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Abstract—We consider a set of cellular users associated with
a base station (BS) in a cellular network that employs Device-to-
device (D2D) communication. A subset of the users request for
some files from the BS. Now, some of the users can potentially
act as relays and forward the requested files, or partitions of
files, from the BS to some of the requesting users (destination
nodes) over D2D links. However, this requires cooperation among
the cellular users. Also, when cellular users cooperate with each
other, the total amount of energy consumed in transferring the
requested files from the BS to the destination nodes can usually
be considerably reduced compared to the case when each user
separately downloads the file it needs from the BS. In this
paper, we seek conditions under which users have an incentive
to cooperate with each other. To this end, we model the above
scenario using the frameworks of cooperative game theory and
stable partitions in coalitional games. We consider two different
models for file transfer within a coalition: (i) Model A, in which
the BS can split a file into multiple partitions and send these
partitions to different relays, which multicast the partitions to
the destination nodes of the coalition, and (ii) Model B, in which
for each file, the BS sends the entire file to a single relay, which
multicasts it to the destination nodes of the coalition. First, we
explore the question of whether it is beneficial for all the cellular
users to cooperate, i.e., whether the grand coalition is stable.
For this we use the solution concept of core from cooperative
game theory. We show that, in general, the above coalitional
game under Model A may have an empty core, i.e., it may not
be possible to stabilize the grand coalition. Next, we provide
conditions under which 1) the core is always non-empty and
2) a Dc-stable partition always exists. Also, we show that under
Model B, the problem of assigning relays to destination nodes
so as to maximize the sum of utilities of all the users is NP-
Complete. Finally, we show via numerical computations that a
significant reduction in the energy expenditure of cellular users
can be achieved via cooperation.

I. INTRODUCTION

The demand for data in cellular networks has seen an
explosive growth over the past decade. As per the white paper
released by CISCO [2], the amount of global mobile data
demand will increase seven-fold between 2016 and 2021. A
straightforward solution is to increase the cell density in the
congested areas of the network, thereby increasing network
capacity [3]. However, this will also result in increased capital
and operational costs to cellular operators. One alternative to
avoid this is to use the concept of Device-to-device (D2D)
communication to improve the performance of the network [4].
When D2D communication is used, a base station (BS) can
use some of its associated cellular users as relays to forward
data to other users over D2D links. Also, often multiple users
request the same file (e.g., a popular file); in this case, a
relay can multicast the file, or a partition of the file, over
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D2D links to some of the nearby users requesting it [5].
When such relaying is employed, the total amount of energy
consumed in transferring the requested files from the BS to
the requesting users (henceforth called destination nodes) can
usually be considerably reduced compared to the case when
each destination node separately downloads the file it needs
from the BS [6], [7]. Such offloading of data by the BS
to D2D links can also improve the capacity of the cellular
network [6], [7].

We consider a set of cellular users associated with a BS in a
cellular network that employs D2D communication. A subset
of the users request for some files from the BS. As mentioned
above, some of the users can potentially act as relays and
forward the requested files, or partitions of files, from the
BS to the destination nodes over D2D links, which results in
greater energy efficiency. However, this requires cooperation
among the cellular users. Since the energy efficiency of
D2D communication decreases with the increase in distance
between the communicating users [8], [9], two cellular users
who are located far away from each other may be better
off downloading the content they need directly from the BS
instead of cooperating with each other. For example, consider
five cellular users {1, 2, 3, 4, 5} requesting the same file from
the BS. Users 1, 2 are located close to each other, users 3, 4, 5
are located close to each other and the subsets of users {1, 2}
and {3, 4, 5} are located far away from each other. In this case,
users 1 and 2 (respectively, users 3, 4 and 5) have an incentive
to cooperate among themselves, e.g., user 1 may download
the file from the BS and send it over a D2D link to user 2
(respectively, user 4 may download the file from the BS and
multicast it over D2D links to users 3 and 5).

A set of cellular users who cooperate among themselves
is called a coalition [10]. As the above example shows, a
set of cellular users would cooperate with each other only
when they benefit from this cooperation. In this paper, we
investigate conditions under which users have incentives to
cooperate among themselves to form a coalition; we also
study the problem of assigning relays to destination nodes
so as to minimize the total energy consumed in transferring
files from the BS to destination nodes via relays within a
coalition. We model the above problem using the framework
of cooperative game theory [10] and stable partitions in
coalitional games [11]. We consider two different models for
relaying within a given coalition: (i) Model A, in which the
BS can split a file into multiple partitions and send these
partitions to different relays, which multicast the partitions to
the destination nodes, and (ii) Model B, in which for each file,
the BS sends the entire file to a single relay, which multicasts
it to the destination nodes. The results for Model A are divided
into two parts:

• In the first part, we investigate conditions under which
it is beneficial for all the cellular users to cooperate,
i.e., the grand coalition is stable. For this we use the
solution concept of core [10] from cooperative game
theory. We show that, in general, the above coalitional
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game under Model A may have an empty core, i.e., it may
not be possible to stabilize the grand coalition. Next, we
consider an important special case of this game, wherein
all D2D and BS-cellular user communication links are
symmetric across cellular users and the D2D data rates
are much higher than the BS-cellular user data rates. Such
a scenario would occur in practice when all the cellular
users are located close to each other, e.g., in a stadium
or concert hall, and hence data exchange between a pair
of users can occur at a fixed and high rate, but the users
are situated far away from the BS. In this special case,
we show that the core is always non-empty.

• In the second part, we study the case where the set of
cellular users can be partitioned into groups, with each
group of users forming a coalition to cooperate among
themselves. In particular, we present a set of sufficient
conditions under which a strictly Dc-stable partition [11]
exists. From the results shown in [11], it can be concluded
that the Dc-stable partition corresponds to the partition
with minimum total expended energy by the cellular users
in transferring files from the BS to destination nodes via
relays; also, a simple merge and split algorithm [11]
converges to this partition. A special case where this
happens is when the cellular users are located in the form
of clusters, such that cellular users of the same cluster are
located close to each other and cellular users of different
clusters are located far away from each other.

Next, we show that under Model B, the problem of assigning
relays to destination nodes so as to maximize the sum of
utilities 1 of all the users is NP-Complete. Hence, we do not
perform a cooperative game theoretic analysis of Model B.
Instead, we provide heuristics to solve the utility maximization
problem in this model and evaluate their performance via
numerical computations.

The rest of the paper is organised as follows. We present a
review of related prior literature in Section II. In Section III,
we describe our network model. We investigate conditions un-
der which the core is non-empty under Model A in Section IV.
In Section V, we present conditions under which a Dc-stable
partition exists under Model A. In Section VI, we prove that
under Model B, the problem of assigning relays to destination
nodes so as to maximize the sum of utilities of all the users is
NP-complete and provide heuristics for assignment of relays
to destination nodes. In Section VII, we show via numerical
simulations that the total energy expended by cellular users is
significantly reduced through cooperation. Finally we conclude
our work in Section VIII.

II. RELATED WORK

We now review related prior literature. Resource allocation
in cooperative cellular networks with the objective of achiev-
ing energy efficiency is a well-studied problem. A cooperative
cellular network wherein the BS sends content to some se-
lected cellular users, which in turn multicast it to other cellular
users is considered in [12]. The problem of joint optimization
of the cost of the energy consumption and cellular-link usage
in the network by appropriately selecting the transmission rates
of the relays is studied. In [13] [14], cellular data offloading
in a cooperative cellular network, in which data transmission
to the end users and energy harvesting are simultaneously
performed, is studied. Algorithms to optimally schedule the

1The utility of a user is a function of the valuation it derives from the file
it downloads, if any, and the cost it incurs due to the energy consumption
during communication.

data offloading and radio resources in order to maximize the
energy efficiency of the network are presented. A cooperative
framework in a cellular network where the BS transmits a file
only once to a cellular user, which in turn relays it over D2D
links to all the other users that request it is studied in [15].
In [16], the content distribution problem in a cooperative net-
work, wherein the BS selects relays to broadcast some content,
is modeled as a non-transferable utility coalition formation
game, in which the utility function takes into account energy
efficiency and mutual interference among multiple relays. A
distributed algorithm is presented using which cellular users
can self-organize among themselves to form coalitions. A
coalition formation game is also studied in [17], [18]. In the
model in [17], cellular users can cooperate and self-organize to
form coalitions among themselves and use them to distribute
content. In each coalition, a cellular user acts as the head of
the coalition; it receives data from the BS and then multicasts
the data to the users in the coalition. A distributed algorithm
for coalition formation is proposed and the energy efficiency
when coalitions are formed using this algorithm is shown to
be higher than that in a non-cooperative cellular network and
in a cellular network where all the cellular users requesting
the content form a grand coalition. A centralized coalition
formation game is formulated as a mixed integer linear pro-
gram (MILP) in [18]. Since the formulated MILP is NP-hard,
a linear approximation of the above problem is solved to
find coalitions among the cellular users. The distribution of
location specific content among users, which preserves privacy
by securing the location information is studied in [19]. The
human factor of willingness to share content is considered
in [20]. Cellular users (represented by humans) are grouped
in terms of the type of content they request, and each group has
different willingness factors of sharing, which are represented
by different probabilities of sharing.

