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Abstract 

In this paper we propose a structure dependent method for the systematic design of 
self-checking error detection circuits which is well adapted to the technical fault 
model considered. For on- line detection,the hardware is in normal operation 
mode,and for testing in test modeJn the test mode,these error detection circuits 
guarantee a 100% fault coverage for single stuck-at-Oll faults and a high fault 
coverage for arbitrary faults. 

1 Introduction 

Different design for testability methods, and methods for on-line error detection are 
investigated world-wide. Test methods can be divided into structure independent,and 
structure dependent methods.In the case of structure independent methods,linear shift 
registers are often used to generate pseudorandom inputs for the circuit under test, and to 
compress the outputs of the circuit [Fr 77]. In the case of structure dependent methods, 
weighted pseudorandom inputs and special circuits for data compression are used. This 
approach, for example is applied to the testing of PLAs [Ag 86]. In another structure 
dependent method, the test set of a given circuit is detenninistically generated by either 
a non-linear shift register [Da 83], a controlled counter [Wa 88], or a more general 
automaton [W a 90]. An interesting modification of a structure independent method into a 
structure dependent method for the testing of a multiple-output combinational circuit was 
recently proposed in [ZA 90]. 
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On the other hand the systematic design of an optimal error detection circuit for a circuit 
with an arbitrarily given functional error model was described in [GG 87 ,Go 91].Every 

fault in the considered fault model of the monitored circuit is detected immediately after 

affecting the output of the monitored automaton if the checker does not fail. 
However,some faults of the checker may remain undedected. 

In [Se 79] it was proposed that the methods of on-line error detection by duplication and 
comparison, and testing be combined to use the same hardware, but in different 
operational modes. For on-line detection, the hardware is set in normal operation mode, 

and for testing, in test mode. These ideas were further developed in [Fu 84, RF 89] and 

in [So 88]. In [Fu 84] it is shown, how for an arbitrary prediction function, a self­
checking error detection circuit can be designed which may also be used for exhaustive -

testing in its test mode. But the method is not adapted to the special structure of the 
monitored circuit or to specific physical faults. In [So 88], the independent outputs of the 

monitored combinational circuit are added modulo 2 and only this modified circuit is 
duplicated, inverted, and compared with the original circuit in normal operation mode and 

in test mode. 

But till now for random logic there do not exist systematic built-in self-test methods 
which are optimally adapted to the fault model and which guarantee, with reasonable 

costs, a 100% fault coverage for the technical fault model considered. This is true even 
for the simple stuck-at-Oll fault model. 
As a generalization of [So 88], we propose in this paper a structure dependent method for 

the systematic design of self- checking error detection circuits which is well adapted to 
the fault model considered.In the test mode, these error detection circuits guarantee a 

100% fault coverage for the single stuck-at- 0/1 faults and also provides high fault 

coverage for other fault models. Instead of the independent outputs in [So 88] in this 
paper, weakly independent outputs of the monitored circuit are summed modulo 2. Two 

outputs are weakly independent with res~t to a given fault if there exists an input such 

that in the presence of the fault considered, only one of the outputs is erroneous. 

2 Basic notions and notations 

In this section we introduce the basic notations "functional error model", "weakly 

independent outputs", and "complete set of weakly independent outputs" with respect to a 
given functional error model. 
We consider a combinational circuit fc implementing a function f, f: X----> Y with 

X= {O,l}m, Y = {O,t}n and f= (fl, ... ,f11), where ti:X--->{0,1}, i=l, ... ,n are m-ary 

Boolean functions. 

Physical faults ~l·····~K such as shortage to ground of one or more lines, shortage of 

one or of more lines to power supply,broken lines,bridging between lines, and others 

are modelled by a functional error model. 

2 



A functional error model F(f) of a circuit fc,which implements the function f with the 

faults cl»l·····ci»K• is a set of functions 

F(f) = {f(O)=f,f(l), ... ,f(K)}, f(i):X ---> Y,i=l, ... ,K. (1) 
The function f(i), i = 1, ... , K of the error model is the function which fc implements 

instead of f(O) = f if the fault cl»i occurs [GG 87]. 

