October 1998 UILU-ENG-98-2225
DAC-69

University of Illinois at Urbana-Champaign

Multiple Design Error Diagnosis and Correction
in Digital VLSI Circuits

Andreas G. Veneris

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801

CTTTE

UNCLASSIFIED

SECURNY CLASSIFICATION OF TRIS PAGE
Form ed
REPORT DOCUMENTATION PAGE OMB N 07040788

12, REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for publie release;

DE IFICATION / DOWN N HEDULE
25. DECLASSIFICAT \ GRADING SCHEDULE distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-98-2225 (DAC 69)

6a. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Coordinated Sci Lab (f applicable) i a

ed Science La Office of Naval Research

University of Illinois N/A

6c. ADDRESS (City, State, and ZiP Code) o 7b. ADDRESS (City, State, and ZIP Code)
1308 W Mai ’ .

) in St Arlington, VA 22217

Urbana, IL 61801
Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Joint Services . (If applicabie)) ‘

. N00014~96-1-0129

Electronics Program '
8c ADDRESS (City, State, ar?d 2P que) ' 10. SOURCE OF FUNDING NUMBERS :

Arlington. V PROGRAM. PROJECT TASK WORK UNIT

gton, VA 22217 ELEMENT NO. | NO. NO. ACCESSION NO.
11. TITLE (Include Security Cassification)
Multiple Design Error Diagnosis and Correction in Digital VLSI Circuits
12. PERSONAL AUTHOR
() Veneris, Andreas G.

13a. TYPE Of REPORT 13b, TIME COVERED) 14, DATE OF REPORT (Year, Month, Day) 115, PAGE COUNT

Technical FROM TO 98 Sep 22 131
16. SUPPLEMENTARY NOTATION '
17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and iderdfy by blo& number)

: - 3 .
FIELD GROUP SUB-GROUP Design, error, diagnosis, VLSI, digital, circuit

19. ABSTRACT (Continue on reverse if nacessary and :denvfy by biock number)

With the increase of circuit size and complexity, logic design errors can occur. Logic design efrors are functional nusmatches between the specification and
gate-level implementation. Once a verification tool has found that the design is emoneous, logic debugging must be performed. The research presented in this thesis
provides a methodology for multiple design error diagnosis and correction.

To diagnose an erroneous design, two algonthms based on test-vector simulation are presented. The first algorithm is exhaustive on the error space as it exhaus-
Itively enumerates the set of all possible error lines and returns the Iines of this set that a correction can be applied and rectify the design. The proposed approach exhi-
bits good run-time performance when the number of design errors is less than or equal to two. -

The second diagnosis approach, uses the results of a test-vector simulation procedure to build a graph Different operations on the graph allow us to explore the
error space without performing an explicit enumeration of all error candidates. This makes the method run-time and ‘space efficient for designs corrupted with a larger
number of errors.

To correct the design, we propose two techniques, one based on test-vector simulation, and one based on Boolean function manipulation techniques. Both correc-
tion approaches are based on a design error dictionary which is an extension of the one proposed by Abadir et al, [2].

Our experimental results show that our algorithms have good error resolution and run-time performance as they are able to rectify designs with one, two and
three errors within minutes of CPU time. In addition, our experiments suggest that diagnosis and correction of multiple design errors with input test-vector simulation is
an attractive alternative to symbolic techniques. This makes our test-vector simulation based methods applicable to designs where a symbolic representation might not
be available.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
B uncLassimEDUNUMTED [T SAME AS RPT. [J pTIC UsERS Unclassified 4 ,
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSITIED

MULTIPLE DESIGN ERROR DIAGNOSIS
AND CORRECTION IN DIGITAL VLSI CIRCUITS

BY
ANDREAS G. VENERIS

Diploma, University of Patras, 1991
M.S., University of Southern California, 1992

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1998

Urbana, Illinois

(© Copyright by Andreas G. Veneris, 1998

MULTIPLE DESIGN ERROR DIAGNOSIS
AND CORRECTION IN DIGITAL VLSI CIRCUITS

Andreas G. Veneris, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1998
Ibrahim N. Hajj, Advisor

With the increase of circuit size and complexity, logic design errors can occur. Logic
design errors are functional mismatches between the specification and gate-level imple-
mentation. Once a verification tool has found that the design is erroneous, logic debug-
ging must be performed. The research presented in this thesis provides a methodology
for multiple design error diagnosis and correction.