In this paper, we use the framework of coalition formation
proposed in [11]. This framework has been widely adapted
for several wireless communication and social network related
problems such as interference management in visible light
communication networks [21], community identification in
dynamic social networks [22], cooperation of single antenna
devices to form virtual multiple antenna systems [23], and
in collaborative spectrum sensing [24]. Coalitions are formed
using the merge and split algorithm. The partitioning of users
using the merge and split algorithm in a cloud based radio
access network where baseband units are in a centralised
location and radio heads are distributed across multiple sites is
studied in [25]. Application of the merge and split algorithm
to a coalition formation game for content distribution in
cellular networks is studied in [18], [26]. However, in [26], the
D2D communication occurs underlay and hence an efficient
policy to allocate resources is studied taking interference into
consideration; in contrast, in our model, D2D communication
occurs overlay.

Also, none of the above papers study conditions under
which the grand coalition is stable; nor do they study con-
ditions under which a strictly Dc-stable partition exists. To
the best of our knowledge, our work is the first to use a
coalitional game framework to study conditions under which
the grand coalition is stable and those under which a Dc-
stable partition exists in the context of content distribution in a
cellular network employing D2D communication. Our analysis
provides insight into conditions under which it is, and is not,
beneficial for all the cellular users to cooperate. Also, the
significance of the conditions that we have derived for a Dc-
stable partition to exist is that if these conditions are met, then



the merge and split algorithm can be used to find the partition
with minimum total expended energy. In addition, although
the merge and split algorithm has an exponential running
time in general, if the conditions presented in this paper are
satisfied, then the merge and split algorithm proposed in [26]
converges to the partition with minimum total expended energy
in polynomial time.

III. NETWORK MODEL

We consider a single cell containing a base station (BS) and
multiple cellular users. Let N = {1, . . . , N} denote the set of
all cellular users. In a given time slot, some of them request
for some files from the BS– we refer to such cellular users
as “destination nodes”. We assume that each destination node
requests for exactly one file. LetM = {1, . . . ,M} denote the
set of all requested files. The BS seeks to reduce the energy
consumption by employing some of the cellular users as relays
to forward the requested files to the destination nodes over
D2D links, instead of directly sending the requested file to
each destination node. (A destination node of a file may also
act as a relay for the same and/ or other files). To this end, the
BS divides the set N into multiple groups of cellular users
(e.g., a group may be a set of cellular users located close
to each other) such that the cellular users within each group
cooperate among themselves to download their requested files.
Each such group is called a coalition.

Definition 1: A coalition S ⊆ N is a set of users who
cooperate among themselves. We refer to N as the grand
coalition [10].

In each coalition S, the BS employs some of the cellular
users as relays to forward the requested files to the destination
nodes in S over D2D links. If a file (e.g., a popular file) is
requested by more than one destination node in a coalition S,
then each relay in S multicasts the file, or a partition of the
file it received from the BS, to all the destination nodes in
S that requested the file. Based on how a file is distributed
within a coalition, we consider two different models:
(A) the BS can split a file into multiple partitions and send

these partitions to different relays in a coalition, which
multicast the partitions to the destination nodes of that
coalition,

(B) for each file, the BS sends the entire file to a single relay
in a coalition, which multicasts it to the destination nodes
of that coalition.

In the sequel, we refer to the above models as Model A
and Model B; Model A is studied in Sections IV and V
and Model B in Section VI. Let αi,m, i ∈ N ,m ∈ M
denote the fraction of file m that is sent by the BS to
relay i. In Model A (respectively, Model B), these variables
must satisfy αi,m ∈ [0, 1] ∀i ∈ N ,m ∈ M (respectively,
αi,m ∈ {0, 1} ∀i ∈ N ,m ∈ M). Also, in both models, the
following must be satisfied for every coalition S:∑

i∈S
αi,m =

{
1 if a user in S requests file m,
0 otherwise.

(1)

We assume that the BS knows the channel conditions
between itself and different cellular users and among differ-
ent cellular users through Channel State Information (CSI)
conveyed by the cellular users. This information can be
estimated using reference signals, which are sent at known
transmit powers and whose received powers are measured
at the receivers [27]. Using the channel conditions, the data
rates that can be achieved between different pairs of devices

can be found. Also, we focus on low mobility scenarios, in
which channel conditions change slowly with time; hence, to
a good approximation, it can be assumed that the channel
conditions remain the same throughout the duration of a time
slot. A similar assumption has been made in many prior works
[12], [13], [14], [15]. Let Rs,i denote the achievable data rate
between the BS and relay i and PRx,i(Rs,i) denote the power
used by relay i to receive a file from the BS. We formulate the
energy spent by users in the cellular network using a model
similar to that in [17]. Consider a relay i in coalition S. The
total energy spent by relay i in receiving (partitions of) files
from the BS is given by:

Es,i(S) =

M∑
m=1

αi,mXm

Rs,i
Ps,i(Rs,i), (2)

where Xm denotes the size of file m ∈M. Equation (2) holds
because αi,mXm is the number of bits of file m downloaded
by relay i from the BS, αi,mXm

Rs,i
is the amount of time spent

and αi,mXm

Rs,i
Ps,i(Rs,i) is the energy consumed during the

download of bits of file m to relay i from the BS. Let RD2D,i,j

denote the data rate at which relay i can transmit (a partition
of) a file to the destination node j over a D2D link and let
PTx,i,j(RD2D,i,j) be the transmission power i uses. If multiple
destination nodes in S request a file, say m, then a relay, say
i, multicasts (a partition of) the file to these destination nodes
at the rate RD2D,i,Sm

= minj∈Sm,j 6=i{RD2D,i,j}2, where
Sm ⊆ S is the set of destination nodes in S which request
file m. Similar to (2), the total energy spent by relay i in
multicasting (partitions of) files in M to destination nodes is:

Et,i(S) =

M∑
m=1

αi,mXm

RD2D,i,Sm

PTx,i,Sm(RD2D,i,Sm)dm(Sm\{i}),

(3)
where

dm(A) =

{
1, if at least one user in A requests file m,
0, otherwise.

and PTx,i,Sm
(RD2D,i,Sm

) is the power required by relay i to
multicast file m to the destination nodes in Sm over D2D links
at the rate RD2D,i,Sm

. Now, for every user i ∈ N which acts
as a relay, energy is consumed in receiving data from the BS
and multicasting it to destination nodes. However, since only
a limited amount of battery energy is available with a relay,
we let Ei denote the maximum amount of energy that may be
spent by user i on relaying activities in the given time slot.
Each relay i ∈ S must satisfy the following constraint:

Es,i(S) + Et,i(S) ≤ Ei. (4)

Also, each destination node which requests a file must spend
some energy on receiving partitions of the file from different
relays. If a destination node i ∈ S requests file m, then the
energy it spends in receiving (partitions of) file m is given by:

Emr,i(S) =
∑
j 6=i

αj,mXm

RD2D,j,Sm

PRx,j,i(RD2D,j,Sm), (5)

where PRx,j,i(RD2D,j,Sm) is the power required by des-
tination node i while receiving data from relay j at rate
RD2D,j,Sm

.

2When Sm \ {i} is an empty set, we define the value of the min function
to be any arbitrary positive number.



Let Cs,i(S) (respectively, Ct,i(S)) denote the monetary
cost corresponding to the energy consumed at relay i, when
it is in coalition S, due to the energy expenditure Es,i(S)
(respectively, Et,i(S)) incurred by relay i while downloading
partitions of files from the BS (respectively, multicasting
partitions of files to destination nodes). Similarly, let Cmr,i(S)
be the monetary cost corresponding to the energy, Emr,i(S),
spent by destination node i in receiving file m that it requested
from relays when it is a part of coalition S. We assume
that these monetary costs are linear functions of the energy
consumed: Cs,i(S) = aEs,i(S), Ct,i(S) = aEt,i(S) and
Cmr,i(S) = aEmr,i(S), where a is a constant. Next, let:

di,m =

{
1 if the user i requests file m,
0 otherwise.