To explain this notion we consider the AND-gate of Fig. 1. The input and the output 

lines of the AND-gate are numbered from 1 to 3. The following faults are considered: 

c1»1:inputline 1 is stuck-at-1 

c1»2:input line 2 is stuck-at-1 

cj)3:output line 3 is stuck-at 1 

cp4:input line 1 is stuck-at-0 

cj)s:input line 2 is stuck-at-0, 

cp6:output line 3 is stuck-at-0. 

If line 1 is ftxed at 1,( cj)l), the faulty AND-gate implements the error function f(l) =1 " 

x2 = x2. If the line 2 is stuck-at-1, (cl»2), the error function f(2) = x1 " 1 = x1 is 

implemented. In case of c!»3 the error function f(3) = 1 is caused by a stuck-at-1 fault of 

line 3. 

Thus the functional error model F}(Xl A x2) = {xl A X2,X2,Xl,l } functionally models 

the stuck-at-1 faults c1»1. c1»2. cj)3, that is, all stuck-at-1 faults of a single line. 

If one of the lines 1,2 or 3 is stuck-at-0, ( cj)4, cl»s. cl»6), the faulty AND-gate of Fig. 1 

implements the function f(4) = f(5) = f(6) = 0. If we assume that both stuck-at-1 and 

stuck-at-0 faults may occur, the corresponding functional error model is 

(2) 

If multiple stuck-at-Oll faults of the AND-gate are also considered no new error functions 

have to be added to the functional error model given by (2). 

To illustrate the ability to describe bridging faults, Fig. 2 shows a 3-input AND-gate 

implementing the function f(X},X2,X3) = x1 A x2 A x3 . 

Let cj) 1 be a bridging fault between line 1 and line 2. If bridging between lines can be 

modelled by a "wired OR" then the corresponding error function f(l) is 

f(l) =(X} V X2) A X3. 

The other error functions for the bridging faults cj)2 (lines 1, 3), c!»3 (lines 2,3), and cl»4 

(lines 1,2,3) are f(2) = (X} V X3) A X2, f(3) = X} A (X2 V X3), and f(4) =X} V X2 V X3 

respectively. 

If cp5, cl»6• cp7 are the respective bridging faults between input line 1 and output line 4, 

input line 2 and output line 4, and input line 3 and output line 4, the corresponding 

error functions are f(5) = (X} A X2 A X3) V X} = X}, f(6) =(X} A X2 A X3) V X2 = X2, 

f(7) = (X} A X2 A X3) V X3 = X3, resp. 
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Thus the functional error model Fbrid(t) caused by bridging faults is 

fbrid(t) = { X1/\ X2/\ X3,(X1V X2) 1\ X3,(X1V X3)/\ X2,X1/\ (X2V X3) X1 V X2 V 

X3,X 1 ,X2,X3 } . 

(3) 

Physical faults sometimes cause combinational circuits to become sequential or to result 
in oscillating behaviour. 

In this paper we assume that physical faults may be described by a functional error model 

consisting of a set of combinational functions. 

We now introduce the concept of weakly independent outputs as a generalization of the 

notion of independent outputs. Outputs of a circuit usualy are called independent, if they 
are implemented without any common gates. 

If a single fault concerning only a single gate occurs at most . one of the independent 

outputs of a circuit may be errroneous. This is true for abitrary inputs. The modulo-2-
sum of a group of independent outputs will be erroneous if the fault considered changes 

one of this outputs. The concept of weakly independent outputs with respect to an error 
function f(k) corresponding to a physical fault cl»k is introduced by definition 1. 

Defipitjon 1. Let J(r) = {j}, ... ,jr },ren, be a set of r outputs of the circuit fc. Then 

j 1 , ... ,jr are weakly independent outputs with respect to f(k) e F(f), if there exists an Xk 

eX such that 
"1 "2 . "1 "2 . fl (Xk) EB fl (Xk) EB .... EB fJr(xk) ~ fl (k;Xk) EB fl (k;Xk) EB ... EB fJr(k;xk)· 

(4) 

The condition given by (4) is satisfied if the number of values fii(k;xk) different from 

fii(xk) is odd for at least one input Xk· 

For r = 2, two outputs h and h are weakly independent with respect to f(k) if there 

exists an Xk e X such that either £i1(k;xk) ~ £il(xk), or £i2(k,xk) ~ £i2(xk), but not 

both (or if£ii = £ii(k)). 

