V ψk

i

)
, (16)

Vψk
i
= mψk

i
−m2

ψk
i
. (17)

1It should be noted that the first and second order moments of b(ψk
i ) are

identical.

Then −→mψk
i

and
−→
V ψk

i
are given as

−→
V ψk

i
=

Vψk
i

←−
V ψk

i

Vψk
i
−
←−
V ψk

i

, (18)

−→mψk
i
=
mψk

i
Vψk

i
−←−mψk

i

←−
V ψk

i

Vψk
i
−
←−
V ψk

i

(19)

Note that for a multiplier node z = xy, even the mes-
sages −→µ x and ←−µ z are Gaussian, the message −→µ y cannot be
written in Gaussian form. To tackle this problem, variational
message passing is utilized instead of SPA on the multiplier
node. Thereby the corresponding messages are obtained in
Gaussian closed form without any further approximation. The
derivations of Gaussian VMP are given in Appendix A. The
Gaussian messages for the multiplier node are given by

←−
V ψk

i
=

σ2
i

Vrki +m2
rki

, (20)

←−mψk
i
=

zkimrki

Vrki +m2
rki

, (21)

←−
V rki

=
σ2
i

Vψk
i
+m2

ψk
i

, (22)

←−mrki
=

zkimψk
i

Vψk
i
+m2

ψk
i

, (23)

with

Vrki =
←−
V rki

+
−→
V rki

, (24)

mrki
= V −1

rki
(
←−
W rki

←−mrki
+
−→
W rki

−→mrki
). (25)

Then following GMP rules, the belief of target is obtained as

−→
Vxk =

(
−→
Wẋk

1
+

M∑
i=1

←−
Wxk

i

)−1

=

(
−→
Wẋk

1
+

M∑
i=1

Ak,T
i Ak

i←−
V rki

)−1

,

(26)

−→mxk =
−→
Vxk

(
−→
Wẋk

−→mẋk +

M∑
i=1

Ak,T
i
←−mrki←−

V rki

)
. (27)

Moreover, after determining←−mψk
i

and
←−
V ψk

i
, the state of ψki

can be decided based on log-likelihood ratio (LLR),

LLR(ψki ) =
1− 2←−mψk

i←−
V ψk

i

+ ln
1− po
po

. (28)

If LLR(ψki ) < 0, we say that the receiver detection fails and
vice versa. Finally, it is able to estimate the target location via
(26) (27) and decide the states of sensors based on LLR in
(28).

Overall, since all messages in the proposed algorithm are
described by means and covariance matrices, the computa-
tional complexity is much lower than the particle filtering
based conventional message passing algorithm.



IV. CRAMÉR-RAO LOWER BOUND

The Cramér-Rao bound (CRB) establishes the lower bound
of the variance of an estimator. For parameters τ to be
estimated, it follows the CRB theorem that

cov(τ̂ ) ≽ F−1, (29)

where F is the Fisher information matrix (FIM).2 F is given
by

F = −E
[
∇τ

{
∇τ

(
ln p(τ |zk)

)}]
(30)

= −E
[
∇τ

{
∇τ

(
ln p(zk|τ )

)}]︸ ︷︷ ︸
F1

−E [∇τ {∇τ (ln p(τ ))}]︸ ︷︷ ︸
Fp

,

F1 and Fp are the Fisher “information” from observations at
time k and from previous state. For a vector τ = [τ1, ..., τN ]T

of N parameters to be estimated, Fp is an N × N diagonal
matrix

Fp = diag{1/σ2
τ1 , ..., 1/σ

2
τN }, (31)

which is related to the variance of previous time slot and
the state transition noise. F1 is also an N × N matrix with
respect to the likelihood function. Next, we will consider the
computation of F1 in detail.

For the considered case, τ = x = [x, y]T . Note that the
probability of detection failure occurrence po may change, thus
the CRB is different with respect to different po. Based on the
independent assumption of measurement noise, we have

F1 = E
[
∂2 ln

∏
i p(zi|x)

∂x2

]
=

M∑
i=1

E
[
∂2 ln p(zi|x)

∂x2

]
. (32)

Considering the calculation of ∂2 ln p(zi|x)
∂x2 , with (4) and the

shorthand notation f(zi) = − (zi−di)2
σ2
i

, f(ni) = − z2i
σ2
i

and

const = − ln
√
2πσ2

i , ln p(zi|x) follows

ln p(zi|x) = const + ln
(
(1− po)ef(zi) + poe

f(ni)
)
,

= const + ln
(
ef(zi)+ln(1−po) + ef(ni)+ln po

)
. (33)

Based on (33), the FIM F1 can not be given analytically
but can only be determined by means of numerical method.
In order to derive an analytical FIM, we further employ the
Jacobian logarithm to simplify (33). It is well known that, for
real numbers a1 and a2

ln(ea1 + ea2) = max{a1, a2}+ ln(1 + e−|a1−a2|). (34)

Generally, for large |a1 − a2|, ln(1 + e−|a1−a2|) ≈ 0. Based
on this approximation, (33) can be approximated as

ln p(zi|x) ≈ const +max {f(zi) + ln(1− po), f(ni) + ln po} .