Note that di,m, i ∈ N , m ∈M, are constants that are known

a priori. Let Ci(S) = Cs,i(S) +Ct,i(S) +
M∑
m=1

di,mC
m
r,i(S) =

a(Es,i(S) + Et,i(S) +
M∑
m=1

di,mE
m
r,i(S)). If destination node

i requests file m, we let Ui,m denote the valuation that
destination node i derives from file m. The utility of user
i is defined to be the difference between the valuation
that it derives from the file that it requests and the costs
due to the energy consumption during communication, i.e.:
M∑
m=1

di,m(Ui,m − Cmr,i(S)) − Cs,i(S) − Ct,i(S). Also, for a

coalition S and file m ∈ M, let Em(S) be the total energy
consumed in transferring file m from the BS to the destination
nodes in S that request for file m. Then:

Em(S) =
∑
i∈S

αi,mXm

((
Ps,i(Rs,i)

Rs,i
+
PTx,i,Sm(RD2D,i,Sm)

RD2D,i,Sm

)

+
∑
j 6=i

αj,mXm

RD2D,j,Sm

PRx,j,i(RD2D,j,Sm
)di,m

)
(6)

Hence, when a group of cellular users form a coalition S,
the following optimization problem maximizes their sum of
utilities:

P (S) : max
αi,m

∑
i∈S

(
M∑
m=1

di,mUi,m − Ci(S)

)
(7)

subject to:
1) αi,m ≥ 0, ∀i ∈ S,m ∈M,
2)
∑
i∈S

αi,m = dm(S), ∀m ∈M,

3) Es,i(S) + Et,i(S) ≤ Ei, ∀i ∈ S.

Constraint 1) says that the variables αi,m must be non-
negative, constraint 2) says that if a user in coalition S requests
file m, then the entire file must be downloaded from the BS
by the relays in coalition S and constraint 3) says that the
amount of energy consumed by each user i ∈ S due to its
relaying services must not exceed Ei. In addition, in Model A
(respectively, Model B), the constraint αi,m ≤ 1 (respectively,
αi,m ∈ {0, 1}) must be met for all i ∈ S and m ∈M.

Note that in the above network model, the total amount of
energy required to transfer files from the BS to all the request-
ing destination nodes can usually be considerably reduced
when cellular users cooperate with each other, transfer files
by relaying and transfer payments among themselves (e.g.,

payments may be transferred from a destination node to the
relays that forward data to it), as compared to the case when
each destination node separately downloads the file it needs
from the BS. Hence, we are interested in finding conditions
under which it is beneficial for the cellular users of the network
to cooperate with each other. Specifically, we consider two
cases in this work: 1) when the set of all cellular users in N
cooperate among themselves (see Sections IV and VI), and
2) when the set of cellular users is partitioned into groups
(coalitions) such that the users of each coalition cooperate
among themselves (see Section V).

IV. COOPERATIVE GAME THEORETIC ANALYSIS OF
MODEL A

In this section, we perform a cooperative game theoretic
analysis of Model A, in which the variables αi,m, i ∈ N ,m ∈
M may take real values in [0, 1] and

∑
i∈S

αi,m = dm(S) for

all m ∈M.

A. Mathematical Preliminaries
We first define some terminology and notations of cooper-

ative game theory, which we use in the sequel.
Definition 2: A coalitional game with transferable payoffs

(N , v) consists of a set, N , of N users and a real-valued
function v(·) associated with each coalition S ⊆ N . v(S) is
called the value of the coalition S [10].

In our work, we define the optimal (maximum) value of the
objective function in (7) to be the value, v(S), of the coalition
S. In this section, we are particularly interested in conditions
under which it is beneficial for all the cellular users in N to
cooperate, i.e., the grand coalition (see Definition 1) is stable.
For this we use the solution concept of core from cooperative
game theory [10].

Definition 3: Let (N , v) be a coalitional game with trans-
ferable payoffs. A vector (xj)j∈N is said to be a feasible

payoff profile if x(N ) =
N∑
j=1

xj = v(N ). The core is

the set of all feasible payoff profiles (xj)j∈N for which
x(S) =

∑
j∈S

xj ≥ v(S) for every coalition S ⊆ N [10].

Now, the grand coalition can be stabilized iff the core
is non-empty [10]. This can be explained as follows. Recall
that the value, v(N ), of the grand coalition is given by the
maximum value of the objective function in (7) with S = N .
Suppose the core is non-empty and this value v(N ) is shared
among the users in N as per an element x in the core, i.e.,
payments are transferred among the users in N such that the
overall utility of user j ∈ N (taking into account payments
made by and to j) becomes xj . Note that this can be done since

x(N ) =
N∑
j=1

xj = v(N ). Then no subset of users S ⊆ N
has an incentive to split from the grand coalition, i.e., the
grand coalition is stable. To prove this, suppose a subset of
users S ⊆ N formed a separate coalition and shared their
value, v(S), as per the vector y. However, it would be in the
interest of user j ∈ S to split from the grand coalition only
if yj > xj . Hence, v(S) =

∑
j∈S yj >

∑
j∈S xj = x(S),

which contradicts the fact that x is an element of the core.
Conversely, it is easy to see that if the core is empty, then
there would always be an incentive for some subset S ⊆ N
to split from the grand coalition, regardless of how the value
v(N ) is shared among the users of N ; i.e., the grand coalition
cannot be stabilized.



So, the grand coalition can be stabilized iff the core is non-
empty. Hence, in this section, we seek conditions under which
the core is non-empty. First, in Section IV-B, we show that,
in general, the above coalitional game under Model A may
have an empty core. Next, in Section IV-C, we show that in
an important special case of this game, the core is always
non-empty.

B. General Game
Consider the above coalitional game under Model A. First,

note that since the variables αi,m, i ∈ N ,m ∈ M may
take real values, the optimization problem P (S) defined in
Section III (see (7)) is a linear program and hence can be
optimally solved in polynomial time [28]. Hence, the value,
v(S), of each coalition S, which is the optimal value of the
objective function in (7), can be found in polynomial time.

The following example shows that this coalitional game may
have an empty core.

Example 1: Suppose N = {1, 2, 3, 4, 5, 6}. Consider two
coalitions S1 = {1, 2, 3} and S2 = {4, 5, 6}. Note that
S1∪S2 = N and S1∩S2 = ∅. Suppose users 1, 2, 4, 5 request
file 1, which has a size of X1 = 1 and users 3, 6 request
none. Also, suppose Rs,i = 1 for i ∈ {1, 2, 4, 5}, Rs,i = 8
for i ∈ {3, 6}, Ps,i(·) = PTx,i,j(·) = PRx,i,j(·) = 1 for all
i, j ∈ N . Suppose RD2D,3,1 = RD2D,3,2 = RD2D,6,4 =
RD2D,6,5 = 8, RD2D,3,4 = RD2D,3,5 = RD2D,6,1 =
RD2D,6,2 = 1 and RD2D,1,2 = RD2D,1,4 = RD2D,1,5 =
RD2D,2,4 = RD2D,2,5 = RD2D,4,5 = 1. Let a = 1 so that
Ci(S) = Es,i(S) + Et,i(S) + E1

r,i(S) ∀i ∈ N .
In this example, we have:

v(S1) = U1,1 − C1(S1) + U2,1 − C2(S1)− C3(S1),

v(S2) = U4,1 − C4(S2) + U5,1 − C5(S2)− C6(S2),

v(N ) = U1,1 − C1(N ) + U2,1 − C2(N )− C3(N )

+ U4,1 − C4(N ) + U5,1 − C5(N )− C6(N ).

We will show that v(S1)+v(S2) > v(N ). Note that the sums
of the Ui,1 components are equal in v(S1) + v(S2) and v(N )
(equal to U1,1 +U2,1 +U4,1 +U5,1). So next we consider the
energy cost components. Consider coalition S1 and let i(S1)
denote the total energy consumed in distributing file 1 among
users in S1 when user i ∈ S1 downloads the entire file from
the BS. We now calculate the value of the term 1(S1); user
1 consumes 1 unit of energy (see (2)) to download the file
from the BS, consumes 1 unit of energy (see (3)) to transmit
the file to user 2 and user 2 consumes 1 unit of energy (see
(5)) in receiving the file from user 1. So the total energy cost
1(S1) = 3. 2(S1) and 3(S1) can be calculated similarly and it
can be seen that 2(S1) = 3 and 3(S1) = 1

2 . Hence, it is easy
to check that C1(S1) +C2(S1) +C3(S1) is minimized when
the BS sends file 1 to user 3 and user 3 multicasts it to users
1 and 2. Similarly, C4(S2) + C5(S2) + C6(S2) is minimized
when the BS sends file 1 to user 6 and user 6 multicasts it
to users 4 and 5. The minimum costs for S1 (respectively,
S2) are as follows: C1(S1) = C2(S1) = 1

8 and C3(S1) = 1
4

(respectively, C4(S2) = C5(S2) = 1
8 and C6(S2) = 1

4 ). Thus
the total cost term in v(S1) + v(S2) is C1(S1) + C2(S1) +
C3(S1) + C4(S2) + C5(S2) + C6(S2) = 1.