Independent outputs are weakly independent with respect to faults concerning only single 

gates. 

Definition 2. The outputs j 1 , ... , jr , 1 < r ~ n of a circuit fc are weakly independent 

with respect to a subset F(f) ~ F(f) of the error model if they are weakly independent 

with respect to every function f(k) of the subset F(t). 
We now consider different sets of outputs J 1 J2 •... JL of the circuit fc which are weakly 
independent with respect to the subsets Ft (f), F2(f), ... , FL(f) of the error model F(f). 
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Definjtjon 3. Let F1 (f), F'2(f), ... , F'L(f) with F'i(f) ~ F(f) be subsets of the 
functional error model F(f) and let J 1 , ... ,JL be subsets of outputs of the circuit fc which 
are weakly independent with respect to F1(f), ... , FL(f) respectively. Then {Jl>···· JL} 
is a complete set of weakly independent subsets of the outputs of fc with respect to the 

error model F(f) if 

F(f) = F1 (f) u F2(f) u ... u FL(f). (5) 

Remarks. Because of (5) every error function f(k) e F(f) is contained in at least one of 
the subsets Fi(f), i= 1, ... , L. 

In (5) we have not assumed 

Fi(f) n Fj(f) = 0, fori~ j. (6) 

Now to every error function f(k) e F(f) and to every subset i 1, ... , i1 of outputs a 

subset of inputs X(i 1, ... , i1, k) ~ X is assigned for which an odd number of these 

outputs is erroneous due to the fault 4>k corresponding to the error function f(k). 
If this set is not empty the outputs i 1, ... , i1 are weakly independent with respect to f(k). 

For every single output i, 0 < i ~ n, and for a fault 4>k the subset X(i;k) is given by 

X(i;k) = { x I f(x) ~ f(k;x) }. (7) 

X(i;k) is the set of inputs for which the i-th output of fc implementing the error function 

f(k) in case of fault 4>k, differs from the i-th output of the standard function f. 

If X(i;k) ~ 0 then the fault 4>k which causes fc to implement f(k) instead off, is testable. 

We assume here that every fault 4>k, k e { 1, ... , K} is testable. 

We denote X (i;k) = X\ X(i;k). 

Then for x' e X (i;k) we have f(x') = f(k;x'). 

Since X(i 1 ,i2, ... ,i1;k) c X is the subset of inputs for which an odd number of values of 

ti1(k),ti2(k), ... ,til(k) is erroneous we have 

X(i1,i2;k) = X(i1;k) n X (i2;k) u X (i1;k) n X(i2,k) 

X(i1,i2,i3;k) = X(i1;k) n X (i2;k) u X (i3;k) u 

X(i 1 ;k) n X(i2;k) n X (i3;k) u 
- -
X (i 1 ;k) n X (i2;k) n X(i3;k) u 

X(i 1 ;k) n X(i2;k) n X(i3;k), (8) 

and X(i1, ... , ih k) can be computed from X(ij;k) and X (ij;k), j = 1, ... , 1, resp. 
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X(i1, ... ,i};k) :1:0 implies that the outputs it.···· it are weakly independent with respect 

to the error function f(k) which corresponds to the physical fault cl»k· 

For a subset Fj of F(f) the outputs it. ... , it are weakly independent with respect to this 

subset if for all f(k)e Fj' the set X(i1 , ... ,i1;k) is not empty. 

Thus the computation of X(i1 , ... ,i1;k) allows us to decide whether the outputs i 1• ... , it 

are weakly independent with respect to f(k) or Fj' or not Practically this is possible for 

very small examples only. A heuristik method for the determination of complete groups 

of weakly independent outputs is described later on. 