=

 ln 1−po√
2πσ2

i

− (zi−di)2
σ2
i

, di(2zi − di) ≥ ϵ,

ln po√
2πσ2

i

− (zi)
2

σ2
i
, di(2zi − di) < ϵ,

(35)

2Since the localization system is time-variant, here we analyze the CRB at
time k for example. The superscript k is omitted for simplicity.
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Fig. 3. CDF of target location of proposed algorithm with the occupance
probability po = 0.2

where the threshold ϵ = σ2
i ln

po
1−po .

For the case ln p(zi|x) ≈ ln 1−po√
2πσ2

i

− (zi−di)2
σ2
i

, the second

order partial derivative has the form

∂2 ln p(zi|x)
∂x2

=
1

σ2
i

[
J2
11 J11J21

J21J11 J2
21

]
(36)

where J11 = x−xt√
(x−xt)2+(y−yt)2

+ x−x1√
(x−x1)2+(y−y1)2

and

J21 = y−yt√
(x−xt)2+(y−yt)2

+ y−y1√
(x−x1)2+(y−y1)2

. For the other

case, the partial derivative results in a zero matrix 0 which
means in this case, the measurement cannot provide any
“information” for locating the target. The total FIM F can
then be given based on (32), and the CRB is given by
cov(x̂) ≽ F−1.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of proposed
algorithms. A 200 × 200 m2 plane with one moving target,
one transmitter and 6 receivers is considered in the simu-
lations. The transceivers are assumed to be located at fixed
positions, i.e., xt = [0, 0]T, x1 = [80, 10]T, x2 = [10, 80]T,
x3 = [130, 20]T, x4 = [20, 130]T, x5 = [180, 30]T and
x6 = [30, 180]T. For brevity, the measurement noise is set
to σ2

i = 2 m2,∀i ∈M unless specified. We consider 20 time
slots and the number of message passing iterations at a single
time slot is L = 10.

In Fig. 3, the CDF of target location with the detection
failure occupance probability po = 0.2 is plotted. Obviously,
when the faulty measurements observed at sensors are used
without detection, the localization performance is seriously
affected. The particle based message passing without Gaus-
sian approximation has the best performance at the cost of
huge complexity. We can further observe that using EP to
approximate the discrete variable to Gaussian has superior
performance than matching the moments of its prior directly.
This is because EP can exploit the information obtained from
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the measurements, or in other words, the extrinsic information.
Then in Fig. 4 the mean squared error (MSE) of target location
with varying po ∈ [0.1, 0.9] is depicted. The approximated
CRB derived from the FIM (36) and true CRB obtained using
numerical method are drawn as benchmarks. It is observed
that the approximated CRB is close to the true one. In the
region of small po, the proposed is shown to be robustness
to the detection failures. When po becomes larger, the MSE
of the proposed algorithm and its CRB both degrade due to
insufficient number of functioning receivers. In this situation,
the Fisher information F solely depends on Fb from previous
state.

VI. CONCLUSIONS

In this paper, we consider the issue of receiver detection
failures in TOA based passive localization based on a fac-
tor graph framework and employ Gaussian message passing
techniques to solve it efficiently. To reduce the complexity of
particle based method, we linearized the range measurement
to obtain a linear state-space model for the proposed passive
localization problem. Then the Cramér-Rao bound is derived to
evaluate the localization performance. Simulation results show
that the performance of proposed algorithm is close to that of
the high complexity particle based method and can attain the
Cramér-Rao bound.

APPENDIX A
DERIVATION OF GAUSSIAN VARIATIONAL MESSAGE

PASSING

Consider a multiplication constraint δ(z − xy), under
the SPA rules and Gaussian assumption of µy→δ(y) ∝
N (y,my, Vy), the message µδ→x is given as

µδ→x(x) =

∫
δ(z − xy)µy→δ(y)dy (A1)

= exp

(
−
( zx −my)

2

2Vy

)
= exp

(
−
m2
y(x− z

my
)2

2x2Vy

)
.

Note that the equation (A1) can not be written in Gaussian
since variable x is in both the numerator and denominator. Cor-
respondingly, the message µδ→y(y) suffers the same problem.
In some communication problem like “turbo” equalization,
the variable x may hold the energy normalization constraint
that x2 = 1, then µδ→x(x) is still Gaussian. However, this
constraint is not available in the localization problem since
the range measurement can not be normalized. Therefore to
implement the low complexity Gaussian message passing, we
employ the variational message passing (VMP) [11].

The message in VMP is obtained via expectation of the log
likelihood function with respect to other variables, i.e.

µf→x(x) = exp(Ey(ln f(x,y)b(y))), (A2)

where b(y) is the belief of y. Considering the multiplier node
in Fig. 2, the observation model is zki = ϕki r

k
i +ni. Hence the

message from × to ϕki is calculated as,

µ×→ϕk
i
(ϕki ) ∝

C · exp

(
−
∫

(zki − ϕki rki )2

2σ2
i

exp

(
−
(rki −mrki

)2

2Vrki

))

∝ exp

(
−(ϕki )2

Vrki +m2
rki

σ2
+ 2ϕki

zkimrki

σ2

)
∝N (ϕki ,

←−mϕk
i
,
←−
V ϕk

i
), (A3)

with ←−mϕk
i

and
←−
V ϕk

i
shown in (20) and (21). ←−mrki

and
←−
V rki

are determined in a similar way, which is also in Gaussian
form.
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