To diagnose an erroneous design, two algorithms based on test-vector simulation
are presented. The first algorithm is exhaustive on the error space as it exhaustively
enumerates the set of all possible error lines and returns the lines of this set that a
correction can be applied and rectify the design. The proposed approach exhibits good
run—time performance when the number of design errors is less than or equal to two.

The second diagnosis approach, uses the results of a test—vector simulation procedure
to build a graph. Different operations on the graph allow us to explore the error space
without performing an explicit enumeration of all error candidates. This makes the
metho;i run—time and space efficient for designs corrupted with a larger number of errors.

To correct the design, we propose two techniques, one based on test—vector simulation,

and one based on Boolean function manipulation techniques. Both correction approaches

are based on a design error dictionary which is an extension of the one proposed by Abadir

et al. [2].

111

Our experimental results show that our algorithms have good error resolution and
run-time performance as they are able to rectify designs with one, two and three errors
within minutes of CPU time. In addition, our experiments suggest that diagnosis and
correction of multiple design errors with input test—vector simulation is an attractive
alternative to symbolic techniques. This makes our test—vector simulation based methods

applicable to designs where a symbolic representation might not be available.

v

To my parents for their unconditional
love, faith, patience, and support

ACKNOWLEDGMENTS

I would like to begin by expressing my gratitude to my advisor, Professor Ibrahim N.
Hajj, for giving me the freedom, allowance, guidance'and support throughout the course
of my graduate years.

I would also like to thank the members of my committee, Professors Farid Najm,
Steve Kang, William Kubitz, C.L.Liu, and Saburo Muroga for their valuable comments
and input in my research. A special thanks to Professors William Kubitz and C.L.Liu
who served as the chairpersons of my final and preliminary doctoral exams, respectively.

I would also like to take the opportunity to thank Professors Dennis Mickunas,
Michael Faiman, Lefteris Kirousis, Constantine Polychronopoulos, Edward Reingold,
Naresh Shanbhag and Douglas West for treating me with kindness and sharing their
experience with me. A special acknowledgment goes to Ms. Carol Genzel from the Coor-
dinated Science Laboratory and the people at the graduate office of the Digital Computer
Laboratory Ms. Barbara Cicone, Ms. Julie Legg, and Ms. Felice Long, for making my
life easy while I was making their lives hard.

I owe much to my friends in Coordinated Science Laboratory and Digital Computer
Laboratory for understanding and sharing the blues and greys of my daily life since 1993:
Nikos Bellas, Sudhakar Bobba, Howard Chen, Georgios Dimitriou, Shashank Goel, Tong
Li, Raj Panda, Sumant Ramprasad, Mallikarjun Shankar, Pra,.sha,nt Saxena, and Georgios
Stamoulis. I would also like to acknowledge Shi-Yu Huang from National Semiconductor

Corp. and Chang-Chao Hsieh from Prof. Muroga’s group for their interest comments

vi

throughout my research. Many thanks also go to Professor Martha Escobar, Wes Groves,
Michael Johnson, Professor Rodanthi Kitridou, and Luke Wroblweski for being close to
me whenever I needed them.

Lastly, but most importantly, I am forever indebted to my parents, Georgios and

Irini, whose unselfish love forged the foundation of my life.

vii

TABLE OF CONTENTS

CHAPTER PAGE
1 Introduction. e 1
1.1 Problems Addressed 1
1.2 Problem Formulation 5
1.2.1 Preliminaries e e e e 5

1.2.2 Design Error Model 8

1.3 Previous Work e 12
1.3.1 DEDC Symbolic Methods 12

1.3.2 DEDC Test—Vector Simulation Methods 14

1.4 Thesis Outline and Contribution. 16

2 Multiple Design Error Diagnosis With Explicit Enumeration of Error

Tuples e 20
2.1 Introduction 20
2.2 A Necessary Condition for Circuit N-Source Correctability 21
2.3 Error Location 28
2.3.1 Total Observability Measure 29
2.3.2 Inverted Simulation 33
2.3.3 Handling Unknown Values During Diagnosis 40
2.3.4 Overall Diagnosis Approach 40
24 Summary e e 42

3 Multiple Design Error Diagnosis With Implicit Enumeration of Error

Tuples 45
3.1 Imtroduction 45
3.2 Tracing Backwards from Erroneous Qutputs 47
© 3.2.1 Critical Path-Tracing, 47
3.2.2 Critical Path-Traceback 49