3 Self-checking and self-testing circuits by use of weakly 
independent outputs 

Fig 3. shows the basic design of a self-checking and self-testing circuit based on the 

concept of weakly independent outputs. This method is well-adapted to the error model 

F(f) of the tested circuit which is detennined by the physical faults under consideration. 
Let J = {J t.J2, ... ,JK } with 

Ji = ( ji, l···ji,ri}, i= 1 , ... ,K (9) 
be a complete set of weakly independent outputs of the circuit fc with respect to the errror 

model F(f).Then for i=1, ... ,K the outputs ji,l, .. ·ji,ri of the set Jj are summed modulo 2 

as shown in Fig. 3. In the fault free case we have fori= 1, ... ,K 

Zj_(X) = f.ii,1 (X) E9 fji,2 (x) E9 ... E9 fji,ri (X). 

The additional circuit gc implements the K functions zf(x) = z1 (x), ... , 

ZK'(x) = ZK (x) which are compared with z1 (x), ... ,zK(x) by use of a self-checking 

comparator sec. 
Depending on the control signal on the multiplexer MUX, the circuit is in either test 

mode, or nonnal operation mode. In the test mode the test input generator TIG inputs the 
test signals simultaneously to fc and k· If we assume that the test input generator TIG 

generates an exhaustive test, then 

- every fault cl»k of fc corresponding to an error function f(k) e F(f), f(k):~: f, 

-every fault cl»'l of k which changes g into g(l) with g(l) :1: g,and 

-every single stuck-at-Oll fault of the self-checking comparator SCC,is detected if all 

possible correct input combinations are applied to the sec. In general we do not specify 

whether the TIG generates an exhaustive, a pseudorandom, a weighted pseudorandom, 

or a deterministic test. For more specific fault models more specific results may be 

obtained. 
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In nonnal operation mode, all single faults are detected when they affect the outputs of 
fc,k or sec for the first time. 

4 100% fault coverage for stuck-at-0/1 faults 

In this section we assume that only single stuck-at-Oll faults occur and that the weakly 
independent outputs of fc are determined according to this fault model. 

For the case of single stuck-at-Oll faults we show that a 100% fault coverage can be 
achieved by the method proposed. Thereby we assume that both the circuits fc and &; are 

testable with respect to every single stuck-at-Oll fault. The transformation of an arbitrary 
circuit into a circuit testable with rerspect to every single stuck -at-Oll fault is described in 
[SM 77]. 
A direct testable implementation of a Boolean function f1 or a tupel of Boolean 
functions f= (f1, ... ,fK) can be achieved by use of irredundant representations of ti by 
prime implicants [Le89,SL90]. 
We do not go into details here but assume that both fc and&; are testable with respect to 

all single stuck-at-0/1 faults. 
If the TIG generates an exhaustive test, all single stuck-at-Oll faults of fc and&; are 

detected in the test mode. 
We now discuss the detection of all single stuck-at-Oll faults of the SCC. A well known 
SCC with 2x2 = 4 inputs and 1x2 = 2 outputs described in [CS 68] is shown in Fig. 4. 
Possible fault free inputs are 0101,0110,1001,and 1010. Fault free outputs are 01,and 
10. All single stuck-at-Oll faults are only detected if all the four possible fault free inputs 
are actually applied to the sec. If only a subset of these inputs occurs, then according to 
[KR 90] the situation can be improved by including two delay elements on two of the 
input lines of the SCC as shown in Fig. 5. Let us suppose that only the fault free inputs 
0101 and 1010 are applied to the original sec. Then due to the delay elements all of the 
four fault free inputs occur as inputs to the modified SCC given in Fig.5. If we assume 
that none of the input lines of the original SCC are constant over all time, then by use of 
this method, all possible input combinations occur as inputs of the modified sec and all 
single stuck-at-Oll faults of the sec will be detected during normal operation. 
A SCC with more than four inputs can be implemented in the usual manner as a tree of 
secs with four inputs and two outputs. Thus we have shown that a 100% fault coverage 
of all single stuck-at-Oll faults can be in priciple achieved by the described method. 