On the other hand, it can be shown that the total energy cost
for the coalition N = S1∪S2 is minimized when the BS sends
a fraction β ∈ [0, 1] of file 1 to user 3 and a fraction 1 − β
to user 6, and users 3 and 6 in turn multicast the partitions
they receive to users 1, 2, 4 and 5. The resultant cost terms
are as follows: C1(N ) = C2(N ) = C4(N ) = C5(N ) = 1

and C3(N ) + C6(N ) = 9
8 . Hence, the total cost term in the

coalition N is C1(N )+C2(N )+C3(N )+C4(N )+C5(N )+
C6(N ) = 41

8 . Thus, the total cost term in the coalition N ,
which is 41

8 , is greater than the total cost term in v(S1)+v(S2),
which is 1. Hence, v(S1) + v(S2) > v(N ).

Now, let (xj)j∈N be a feasible payoff profile in the core.
Then we have x(N ) = v(N ) and x(S) ≥ v(S) for every
coalition S. Since S1 ∩ S2 = ∅ and S1 ∪ S2 = N , we can
write: v(N ) = x(N ) =

∑
j∈N xj =

∑
j∈S1

xj+
∑
j∈S2

xj =
x(S1) + x(S2) ≥ v(S1) + v(S2) > v(N ), which is a
contradiction. This proves that the core is empty. �

Intuitively, the core is empty in the above example due
to the following reason. The set of all cellular users, N ,
consists of two disjoint clusters of users, S1 and S2, such
that the achievable data rate between user j1 and user j2
is low for every pair j1 ∈ S1 and j2 ∈ S2 (in particular,
RD2D,3,4 = RD2D,3,5 = RD2D,6,1 = RD2D,6,2 = 1). On
the other hand, the achievable data rates among users within
each cluster are high; in particular, RD2D,3,1 = RD2D,3,2 =
RD2D,6,4 = RD2D,6,5 = 8. Recall that a relay multicasts data
at the minimum achievable data rate between itself and any
destination node within its coalition requesting the file. So
when coalition S1 (respectively, S2) separates from the other
users in N , data can be multicast at a high rate of 8 from
relay 3 to users 1 and 2 (respectively, from relay 6 to users 4
and 5), due to which the energy consumption is low. However,
when all users in the grand coalition N cooperate, data has
to be multicast at a low rate of 1, due to which the energy
consumption is high. Hence, the grand coalition cannot be
stabilized in this example, i.e., it is not beneficial for all the
users in N to cooperate.

C. Special Case
We now analyse a special case of the coalitional game under

Model A, in which all D2D and BS-cellular user links are sym-
metric across cellular users. Specifically, we assume that: (i)
all D2D communications occur at a constant rate, say RD2D,
i.e., RD2D,i,j = RD2D ∀i, j ∈ N , (ii) all communications
between the BS and cellular users occur at the same rate, say
Rs, i.e., Rs,i = Rs ∀i ∈ N , and (iii) the power consumption
of the same type of communications is the same across all
cellular users, i.e., Ps,i(Rs) = Ps, PTx,i,j(RD2D) = PTx and
PRx,i,j(RD2D) = PRx ∀i, j ∈ N . Also, we assume that Rs
is much smaller than RD2D; specifically, we assume that:

Rs
RD2D

<
Ps

PRx + PTx
. (8)

For instance, such a scenario would occur in practice when
all the cellular users in N are located far away from the BS
but close to each other, e.g., in a stadium or concert hall,
and hence data exchange between a pair of users i and j can
occur at a fixed and high rate, RD2D, and BS-cellular user
communication occurs at a lower data rate Rs. Fig. 1 illustrates
such a scenario. Finally, we assume that every cellular user in
N has sufficient energy available for relaying services, i.e., Ei
is high ∀i ∈ N . In this special case game, we will show that
the core is always non-empty.

A coalitional game with transferable payoffs (N , v) is
convex if [10]:

v(S1)+v(S2) ≤ v(S1∪S2)+v(S1∩S2), ∀S1, S2 ⊆ N . (9)

It is known that the core of a coalitional game is non-empty if
the game is convex [10]. We will show that the above special
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Fig. 1: The figure shows a cell with a BS located at the center
and cellular users located close to each other, but far from the
BS.

case coalitional game is convex, from which it will follow that
the game has a non-empty core.

Consider a coalition S. Note that the total energy cost
incurred in transferring all the files requested by users in S
can be written as: C(S) =

∑
m∈M aEm(S) (see (6)). The

value of a coalition S can be written as:

v(S) =
∑
m∈M

(∑
i∈S

di,mUi,m − aEm(S)

)
. (10)

The value function is separable in terms of files, i.e., v(S) is
the sum of the values obtained from transferring each of the
files i ∈ M. Also, recall that we have assumed that Ei is
large for every i ∈ N . Hence, if we show that (9) holds in
the case where there is only one file in M, then from (10) it
will follow that (9) holds when there are an arbitrary number
of files in M. So in the rest of this section, we consider the
case where there is only one file in M; also, assume without
loss of generality that this file is of unit size and that a = 1.
Let S̄ ⊆ S be the set of destination nodes in coalition S that
request for the file. For simplicity of notation, we drop the sub-
script m and use Ui instead of Ui,m. So the value function
can be written as:

v(S) =
∑
i∈S̄

Ui − C(S). (11)

Now, to show that (9) holds, we first show that the sums of
the Uj terms in v(S1) + v(S2) and v(S1 ∪ S2) + v(S1 ∩ S2)
are equal. By (11), the sum of the Uj terms in v(S1 ∪ S2) +
v(S1 ∩ S2) is:∑

i∈S̄1∪S̄2

Ui +
∑

i∈S̄1∩S̄2

Ui

=
∑
i∈S̄1

Ui +
∑
i∈S̄2

Ui −
∑

i∈S̄1∩S̄2

Ui +
∑

i∈S̄1∩S̄2

Ui

=
∑
i∈S̄1

Ui +
∑
i∈S̄2

Ui.

So the sums of the Ui terms are equal in v(S1) + v(S2) and
v(S1 ∪ S2) + v(S1 ∩ S2). Hence, by (11), to show that (9)
holds, it suffices to show that:

C(S1) + C(S2) ≥ C(S1 ∪ S2) + C(S1 ∩ S2), ∀S1, S2 ⊆ N .
(12)

Lemma 1: If (8) holds, then for a coalition S ⊆ N :

C(S) =


0, if

∣∣S̄∣∣ = 0,
Ps

Rs
, if

∣∣S̄∣∣ = 1,
Ps

Rs
+ PRx

RD2D
(
∣∣S̄∣∣− 1) + PTx

RD2D
, if

∣∣S̄∣∣ ≥ 2.

Proof: The result follows from the fact that if (8) holds,
then when S̄ 6= ∅, the energy cost of coalition S is minimized
when the file is downloaded only once from the BS to one of
the users in S̄ and it is then multicast to the other users, if
any, in S̄ over D2D links.

We now state the following theorem, which proves that in
the above special case coalitional game, the core is non-empty.

Theorem 1: If (8) holds, then the above special case coali-
tional game has a non-empty core.

Proof: We will show that the game is convex, from which
the result will follow. Recall that if (12) holds, then (9) also
holds and hence the game is convex.

We now show that (12) holds in each of the following
mutually exclusive and exhaustive cases.

Case 1: If S̄1 = S̄2 = ∅, then by Lemma 1, C(S1) =
C(S2) = C(S1 ∪ S2) = C(S1 ∩ S2) = 0. So (12) holds.

Case 2: If S̄1 6= ∅ and S̄2 = ∅, then by Lemma 1, C(S1) =
C(S1 ∪ S2) and C(S2) = C(S1 ∩ S2) = 0. So (12) holds.