3.3 Single Error Location, - 52
3.4 Multiple Design Error Diagnosis 53
3.4.1 Pruning the Error Space Through Graph Reductions 56
3.4.2 Implicit Enumeration, 63
3.4.3 Multiple Error Location 67
3.4.4 Implementation Issues 68

3.5 ErrorMasking 69

3.6 Summary

viii

4 Design Error Correction o . 73

4.1 Imtroduction L 73
4.2 Correction with Test Vector Simnulation 74
4.2.1 Wrong Gate Correction 75
4.2.2 Wrong Wire Correction 7
4.2.3 Wrong Gate/Wrong Wire Correction 7
4.2.4 Overall Correction Strategy 78

4.3 Correction with BDDs L oL 80
4.3.1 Boolean Equations L. 80
4.3.2 Symbolic Diagnosis and Correc‘mon 86
4.3.3 Producing Vectors With Erroneous Responses 88

44 SUMMATY .« v 2 v v e 88
5 Experimental Results 90
5.1 Imtroduction 90
5.2 Results on Diagnosis With Explicit Enumeration of Error Tuples 91
5.3 Results on Diagnosis With Implicit Enumeration of Error Tuples 94
5.4 Results on Error Correction 100
5.4.1 On the Performance of Test—Vector Simulation to DEDC 104

6 Related Research Topics 105
6.1 Design Error Diagnosis of Sequential Circuits 105
6.2 Engineering Change. 107
6.3 Design Optimization 109
6.4 Conclusion. e e e e e 111
References L 113
Vita . .. e e 119

1X

Table

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

LIST OF TABLES

Page
ISCAS’85 Circuit Characteristics 91
Initial Error Space for Error Diagnosis 92
Explicit Diagnosis for 1-Source Correctable Designs 93
Explicit Diagnosis for 2-Source Correctable Designs 94
IG Characteristics for 1-Source Correctable Designs 96
IG Characteristics for 2-Source Correctable Designs 97
IG Characteristics for 3-Source Correctable Designs 98
Implicit Diagnosis for 1-Source Correctable Designs 99
Implicit Diagnosis for 2-Source Correctable Designs 100
Implicit Diagnosis for 3-Source Correctable Designs 101
Error Correction for 1-Source Correctable Designs 102
Error Correction for 2-Source Correctable Designs 103
Correction hit-ratio for a Reduced Number of Random Vectors 104

LIST OF FIGURES

Figure

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5

Example of Input Specification and Implementation
Abadir et al. design errormodel o Lo
Method Overview e

Overview of Diagnosis With Explicit Enumeration of Error Tuples
Erroneous circuit for Example 3. oo oo Lo
Total Observability Measure Procedure -
Erroneous Circuit for Example4 L.
Erroneous Circuit for Example 5
Fgroup Bit-Vector Entries
Inverted Simulation Procedure for Example 6
Inverted Simulation Procedure
Multiple Path Sensitization
Recording don't care values
Checkpoints and Clans for the Circuit of Example 8
Overall Diagnosis Approach

Overview of Diagnosis With Explicit Enumeration of Error Tuples
Critical Path-Tracing Approximations v . . v v v v v ...
Critical Path-Traceback Line Selection Algorithm
Space Pruning For Single Error Diagnosis o v ..o o u ...
Implicit Diagnosis for Single Design Errors
An Example of an Intersection Graph
A Reduced Intersection Graph
Erroneous Implementation for Example 13
Example of Circuit Graph Construction and Graph Reduction
Erroneous Implementation and IG for Example 14
A 2-Graph Reduction on a 3—Source Correctable Design
Subgraph of a Clique IG
Implicit Diagnosis for Multiple Design Errors
Example of Error Masking

Wrong Gate Correction on an Error Pair
Design Error Correction With Simulation
Circuitry of an Error Equation
Error Equation Circuitry for Examples 20 and 22
Symbolic Design Error Correction

xi

5.1

6.1
6.2
6.3
6.4

Diagnosis Speed Up for the 2-Source Correctable C432 95
Sequential Circuit Diagnosis 106
Iterative Array Expansion of a Sequential Circuit 107
An Approach for Engineering Change 108
Optimization via Redundancy Addition/Removal 111

xii

CHAPTER 1

Introduction

1.1 Problems Addressed

The process of designing VLSI circuits involves many stages of verification and de-
bugging. Circuit verification is the process of checking if a design meets its specification.
Once a design has been proven to be erroneous by a verification tool, design debugging
occurs so that a correct version that satisfies the desired specifications is obtained. With
the increased emphasis on product quality, reduction of manufacturing cost and improved
yield for semiconductor circuits, antomated design verification and debugging remains a
significant research area.