Another possible SCC with only one output was proposed in [So 81]. This SCC is 
shown in Fig. 6. An additional input xo , xo e { 0, 1 } changes its value to its 

opposite value every time-cycle. For the inputs (ai,a'i) e {01,10}, the outputs of all the 

XOR-gates which are directly connected to the inputs a'j,i=1, ... , n, are equal to xo as 
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long as no fault occurs. All multiple stuck-at-Oll faults of the XOR- gates are detected 
during nonnal operation with the exception of a stuck-at-1 fault on the direct output of the 
sec which is true even if not all possible fault free inputs are applied to the sec. If only 

none of the input lines of the SCC is constant then all the stuck-at-Oll faults will be 
detected. Since only the stuck-at-0 faults on the inputs of the AND-gate and the stuck-at-1 

faults of the NOR-gate can be detected during normal operation these AND- and NOR­

gates are redundantely designed. The time-delay of this checker is independent on the 
number of its 2n+ 1 inputs where the number of internal signal lines is n. 

In normal operation mode every single stuck-at-Oll fault is immediately detected the fnt 
time if it influences the outputs of fc, k· or the sec resp. 

5 Fault coverage for arbitrary faults 

The circuit of Fig. 3 was designed to detect the faults of a specific fault model and is 

well-suited to this special purpose. Regardless of this fact we now suppose that due to 
arbitrary faults (not necessarily from the fault model considered till now), the outputs of 
fc as well as the outputs of k are arbitrarily erroneous with equal probability. 

We suppose that the TIG generates an m-dimensional input sequence of length 1. Then 
the circuit fc outputs an n-dimensional output sequence of length 1 which is transformed 

by modulo 2 additions of the corresponding weakly independent outputs into an K­
dimensional sequence of length 1. The circuit&: also outputs an K-dimensional output 

sequence of length 1. We now assume that due to an arbitrary fault, each of the principally 

possible 22Kl output sequences oflenght 1 occurs with equal probability. One of these 
sequences is correct, and 22Kl_ 1 sequences are erroneous. Among the 22Kl sequences 
are 2KI sequences for wich we have z'i = Zi, i = 1, ... , K for the entire length 1 of the 

sequence considered. · One of these sequences is the correct one,and 2KI- 1 of them are 
erroneous, but they can not be detected as erroneous by the circuit of Fig. 3. Thus 2K1-1 

of the 22KI - 1 erroneous sequences can not be detected as erroneous, and the probability 

of not detecting an arbitrarily erroneous sequence of the length 1 due to an arbitrary fault 

is 

2kl- 1 
p= 

22kl- 1 
1 

2kl 
(10) 

Since the circuit fc has m binary inputs the lenght 1 (for an exhausive test) is of the order 

of 2m. For m= 8 and K = 2 we have p = 1/2512, and for m= 10 and K = 2, 

p= t/22048. 
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K is the number of different sets of weakly independent outputs of fc. Thus the fault 

coverage of the proposed method for arbitrary faults is as good as for the method 
described in [ZA90]. 

Under the assumption that all output sequences occur with equal probability the proposed 
method provides much better fault coverage then in signature analysis. Applying 

signature analysis using a signature register with r Flip-Flop elements it is only possible 
to achieve p = 2-r. In signature analysis this result is independent on the test length. 

6 An heuristic method for the determination of groups of 
weakly independent outputs 

Groups of weakly independent outputs can be determined by hardware simulation of the 
circuit fc and fault injection of the faults from the fault model considered 

Since the problem of determing "optimal groups" of weakly independent outputs is of 
large complexity, heuristic methods must be used. One possible heuristic solution will 
now be described. 

Let fc be the circuit implementing the n-tupel of m-ary Boolean functions f = ( fl, ... , f11 ) 
and let F(f) = { f(O) = f(l), ... , f(K) } be the functinal error model as previously 
described. 

Then for the first set J 1 (n) of weakly independent outputs, we choose the set 

J1(n) = {1, ... , n } of all outputs of fc . 

According to the proposed method, all the outputs of J 1 (n), that is all the outputs of fc, 
are added modulo 2 to form ZJ, i.e. the parity bit. J 1 (n) is weakly independent with 

respect to all error functions fG), fG) e F(j), for wich there exists an input Xj, Xj e X, 

such that f(j;xj) is erroneous at an odd number of outputs. 