Case 3: If S̄1 = ∅ and S̄2 6= ∅, then by Lemma 1, C(S2) =
C(S1 ∪ S2) and C(S1) = C(S1 ∩ S2) = 0. So (12) holds.

Case 4: If S̄1 6= ∅, S̄2 6= ∅ and S̄1 ∩ S̄2 = ∅, then by
Lemma 1, C(S1 ∩ S2) = 0. This case can be further divided
into sub-cases: a)

∣∣S̄1

∣∣ =
∣∣S̄1

∣∣ = 1, b)
∣∣S̄1

∣∣ = 1,
∣∣S̄2

∣∣ ≥ 2, c)∣∣S̄1

∣∣ ≥ 2,
∣∣S̄2

∣∣ = 1 and d)
∣∣S̄1

∣∣ ≥ 2,
∣∣S̄2

∣∣ ≥ 2. We will show
the result for sub-case 4d. The results for the other sub-cases
can be similarly shown. Using Lemma 1, we get:

C(S1) =
Ps
Rs

+
PRx
RD2D

(
∣∣S̄1

∣∣− 1) +
PTx
RD2D

, (13)

C(S2) =
Ps
Rs

+
PRx
RD2D

(
∣∣S̄2

∣∣− 1) +
PTx
RD2D

, (14)

C(S1 ∪ S2) =
Ps
Rs

+
PRx
RD2D

(
∣∣S̄1

∣∣+
∣∣S̄2

∣∣− 1) +
PTx
RD2D

.

So,

C(S1) + C(S2) = 2
Ps
Rs

+
PRx
RD2D

(
∣∣S̄1

∣∣+
∣∣S̄2

∣∣− 2) + 2
PTx
RD2D

= C(S1 ∪ S2) +
Ps
Rs

+
PTx
RD2D

− PRx
RD2D

> C(S1 ∪ S2).

The last inequality follows from (8). In all the other sub-cases,
a similar result can be obtained using Lemma 1. So (12) holds
in Case 4.

Case 5: S̄1 6= ∅, S̄2 6= ∅ and S̄1 ∩ S̄2 6= ∅. This case
can also be further divided into sub-cases: a)

∣∣S̄1

∣∣ =
∣∣S̄2

∣∣ =∣∣S̄1 ∩ S̄2

∣∣ = 1, b)
∣∣S̄1

∣∣ = 1,
∣∣S̄2

∣∣ ≥ 2,
∣∣S̄1 ∩ S̄2

∣∣ = 1, c)∣∣S̄1

∣∣ ≥ 2,
∣∣S̄2

∣∣ = 1,
∣∣S̄1 ∩ S̄2

∣∣ = 1, d)
∣∣S̄1

∣∣ ≥ 2,
∣∣S̄2

∣∣ ≥ 2,∣∣S̄1 ∩ S̄2

∣∣ = 1 and e)
∣∣S̄1

∣∣ ≥ 2,
∣∣S̄2

∣∣ ≥ 2,
∣∣S̄1 ∩ S̄2

∣∣ ≥ 2. We
will show the results for sub-cases 5d and 5e. The results for
the other sub-cases can be shown similarly. Consider sub-case
5d. Equations (13) and (14) hold in this sub-case. Also:

C(S1 ∪ S2) =
Ps
Rs

+
PRx
RD2D

(
∣∣S̄1 ∪ S̄2

∣∣− 1) +
PTx
RD2D

=
Ps
Rs

+
PRx
RD2D

(
∣∣S̄1

∣∣+
∣∣S̄2

∣∣− 2) +
PTx
RD2D

C(S1 ∩ S2) =
Ps
Rs

The last two equalities hold since
∣∣S̄1 ∩ S̄2

∣∣ = 1. It can be
easily seen that C(S1) +C(S2) > C(S1 ∪ S2) +C(S1 ∩ S2).



Now consider sub-case 5e. Equations (13) and (14) hold in
this sub-case. Also:

C(S1 ∪ S2) =
Ps
Rs

+
PRx
RD2D

(
∣∣S̄1 ∪ S̄2

∣∣− 1) +
PTx
RD2D

=
Ps
Rs

+
PRx
RD2D

(
∣∣S̄1

∣∣+
∣∣S̄2

∣∣− ∣∣S̄1 ∩ S̄2

∣∣− 1)

+
PTx
RD2D

C(S1 ∩ S2) =
Ps
Rs

+
PRx
RD2D

(
∣∣S̄1 ∩ S̄2

∣∣− 1) +
PTx
RD2D

From the above, it can be easily seen that C(S1) + C(S2) =
C(S1 ∪ S2) + C(S1 ∩ S2). Similarly, using Lemma 1, it can
be easily checked that in sub-cases 5a, 5b and 5c, we have
C(S1) + C(S2) = C(S1 ∪ S2) + C(S1 ∩ S2). So (12) holds
in Case 5.

The result follows.
Theorem 1 shows that although, in general, the above

coalitional game under Model A may have an empty core
(see Example 1), in the special case game wherein all com-
munication links are symmetric across the cellular users and
Rs is much smaller than RD2D, the core is always non-empty.
Intuitively, this is because multiple clusters such as S1 and S2

as in Example 1, such that the achievable data rate between
user i1 and user i2 is low for every pair i1 ∈ S1 and i2 ∈ S2

and the achievable data rates among users within each cluster
are high, cannot exist in the special case game due to the
fact that the achievable data rates between different pairs of
cellular users are equal; also, since Rs is much smaller than
RD2D, the energy required to download a file from the BS
only once and multicast it over D2D links is less than that
required when it is downloaded from the BS multiple times.
So when all the users in N cooperate, a smaller amount of
energy is required for the file transfer than when they do not
cooperate. Hence, it is beneficial for all the users in the grand
coalition N to cooperate.

V. COALITION FORMATION UNDER MODEL A
In the previous section, we provided sufficient conditions

under which the coalitional game with transferable payoffs
(v,N ) has a non-empty core. However, when these conditions
are not satisfied, it may not be beneficial for all the users
to cooperate among themselves. So in this section, we seek
conditions under which the set of cellular users can be
partitioned into groups (coalitions) such that it is beneficial for
the users of each coalition to cooperate among themselves. For
this purpose, we use the framework of stable partitions defined
in [11], a brief summary of which is presented in Section V-A.

A. Mathematical Preliminaries
A collection S = {S1, . . . , Sk} in the set N is a set of

mutually disjoint coalitions of the users in the set N . A set
P = {P1, . . . , Pn} is called a partition of the set N , if Pi ⊆
N , Pi∩Pj = φ for all Pi, Pj ∈ P and ∪ni=1Pi = N . Consider
a partition P = {P1, . . . , Pn} and a collection of coalitions
S = {S1, . . . , Sk}. The term S [P] is defined as follows:

S [P] = {∪ki=1Si ∩ P1, . . . ,∪ki=1Si ∩ Pn}. (15)

S [P] is the partitioning of users in ∪ki=1Si into coalitions
according to the partition P. For every collection of coalitions
S = {S1, . . . , Sk}, let:

v(S) =

k∑
i=1

v(Si) (16)

denote the value of collection S. A collection S =
{S1, . . . , Sk} is P−compatible if ∪ki=1Si ⊆ Pj for some
coalition Pj ∈ P and a coalition S is P−incompatible if
S 6⊂ Pi for every Pi ∈ P. In this work, we use the concept
of Dc-stability.

Definition 4: A partition P is Dc-stable if and only if:

v(S [P]) ≥ v(S) (17)

for every collection S in N [11].
The value of a coalition S can be interpreted as the excess

that is available to be distributed among the members of the
coalition S. The above definition says that a partition P is
Dc-stable if, for every collection S = {S1, . . . , Sk} in N ,
the excess available to users in ∪ki=1Si when they partition
according to S is at most the excess available when these users
form coalitions according to the partition P. The following
result provides a useful necessary and sufficient condition for
a partition to be Dc-stable.

Theorem 2: A partition P = {P1, . . . , Pn} ofN is Dc-stable
if and only if the following two conditions are satisfied [11]:

1) For every P−compatible collection S = {S1, . . . , Sk}
we have:

v(∪ki=1Si) ≥
k∑
i=1

v(Si). (18)

2) For every P−incompatible coalition S, we have:
n∑
i=1

v(S ∩ Pi) ≥ v(S). (19)

The above conditions can be interpreted as follows: consider
a Dc-stable partition P = {P1, . . . , Pn}. Inequality (18) says
that the users of every subset of a coalition Pk ∈ P are
better off forming a coalition among themselves rather than
dividing themselves into multiple coalitions and (19) says that
users of different coalitions P1, . . . , Pn are better off split-
ting according to partition P than forming a P-incompatible
coalition. Further, if the inequalities in (18) and (19) hold with
strict inequalities, then partition P = {P1, . . . , Pn} is said to
be strictly Dc-stable . A special characteristic of a Dc-stable
partition is stated in the following proposition.