Although existing research has focused extensively on the design verification issue
(logic verification [2] [5] [8] [29] [30] [31] [34], timing verification [24], power estimation
[46], layout verification [18] [49]) little research has been carried on logic debugging which
18 still; in most cases, carried manually by the designer. It has been reported that more
than half of the total design effort of a high-performance microprocessor is devoted to
the verification and debugging process [30]. Therefore, with the increase of both circuit
size and circuit complexity today, there is an urgent need to develop automated methods

that perform debugging. In this thesis, we describe a set of logic debugging tools that

rectify a design at the logic level that has been already proven to be erroneous by a
verification tool.

During the design cycle of a VLSI digital circuit, functional mismatches between the
specification and the gate-level implementation often occur. These mismatches usually
happen when the designer has to manually interfere with thé synthesis process and modify
the netlists in order to achieve different optimization goals. Errors in high level synthesis
can also be sources of errors in a gate-level implementation. Finally, software bugs
in automated synthesis/optimization tools can-also be sources of functional mismatches.
These functional mismatches between the specification and the gate—level implementation
are called design errors hereafter.

Experimental data has shown that the nature of the design errors usually involves the
functional misbehavior of some gate element(s) or some wire interconnection error(s) [1]
[2]. The average number of design errors that usually occur aepends on the amount of
manual resynthesis performed and it has been experimentally observed to be less than
or equal to 2 [1]. In this thesis, we adopt a design error model which is an extension of
the one presented in [2]. This model includes eight commonly encountered design errors.
An experimental study carried in [1], has shown that the model of [2] covers 97.8% of all
design. errors that usually occur during a manual resynthesis procedure.

Once a verification tool has found a functional mismatch between the design and
the specification, Design Error Diagnosis and Correction (DEDC) needs to be
performed. The objective of diagnosis is to identify parts of the circuit that might contain

an error. The quality of diagnosis is determined by its ability to narrow down the potential

error space, that is, its resolution to identify parts of the circuit that contain potential
erroneous signals.

Once the error space has been narrowed down, rectification is performed. The goal of
correction is to suggest the appropriate modifications on the netlist. Modifications are
usually selected from a list of possible modifications also known as design error model.
These modifications will be able to rectify the design and make it functionally equivalent
to the specification. Since verification tools cannot give any information on the location
and type of error(s), it is necessary to develop automatic methods that solve the problem
of Design Error Diagnosis and Correction efficiently.

A problem closely related to Design Error Diagnosis and Correction is the Engineer-
ing Change (EC) one. In a typical VLSI synthesis process, specifications often change.
Since tools used for synthesis and optimization [44] tend to find a minimal representation
of the requested function, engineering changes on the original specification may require
large changes in the existing gate-level implementation if a conventional re-synthesis
procedure is used. This is undesirable since the engineer might have already invested
a lot of effort in synthesizing the existing design. Therefore, in order to preserve most
of the previous engineering effort and re-use as much of the existing design as possible,
efficient algorithms to attack the EC problem need to be developed so that rectification
is performed with as little modifications as possible.

Depending upon the information available, there are two different versions of the
Engineering Change problem. In the first version, a naming equivalence between some
signals of the new and old specification and the existing gate-level implementation exists.

For example, the old and new specification are both in a netlist format before technology

decomposition and the gate-level implementation under rectification is the netlist after
decomposition. Research in this area usually uses this fact of the aforementioned signal
naming equivalence and reuses large parts of the existing design.

In the second version of the EC problem, the specification acts like a “black box”,
that is, it can only provide the correct output responses given some input stimulus. For
example, the specification might be available in a higher level of abstraction model, such
as in a register~transfer level (RTL) format coded in some hardware-description language
(Verilog or VHDL). In such a case, the aforementioned naming correspondence between
the specification and implementation does not exist.