Let Food (f) be the set of these functions wich are erroneous at an odd number of outputs 

for at least one input Then we remove these functions from F(f) and we compute 

Feven (f)= F(f) \Food (f)· 

The set F eve0 (f) = { feven,1• ... , feven,I.J consists of all functions of the error model which 
for all inputs are erroneous only at an even number of outputs of fc. Practically, Feven(f) 

is a relatively small set of error functions. 
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For every function feven,k e Feven<O we fix an input xk such that for at least one 

j e { 1, ... , n} we have feven~(xk) :1: tl(xk). 
If the circuit fc implements feven,k and the input Xk is submitted then at least the j-th 
output of fc is erroneous. 

We defme an (L; n)-matrix T = (Tk I), k= 1, ... ,L; 1 = 1, ... ,n by 
' 

if feven,k1(xk}:1:fl(xk) 
otherwise 

Tk,l equals 1 if the 1-th output of fc is erroneous due to the implementation of the error 
function feven,k when input Xk is applied to fc. For every column 1, 1 = 1, ... , n, 
COITesponding to the 1-th output of fc, we count the number of l's. 

This number of l's is the number of error functions feven,k e Feven<O with erroneous 
output 1 if the previously fixed inputs Xk, k = 1, ... , L, are applied. 

From the till now unmarked columns ofT we choose the one with maximal value and 
mark this column by *. If more than one column has the maximal value, then one of these 
columns is arbitrarily choosen. 
Let r be this column. Then all rows j ofT for which Tj,r = 1 are also marked by *. These 
rows correspond to the error functions fevenj• which under input Xj are erroneous at 

output r. These errors are detected by observing output r. 
Let j be a row ofT marked by *. Then all columns m ofT, m :1: r, for which Tj,m = 1 are 

marked by+. 
Let m' be a column marked by +. Then we have Tj,m' = 1 and Tj,r = 1 and the outputs 
m' and rare simultaneously erroneous under input Xj if the error function feven,j is 
implemented by fc. Therefore the outputs rand m' should not be added modulo 2. 

Generally outputs corresponding to columns of T marked by + should not be added 
modulo 2 to outputs marked by *. 
Now all the rows marked by* are deleted from T. The described procedure is repeated 
until all the columns are marked by either* or+. The columns marked by* correspond 
to a group of weakly independent outputs { i1.1, ... , it,rl } = 12 and are added modulo 2. 

The columns ofT marked by * and the rows ofT marked by * are deleted from T. 
Next the markings + are deleted and the described procedure is again applaid to determine 
the next group of weakly independent outputs { i2,l, ... , i2,r2 } = 13 , ... until all the 

rows have been removed from T. 
Fig. 7 shows the corresponding self-checking and self-testing combinational circuit with 
M+ 1 groups of weakly independent outputs. 

The values z 1, z2, ... , zM correspond to the modulo 2 sum of the groups of weakly 
independent outputs 11, 12, ... , 1M· 
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Since J2, ... , JM are mutually disjoint z1 can be computed by the modulo 2 sum of Z2· 
•.. , zM and all the additional outputs not contained in J2, ..• , JM • Thus the computation 
of z1, z2, ... , zM needs exactly as many XOR-gates as the computation of the parity z1 
of the outputs of fc. 

7 Examples 

As a first example, we consider here the design of a self-testing and self-checking one­
bit-adder A. The adder is shown in Fig. 8. For the sum bit s we have s = a E& b E& c_ and 

for the carry out c+ : c+ = a " b v (a E& b ) " c_, whereas a and b are the operands and c_ 

denotes the carry-in. 
We assume that only single stuck-at-Oll faults can occur. In Fig.8 the gates of A are 
numbered from 1 to 5. Faults of gate 2 can only influence output 1; and faults of gates 
3,4 and 5 can only influence output 2. Gate 1 is the only gate where faults can act on both 
outputs 1 and 2. To show that outputs 1 and 2 are weakly independent with respect to all 
stuck-at-Oll faults of all the gates of A, we only have to show that the outputs 1 and 2 are 

weakly independent with respect to the 6 stuck-at-Oll-faults cj)}o. c1>11o 4>20· 4>21· 4>30· 
and 4>31 of lines 1, 2 and 3 of gate 1, where cl>ij denotes that line i is stuck-at-j, 

i e {1 ,2,3 } , j e { 0, 1 } . 