Proposition 1: If P is a Dc-stable partition of N , then
v(P) = max{v(Q) : Q is a partition of N} [11].

To find the Dc-stable partition of a given set, we employ
the merge and split algorithm [11]. The algorithm takes
an arbitrary partition as its input and repeatedly performs
merge and split operations on the coalitions of the partition,
whenever certain conditions are satisfied, until these operations
are no longer possible. We now state the conditions under
which coalitions can be merged or split. Consider a partition
I = {M1, . . . ,Mp, S1, . . . , Sq}.

1) The coalitions M1, . . . ,Mp can be merged to form a

partition I1 = {∪pi=1Mi, S1, . . . , Sq} if
p∑
i=1

v(Mi) <

v(∪pi=1Mi).
2) A coalition Si can be split into Si,1, . . . , Si,n to form a

partition I2 = {M1, . . . ,Mp, S1, . . . , Si−1, Si,1, . . . ,

Si,n, Si+1, . . . , Sq} if v(Si) <
n∑
k=1

v(Si,k).

In the merge and split algorithm, we start from an arbitrary
partition and repeatedly perform the merge and split operations
in any order until no merging or splitting operation is possible.
When the algorithm terminates, we get a partition such that the



merging of two or more coalitions or splitting of a coalition of
the partition does not strictly increase the value of the partition.

Proposition 2: The above merge and split algorithm termi-
nates after a finite number of operations [11].

Theorem 3: Suppose P is a strictly Dc-stable partition of N .
Then the merge and split algorithm starting from an arbitrary
partition of N converges to P. Also, P is the unique Dc-stable
partition [11].

B. Dc-Stability of a Partition
In general, it is not necessary for a Dc-stable partition

to exist. So in this section, for the coalitional game under
Model A, we find a set of sufficient conditions under which
a given partition P = {P1, . . . , Pn} is Dc-stable. Note that
from Proposition 1, a Dc-stable partition has the highest value
among all possible partitions of N . Also, note that a partition
P is Dc-stable if and only if (18) and (19) are satisfied. We
consider a cell wherein cellular users are located in multiple
clusters P1, . . . , Pn such that the users of each cluster are
located close to each other and users of different clusters are
located far away from each other (see Fig. 2). We investigate
conditions under which such a partition P = {P1, . . . , Pn} is
Dc-stable.

Base Sta�on

Cellular user

Fig. 2: The figure shows a single cell with a BS at the
center and cellular users located in four clusters represented
by circles. Each cluster is located far away from every other
cluster, but cellular users belonging to a given cluster are
located close to each other.

Since users in a given cluster are located close to each
other, we assume that users in a given cluster have symmet-
ric connections to the BS and symmetric D2D connections
among themselves. We also assume that D2D connections are
symmetric across users of different coalitions. Formally, when
cellular users i, j ∈ Pk, we have:

Rs,i = Rs,Pk
, (20a)

Ps,i(Rs,i) = Ps,Pk
, (20b)

RD2D,i,j = RD2D,Pk
, (20c)

PTx,i,j(RD2D,Pk
) = PTx,Pk

, (20d)
PRx,i,j(RD2D,Pk

) = PRx,Pk
, (20e)

and when i ∈ Pk, j ∈ Pl, we have:

RD2D,i,j = RD2D,Pk,Pl
, (21a)

PTx,i,j(RD2D,Pk,Pl
) = PTx,Pk,Pl

, (21b)
PRx,i,j(RD2D,Pk,Pl

) = PRx,Pk,Pl
. (21c)

Let S represent an arbitrary P-incompatible coalition and
for every i ∈ S, let P i ∈ P represent the cluster of user i.

Let i and j be such that P i 6= P j . We define the following
notations:

Esmin,S = min
i∈S

{
Ps,i
Rs,i

}
, (22a)

Esmax,S = max
i∈S

{
Ps,i
Rs,i

}
, (22b)

Etmin,S = min
i,j∈S,P i 6=P j

{
PTx,P i,P j

RD2D,P i,P j

}
, (22c)

Ermin,S = min
i,j∈S,P i 6=P j

{
PRx,P i,P j

RD2D,P i,P j

}
, (22d)

ED2D
max = max

Pk∈P

PRx,Pk
+ PTx,Pk

RD2D,Pk

, (22e)

RD2D,i,S = min
j∈S

RD2D,i,j . (22f)

Also, PTx,i,S(RD2D,i,S) is the power required to multicast a
file by user i to users in coalition S at the rate RD2D,i,S .

Now, the value of coalition S is given by the maximum
value of the objective function in problem (7). As shown in
Section IV-C, the value of coalition S is separable in terms of
files (see (10)). So if Ej is assumed to be large enough and we
show that (18), (19) are satisfied in the case where there is only
one file in M, then from (10), it will follow that (18), (19)
are satisfied in the case where there are an arbitrary number of
files inM, and hence that in the latter case, the partition P is
Dc-stable. So from this point, we assume that all the requests
from the cellular users in S are for a single file. We also
assume, without loss of generality, that the file is of unit size
and a = 1. It can be easily seen that the valuation (Ui,j) terms

in v(∪ki=1Si) and
k∑
i=1

v(Si) (respectively, v(S) and
n∑
i=1

v(S ∩
Pi)), which appear in (18) (respectively, (19)), are the same. So
henceforth, while studying sufficient conditions for (18) and
(19) to hold, we only consider the cost terms (hence, energy
terms).

We now state the main result of this section.
Theorem 4: A partition P = {P1, . . . , Pn} of N satisfy-

ing (20) and (21) is Dc-stable if the following three conditions
are satisfied:

1) Esmax,N ≤ min
k∈{2,...,n}

(
Es

min,N
k +

Et
min,N
k + k−1

k Ermin,N

)
,

2) ED2D
max ≤ Ermin,N ,

3) min
Pk∈P

{
Ps,Pk

Rs,Pk

}
> max
Pk∈P

{
PTx,Pk

+PRx,Pk

RD2D,Pk

}
.

The significance of Theorem 4 is as follows. By Propo-
sition 1, out of the partitions of N , a Dc-stable partition is
the partition with the maximum possible value. Since the sum
of the valuation (Ui,j) terms in the value of each partition is
the same (see (10)), the Dc-stable partition is the partition in
which the minimum total energy is expended by users during
the transfer of files from the BS to the destination nodes. Thus,
Theorem 4 provides a set of sufficient conditions for a partition
to be the one in which the minimum total energy is expended
by users.

The conditions in Theorem 4 can be interpreted as follows:
• Condition 1) states that for every k ∈ {2, . . . , n}, the

following inequality holds:

kEsmax,N ≤ Esmin,N +Etmin,N + (k− 1)Ermin,N . (23)



The LHS of (23) represents the maximum energy con-
sumed when there are k cellular users and all of them
download their file directly from the BS. The RHS
represents the minimum energy consumed when the file
is downloaded from the BS only once by a user, say i,
and multicast over D2D links to (k − 1) users, each of
which belongs to a coalition different from P i, which
is the coalition to which i belongs. Thus, Condition 1)
says that less energy is expended when users of different
clusters download files directly from the BS than when
they cooperate among themselves and distribute the file
over D2D links.

• Condition 2) says that the energy consumed in transmis-
sion and reception of a file over the D2D link between
two users, both of which are in the same coalition, say
Pk, is less than or equal to the energy consumed by a
user in downloading the file from the user of a different
coalition.

• Condition 3) says that the energy required for any user to
download a file of unit size from the BS is greater than
the total energy consumed in transmission and reception
during the download of a file of unit size by any user
(say, i) from a relay of its own cluster (P i) over a D2D
link.

Now, we state and prove two lemmas (Lemmas 2 and 3),
from which the proof of Theorem 4 follows.

Lemma 2: If the equalities in (20) are satisfied for every
coalition Pk ∈ P and Condition 3) in Theorem 4 holds, then
(18) holds for every P−compatible collection S.

Proof: Consider the coalitional game with transferable
payoffs (Pk, v), Pk ∈ P. If v satisfies the superadditivity
property3 for each of the coalitional games (Pk, v), Pk ∈ P,
then (18) is satisfied. Also, recall from the proof of Theorem 1
that if:

Rs,Pk

RD2D,Pk

<
Ps,Pk

PRx,Pk
+ PTx,Pk

,

then the coalitional game with transferable payoffs (Pk, v) is
a convex game. The result follows from the fact that a convex
game satisfies the superadditivity property [10].