The problem of Design Error Diagnosis and Correction can be also viewed as an
instance of the second EC version [39]. This is achieved if we view the existing netlist
that implements the old specification as the erroneous circuit and the new specification as
the desired circuit. Nevertheless, EC is an inherently more difficult problem than DEDC
as we cannot necessarily expect that a few modiﬁca,tiogs can always provide a solution
as it is usually happens for DEDC.

The importance of this difference comes from the fact that the error space during
diagnosis usually grows exponentially with the amount of erroneous signals [56]. More

specifically, for a brute force diagnosis method, the error space is upper bounded by

(# of circuit lines)# of erroneous lines) (1.1)

while the error correction space is at least as big as the equation above depending on the
design error model that is used. It is straightforward to see that for even small circuits

corrupted with multiple errors, a naive DEDC approach might fail.

In this thesis we present a methodology for combinational circuit ' design error di-
agnosis and rectification when a number of modifications on some lines of the erroneous
circuit are sufficient to correct an erroneous design. We also compare the quality of

test—vector simulation and BDDs [12] for the DEDC problem.

1.2 Problem Formulation

1.2.1 Preliminaries

As explained earlier, the input to the DEDC problem is a functional specification
F¢ and a netlist of an erroneous gate-level implementation G¢. The specification Fg
acts as a “black—box” as it can only provide the correct primary output responses given
some values at the primary inputs. Fp can be given in terms of a truth-table, cubes
etc. Without loss of generality, we assume that both F¢ and G¢ are combinational
circuits, or they are both synchronous sequential circuits with the same state variables
and the same state assignments. In this work, we examine incorrect combinational gate-
level descriptions G¢ with NOT, BUFFER, AND, NAND, OR and NOR gates 2. During the
execution of our algorithm, we introduce one buffer for every fan-out line of a branch.

The functional description Fg¢ of a circuit C with n primary inputs, Plg, =
{PL,PL,,...,PI,}, and m primary outputs, POg,(PI) = {PO;(PI), POs(PI),...,
PO, (PI)}, is a function from a set of input n-tuple values drawn from universe B =

{0,1} to a set of output m-tuple values drawn from B. In other words, the functional

1As explained in [2], a synchronous sequential circuit can be viewed as a combinational circuit if the
inputs and outputs of the flip—flops are considered as pseudo—primary inputs and outputs, respectively.
A detailed discussion on this issue can be found in Chapter 6.

?If XOR gates are present in the circuit, these gates are substituted.

description F¢ of a circuit C' is a function that returns the correct values at each primary
output of the circuit for all values at the primary inputs of C. A gate—level description
Ge of a circuit C designed to realize F¢, is defined along the same lines. G is incorrect
when for the same set of input n—tuples, the return set of G¢ is a set of m—tuples different
than the one returned by F¢. For the DEDC problem, the functional description acts
as a “black box” as it can only provide the correct primary output responses given some
primary input stimulus. The only netlist available is the one of the erroneous Gg¢.

For the purpose of logic verification in our technique, formal techniques [12] [34] or
parallel [66] test—vector simulation [1] [2] can be used. In any case, a set V,. of input
test vectors is obtained each of which activates the inconsistencies of the incorrect
design, that is, each such vector produces a different response at the primary outputs of
Fg and G¢. In our experiments, we compile V,.; by simulating vectors for stuck-at faults
and random test—vectors. The size of V, in our experiments is usually less than 100
input vectors. In Section 4.3.3 we explain how we can use symbolic techniques to derive
vectors for V..

We say that a line [/, fan-in to an AND or NAND (OR or NOR) gate, has controlling
value for input vector v if the value of [is 0 (1). If [drives a NOT or a BUFFER it always
has controlling value. A line whose value changes during simulation under the presense
of some fault(s) is called a sensitized line and a path of sensitized lines is called a

sensitized path [10].

Example 1 Fig. 1.1 shows an ezample of a design specification and its respective correct

gate-level implementation. The circuit has four primary inputs, namely I, I, Is, I, and

one primary output O. The implementation is simulated for input vector (0,0,1,0) and

lines I, G1, Buf fer,, Buf fer,, Is have controlling values.

O =1L+ LI+ 1,

(a) Functional Specification

0
I1 1
1 G3
——
Buffer 1
0 Gt 1 1
I2 G4 o
Buffer 2 1
[
3 _ !)Gz\ 1
14— J

(b) Gate Level Implementation

Figure 1.1 Example of Input Specification and Implementation

The following terminology is used during error correction. Underlined values denote

vector values.