Then we have 
X(l; c1>1o> = {abc_= 100,101,110,111} 

x (1; c~> 1o> = X\X(1, c~> 1o> = {000,001,010,011 } 

X(2; c~> 1 o> = { 101} 
x (2; c~> 10> = X\X(2; c~> 1 o> ={ ooo,oo1,010,011,100,110,111 } - -

X(1,2; ci>10) = X(1;ci>10) fl X (2; ci>10) u X (1; ci>10) r-.. X(2; ci>10) 

= { 100,110,111 } ::1:- 0 and the outputs 1 and 2 are weakly independent with respect to 

4>10· In a similar way, it is easy to show that the outputs 1 and 2 are weakly independent 

with respect to the remaining faults cl>ij . Since the gates 2, 3, 4, and 5 influence only one 

of the outputs, all faults of these gates affect one output only and the outputs 1 and 2 are 
weakly independent with respect to all the single stuck-at-Oll faults. Furthermore, the 
adder A ofFig.8 is testable with respect to every single stuck-at-Oll fault. 
The outputs 1 and 2 as weakly independent outputs, have to be added modulo 2 and 
inverted. The additional circuit k has to implement 

s E& c+ =a" b "c v a v b v c . 

The corresponding self-testing and self-checking adder is shown in Fig.9. 
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The implementation of gc in Fig.9 is testable with respect to every single stuck-at-Oll 

fault of its gates. If both the adder A and the additional circuit ~ are fault free, the SCC 

outputs X() • It is easy to see that the solution based on the concept of weakly 

independent outputs is much more cost effective than duplication and comparision. The 

stuck-at-I faults on the inputs of the AND-gate, and a stuck-at-0-fault on the input of the 
NOR-gate of the SCC will not be detected during normal operation. 
We now apply the described heuristic method for determining groups of weakly 
independent outputs to the circuit fc shown in Fig. I I. In this circuit we have 

Y1 =XI EB(X2AX3) 

Y2 = X4 Ea (X2 A X3). 

The circuit fc is one of the rare examples where certain faults simultaneously influence 

for all inputs all the outputs of the circuit. Here the faults of gate I affect all outputs. The 
circuit fc of Fig. II was only choosen as a simple example to illustate the proposed 

heuristic method for detereming groups of weakly independent outputs. All faults are 

assumed to be single stuck-at-Oll faults of the gates I, 2, and 3 resp. 
All stuck-at-Oll faults of gate 2 influence only output I, and all stuck-at-Oll faults of gate 
3 influence only output 2. For the first set J I (2) of weakly independent outputs of fc we 
choose JI(2) = { I, 2 }. 

The outputs I and 2 are to be added modulo 2, ZI' = y I Ea Y2 = xI Ea x4 and J I (2) 

is weakly independent with respect to all single stuch-at-0/I faults of the gates 2 and 3. 
All the stuck-at-Oll faults of gate I influence both the outputs I and 2 of the circuit shown 
in Fig. Il. 

The error model for the AND-gate as described in section Error model is 

F(AND) = { XI A x2, XI, x2, I, 0 }. The (4, 2)-matrix T = (Ti,j) is given by 

output: 

error fct. I 2 
XI I I 
X2 I I 

T= I I I 

0 I I 

sum: 4 4 
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The sum of 1 's in every column ofT is 4. One of the columns with the maximal value 4 
is column 2. Column 2 is marked by *. Since Ti,j = 1 for i = 1, ... ,4, every row is also 

marked by *. Column 1 is marked by + since, for example, row 1 is marked by * and 
T2 2 =1. 

' 

+ * 
* 1 1 

T= * 1 1 

* 1 1 

* 1 1 

All the rows ofT are now deleted and output 2 forms a group of weakly independent 

outputs with respect to the stuck-at-Oll faults of gate 1. Thus the heuristically determined 
complete set of weakly independent outputs is J 1 (2) = { 1, 2 } and h( 1) = { 2 } . 

x, ___i.::._--r--

2 

Figure 1 

Figure 2 
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Figure 3 

Figure 4 

Figure 5 
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