Lemma 3: If Conditions 1), 2), 3) in Theorem 4 along
with (20), (21) are statisfied, then (19) holds for every
P−incompatible coalition S.

Proof: Recall that we assume that all the requests from
the cellular users in S are for a single file. Let S̄ ⊆ S denote
the destination nodes that request the file from the BS.

We prove the result for the following two mutually exclusive
and exhaustive cases:

Case 1): S̄ is a P-compatible coalition. Consider the fol-
lowing sub-cases:

a.
∣∣S̄∣∣ = 1. Suppose cellular user l requests the file. From
(6), we can write (ignoring superscript m):

E(S) =
∑
i∈S

αiPs,i
Rs,i

+
∑

i∈S\{l}

αiPTx,i,l
RD2D,i,l

+
∑

j∈S\{l}

αjPRx,j,l
RD2D,j,l

. (24)

If αl = 1, then user l downloads the entire file directly
from the BS. If 0 ≤ αl < 1, then a part of the file is
downloaded by other users and transmitted to user l. The

3A coalition game with transferable payoffs (v,N ) is superadditive if for
every S1, S2 ⊆ N where S1 ∩ S2 = ∅, we have v(S1 ∪ S2) ≥ v(S1) +
v(S2) [10].

coalition S may contain users from coalition P l. Since
all the users in coalition P l can download from the BS
at the same rate and reception power, E(S) is minimised
when αi = 0 for all i ∈ S ∩ P l \ {l}. When i ∈ S \ P l,
the total cost of transferring αi fraction of the file from
the BS to user l is αiPs,i

Rs,i
+
αiPTx,i,l

RD2D,i,l
+
αiPRx,i,l

RD2D,i,l
which is

greater than αiPs,l

Rs,l
(see Condition 1) of Theorem 4).

b.
∣∣S̄∣∣ > 1 and S̄ ⊆ Pl for some Pl ∈ P. Let αP =∑
i∈P αi. We have, from (6), the following:

E(S) =∑
i∈S

αiPs,i
Rs,i

+
∑
i∈S

αiPTx,i,S̄\{i}

RD2D,i,S̄\{i}
+
∑
i∈S̄

∑
j 6=i

αjPRx,j,i
RD2D,j,i

By separating the terms corresponding to i ∈ S ∩Pl and
i ∈ S \ Pl, we get:

E(S) =∑
i∈S∩Pl

(
αiPs,i
Rs,i

+
αiPTx,i,S̄\{i}

RD2D,i,S̄\{i}

)
+
∑

i∈S\Pl

(
αiPs,i
Rs,i

+

αiPTx,i,S̄
RD2D,i,S̄

)
+
∑
i∈S̄

( ∑
j 6=i,j∈S∩Pl

αjPRx,j,i
RD2D,j,i

+

∑
j∈S\Pl

αjPRx,j,i
RD2D,j,i

)

≥ αS∩Pl

(
Ps,Pl

Rs,Pl

+
PTx,Pl

RD2D,Pl

+
∣∣S̄∣∣ PRx,Pl

RD2D,Pl

)
− αS̄

PRx,Pl

RD2D,Pl

+ αS\Pl

(
Esmin,S\Pl

+ Etmin,S\Pl
+
∣∣S̄∣∣Ermin,S\Pl

)
≥ αS∩Pl

(
Ps,Pl

Rs,Pl

+
PTx,Pl

RD2D,Pl

+ (
∣∣S̄∣∣− 1)

PRx,Pl

RD2D,Pl

)
+ αS\Pl

(Esmax,N + (
∣∣S̄∣∣− 1)ED2D

max )

+ (αS∩Pl
− αS̄)

PRx,Pl

RD2D,Pl

≥ E(S ∩ Pl).
We get the first inequality by lower bounding the terms
Ps,i

Rs,i
, PTx,i,S̄

RD2D,i,S̄
and PRx,j,i

RD2D,j,i
for i ∈ S \Pl by Esmin,S\Pl

,
Etmin,S\Pl

and Ermin,S\Pl
respectively. The second in-

equality follows from Conditions 1) and 2) of Theorem
4. The third inequality follows from the definitions of
Esmax,N and ED2D

max (see (22)).

Case 2): S̄ is a P-incompatible coalition. Note that
∣∣S̄∣∣ > 1.

Consider the following sub-cases:
a. 2 ≤

∣∣S̄∣∣ ≤ n. Then,

E(S)

=
∑
i∈S

αiPs,i
Rs,i

+
∑
i∈S

αiPTx,i,S̄\{i}

RD2D,i,S̄\{i}
+
∑
i∈S̄

∑
j 6=i

αjPRx,j,i
RD2D,j,i

≥ Esmin,S
∑
i∈S

αi + Etmin,S
∑
i∈S

αi + Ermin,S
∑
i∈S̄

∑
j 6=i

αj

≥ Esmin,S + Etmin,S + (
∣∣S̄∣∣− 1)Ermin,S̄ (25)



=
∣∣S̄∣∣(Esmin,S∣∣S̄∣∣ +

Etmin,S∣∣S̄∣∣ +

∣∣S̄∣∣− 1∣∣S̄∣∣ Ermin,S

)
≥
∣∣S̄∣∣Esmax,S

≥
n∑
i=1

E(S ∩ Pi)

The first inequality follows from (22). The third inequal-
ity follows from Condition 1) of Theorem 4. The fourth
inequality follows from Lemma 2, which implies that
users consume less energy when they download files from
relays of their own clusters over D2D links rather than
downloading them directly from the BS.

b.
∣∣S̄∣∣ > n. The lower bound for E(S) in (25) still holds.
Thus we get:

E(S) ≥ Esmin,S + Etmin,S + (|S̄| − 1)Ermin,S̄

≥ nEsmax,N + (|S̄| − n)Ermin,S̄

≥ nEsmax,N + (|S̄| − n)ED2D
max

≥
n∑
i=1

E(S ∩ Pi)

The second inequality follows from Condition 1) of
Theorem 4, the third inequality follows from Condition
2) of Theorem 4 and the fourth inequality follows from
Lemma 2.

The result follows.
Finally, Theorem 4 follows from Lemmas 2 and 3 and

Theorem 2.
The following proposition provides an algorithm to effi-

ciently compute a Dc-stable partition.
Proposition 3: If a strictly Dc-stable partition exists, then

the merge and split algorithm proposed in [26] converges to
it in polynomial time. Specifically, the time complexity of the
algorithm is O(N2) for our network model.

The proof of the above proposition is straightforward and
is omitted for brevity.

VI. NP-COMPLETENESS OF AND HEURISTICS FOR THE
RELAY ASSIGNMENT PROBLEM UNDER MODEL B

Consider Model B defined in Section III. Recall that in this
model, to find the value, v(S), of a coalition S, we need to
maximize the sum of utilities of all the cellular users in S; for
this, we in turn need to solve the optimization problem P (S)
defined in Section III (see (7)) with the constraints αi,m ∈
{0, 1}, for all i ∈ N ,m ∈ M. We refer to this problem
as problem PB(S). Unfortunately, it turns out that problem
PB(S) is an NP-Complete problem [29]; we show this NP-
Completeness in Section VI-A. Hence, it is computationally
prohibitive to find the value, v(S), of a coalition. So we do
not perform a cooperative game theoretic analysis of Model
B. However, we provide heuristics to solve problem PB(S)
in Section VI-B and evaluate their performance via numerical
studies in Section VII.

A. NP-Completeness
Let MS ⊆M denote the set of all files that are requested

by at least one user in S.
Theorem 5: Problem PB(S) is NP-Complete.

Proof: First, it is easy to check that problem PB(S)
is in class NP [29]. We now prove the NP-Completeness
of problem PB(S) by reducing the generalized assignment

problem (GAP) [30], which is known to be NP-Complete, to
a special case of problem PB(S).

The GAP deals with the allotment of jobs to agents. LetMS

(respectively, S) be the set of all jobs (respectively, agents).
Agent i ∈ S incurs a cost ci,m when it performs job m ∈MS

and agent i has a total budget of ti. When job m is assigned
to agent i, a profit of pi,m is gained. The objective of the
GAP is to assign an agent to each job so as to maximize the
total profit from all the assignments of agents to jobs, while
satisfying the budget constraint of each agent. Let αi,m be 1
if agent i is assigned to job m and 0 else. The GAP can be
written as:

max
∑
i,m

pi,mαi,m

subject to:
1) αi,m ∈ {0, 1}, ∀i ∈ S,m ∈MS ,
2)
∑
i∈S

αi,m = 1, ∀m ∈MS ,

3)
∑

m∈MS

αi,mci,m ≤ tm, ∀i ∈ S.

We now reduce the GAP to a special case of problem
PB(S). We map the set of all agents (respectively, jobs)
to the set of relays (respectively, files). We map the cost
ci,m to the energy Xm

Rs,i
PRx,i(Rs,i) + Xm

RTx,i,S
PTx,i,S(RTx,i,S)

spent by relay i when it multicasts file m. Also, we map
the profit pi,m to

∑
i∈S di,m(−Cmr,i(S))− aXm

Rs,i
PRx,i(Rs,i)−

aXm

RTx,i,S
PTx,i,S(RTx,i,S) + e, which is the total energy costs

incurred at relay i and at the destination nodes in S that request
file m when relay i multicasts file m, plus a constant 4 e > 0.
Finally, we map the budget ti of agent i to the maximum
amount of energy Ei that may be spent by relay i (see (4)).

With the above mapping, it can be checked that a feasible
solution of the GAP instance with objective function value
≥ T , for a given target T , exists iff a feasible solution of
problem PB(S) with objective function value ≥ T ′ for some
target T ′ exists. The result follows.

B. Heuristics

We now provide some heuristics to solve problem PB(S).
1) Greedy Algorithm: This algorithm is based on finding,

for each file-user pair (i ∈ S,m ∈MS), the total energy cost
that is incurred at all the cellular users (relay and destination
nodes) if file m is assigned to user i for relaying to its
destination nodes; let Ci,m denote this energy cost. The greedy
algorithm sorts Ci,m, i ∈ S for each file m in increasing order.
Then, starting from the most popular file 5, in decreasing order
of file popularities, the algorithm assigns each file to the first
user from its list of sorted users whose energy constraint is
still met after the assignment.

2) Greedy Global Algorithm: This algorithm is similar to
an algorithm proposed in [31]. In this algorithm, we calculate
Ci,m for all file-user pairs as in the greedy algorithm. For each
file m, we construct a vector

(
Cm1,m, Cm2,m, . . . , Cm|S|,m

)
where m1, . . . ,m|S| ∈ S and Cm1,m ≤ Cm2,m ≤ . . . ≤
Cm|S|,m. For each file m, we find the difference between

4Note that the sum of the Ui,m terms in (7) is a constant and hence these
terms can be ignored. Also, the constant e is chosen to be a large enough value
so that all profits pi,m are mapped to non-negative values. Since

∑
i,m eαi,m

equals e|MS |, which is a constant, a constant gets added to the objective
function due to the added e terms; hence, the problem remains unchanged.

5The popularities of different files can be estimated using the history of
file requests by different users in previous time slots.



TABLE I: Parameters Used in the Numerical Computations

Parameter Value

Propagation Model
Path loss with lognormal

shadow fading and
Rayleigh fading

Noise power -174dBm/Hz
Standard deviation for shadow fading 8

Path loss Exponent 3.3
Transmission power of BS 40 dBm
Relay transmission power 350 mW

Relay receiving power 250 mW
User receiving power on D2D link 200 mW

Bandwidth of relay node 10 MHz
Bandwidth of destination node 10 MHz

File Size Uniformly distributed
in the range {1,. . . ,10} Mb

Cm2,m and Cm1,m and select the file with the highest dif-
ference in the costs. Suppose file m̂ has the highest cost
difference. We assign file m̂ to user m̂1 and remove file m̂
from the list of files if the energy constraint of user m̂1 is
still met after the assignment. Otherwise, we remove the first
element from the cost vector of file m̂. Then we again find the
file with the highest difference in costs between the second and
first elements in its cost vector and repeat this process until a
relay is assigned to each file.

VII. NUMERICAL RESULTS

We present numerical results in this section. In Sec-
tion VII-A, we consider Model A and partition the set of
all cellular users into four different clusters as shown in
Fig. 2. The numbers of users in the four clusters are equal.
We compare the total energy consumption of the cellular
users under the case where the cellular users of each cluster
form a coalition among themselves with that where there are
no coalitions and every user downloads the file it requests
directly from the BS. In Section VII-B, we consider problem
PB(S) with S = N , which was shown to be NP-Complete
in Section VI-A. Using numerical computations, we evaluate
the performances of the greedy and greedy global heuristics,
which were described in Section VI-B, and that of an algo-
rithm in which requested files are randomly assigned to relays.

Throughout this section, we consider a set of users located
in a hexagonal cell of radius 300 meters, with the BS at
the center of the cell. We consider that the probabilities with
which different files are requested by users follow the Zipf’s
distribution; note that the Zipf’s distribution has been found to
closely approximate the measured file popularity frequencies
in several studies, e.g., [32]. Under the Zipf’s distribution, if
M = {1, . . . ,M} is the set of all files that may potentially
be requested, the probability with which file i is requested by

a user is given by pi =
( 1

i )
rc∑

k∈M
( 1

k )
rc , where rc is called the Zipf

exponent. (Note that the set of files that are actually requested
by users is a subset of M.) For modelling the channel, we
consider distance dependent path loss along with lognormal
shadow fading. We also assume that the channel adds additive
white gaussian noise (AWGN) and undergoes Rayleigh fading.
Table I shows the values of various parameters used in the
numerical computations.

A. Comparison of the Cooperation and No Cooperation Cases
under Model A

For Model A, we analyse the case where the set of all
cellular users are located in four clusters as shown in Fig. 2.
The numbers of users in the four clusters are equal. Each

cluster has a radius of 60 meters and the center of each cluster
is located at a distance of 200 meters from the BS. The total
energies expended by all the cellular users of the network in
the case when cellular users of each cluster cooperate among
themselves to form a coalition and in the case where each
user directly downloads the file it requires from the BS are
plotted versus the number of files, M , number of users, N ,
and the Zipf exponent, rc, in Fig 3.6 In all of the plots in
Fig. 3, the energy expended by users when they cooperate is
much less than that when they act independently, which shows
the benefits of cooperation.
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Fig. 3: The figure shows various plots under the scenario where users are
located in four clusters in a cell. Plot (a) shows the total energy expended
versus the number of users in each cluster for the parameter values M = 50
and rc = 0.5. Plot (b) shows the total energy expended versus the number of
files, M , for the parameter values N = 40 and rc = 0.5. Plot (c) shows the
total energy expended versus the Zipf parameter, rc, for the parameter values
M = 50 and N = 40.

B. Performance of Heuristics under Model B
For Model B, we analyse the case where the cellular

users are located randomly across the cell. The total energies
expended by all the cellular users of the network (relays and
destination nodes) under the greedy, greedy global and random
algorithms were computed for various parameter values.

The total energy expended is plotted versus the number of
users, N , number of files, M , and the Zipf exponent, rc, in
Fig. 4. All three plots show that the energy expended under the
greedy global algorithm is lower when compared to that under
the greedy algorithm, which in turn is lower than that under
the random algorithm. Intuitively, the greedy global algorithm
performs better than the greedy algorithm since the former
algorithm takes into account not only the costs Ck,i, but also
the differences, Ci2,i − Ci1,i, during the allocation process.

VIII. CONCLUSIONS

We considered a scenario in which cellular users can
employ relaying and use D2D communication to transfer files

6In each plot, each point is obtained by taking an average over 100 runs.
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Fig. 4: The figure shows various plots under the scenario where users are
placed randomly in a cell. Plot (a) shows the total energy expended versus
the number of users, N , for the parameter values M = 50 and rc = 0.5.
Plot (b) shows the total energy expended versus the number of files, M , for
the parameter values N = 40 and rc = 0.5. Plot (c) shows the total energy
expended versus the Zipf parameter, rc, for the parameter values M = 50
and N = 40.

requested by users from the BS and studied conditions under
which users have an incentive to cooperate with each other. We
considered two different relaying models: Model A and Model
B. First, we showed that, in general, the above coalitional game
under Model A may have an empty core, i.e., it may not be
possible to stabilize the grand coalition. Next, we provided
conditions under which 1) the core is always non-empty and
2) a Dc-stable partition always exists. Also, we showed that
under Model B, the problem of assigning relays to destination
nodes so as to maximize the sum of utilities of all the users is
NP-Complete. Our numerical results show that when cellular
users cooperate with each other, the total amount of energy
consumed in transferring the requested files from the BS to
the destination nodes can be considerably reduced compared
to the case when each user separately downloads the file it
needs from the BS.
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