Let Boolean functions f and g, defined over the n~input vector space X = {z1,2z2,...,Zn}-
We say that f(X) < g(X) if and only if f(X)g(X) = 0. Following this terminology, we
say that function h(X) is in the interval of [g(X), f(X)], denoted as k(X)) € [¢(X), F(X)],
if and only if g(X) < A(X) < f(X). It can be proved [11] that h(X) € [¢(X), f(X)] if

and only if g(X)h(X) + h(X) f(X) = 0.

1.2.2 Design Error Model

In this thesis, we use an error model which is an ertension of the one proposed in
[2]. An experimental study described in [1] has shown that design errors as defined in [2]
cover 97.8% of all design errors that usually occur during a manual resynthesis procedure.

Fig. 1.2 contains the simple logic design error model of [2]. Boxes with indexed
letters stand for simple AND, OR, NAND, NOR gates. This model includes eight commonly
encountered design errors [1]. On a theoretical basis, Abadir et al. [2] proved that a
complete set of test vectors for stuck-at faults for the erroneous circuit guarantees to
detect the majority of the design errors of their model (types a, b, ¢, d, e, and) and has
a very good chance of detecting the remaining ones (types g, h, i, and j). This result is
experimentally confirmed in [5]. In the same work [5] the authors develop a test vector
generator for design errors.

We now proceed to the definition of our design modification model. Throughout this

thesis, the words correction and modification are used interchangeably.

Definition 1 With respect to Fig. 1.2, we define a modification to be one of the fol-

lowing three types:
e Wrong Gate , namely types a, b, c, ¢, f, or1.
e Wrong Wire , namely types d, g, or h.

e Wrong Gate/Wrong Wire, an occurrence of both previous errors on the gate

driving a single line.

Definition 2 We define an N—error line tuple L = {l3,15,...,In}, N > 1, to be a set

of N distinct circuit lines. We also define an N—correction tuple Corr = {c1,¢2,...,¢en}, N >

MODIFICATION CORRECT INCORRECT

Typea

Single Gute
Replacement

Typeb
Extra Inverter Buf {>C
Typec NN |
Missing Inverter L | Buf |

Gl G1
Typed - -
Extra Wire
G2 G2
—= —
Typee - -]
P G1 — G1 '_

Extra Gate

e ECe e o |

Missing Gate

ves @]

Missing Wire

o

Typeh
Incorrectly Placed
Input Wire
Typei
Extra Gate

(Complex Case)

Typej
Missing Gate

{Complex Case)

Figure 1.2 Abadir et al. design error model

1, to be a set of N modifications from Def. 1. We say that Corr is applied on L when
we replace the existing function of Go on the gate driving l; with the function performed

by c;, Vi, 1 <i < N.

Definition 3 An incorrect gate-level description Gg of a circuit C' is N-source cor-
rectable if there exist an N—error line tuple L and an N-correction tuple C that when
it is applied on L, it makes the functions implemented at respective primary outputs of

Fo and G¢ agree.

Example 2 Applying C = { gate replacement AND } on L = {Gz} for the circuit
of Fig. 1.1 we get a new circuit where Ga has been replaced by an AND gate. Applying
C = { missing wire Iy, extra wire I4} on L = {Gs, Gy}, we get a new circuit where

primary input Iy is disconnected from G5 and connected to Gs.

Comparing the modification model of Def. 3 to the one proposed in [2] we observe
that it covers all types of design errors except type j. This is because a single design
error of type j can propagate to the primary outputs either through G; or G, (Fig. 1.2)
and the design is modeled as 2-source correctable. In addition, the Wrong Gate/Wrong
Wire error is an extension of the error model of [2].

It should be noted that the set of modification types of Def. 1 is not a mandatory
set for the execution of the diagnosis algorithms presented in this thesis. In contrast to
most of the previous work for DEDC, the algorithms presented here can work under any
modification set as long as this set is known beforehand, and eacﬂ candidate modification

applies to only one line so that the modification respects the N-source correctability of

Def. 3.

10

For the correction phase of our approach, we choose to use the design error model of
Def. 3 because of its simplicity. A desirable solution to the DEDC problem must keep
the structural differences between the initial and final implementation minimal so that it
preserves most of the previous engineering effort which may involve many synthesis and
optimization steps. If we use a conventional re-synthesis approach [44] for correction,
there might be a large number of structural differences.

We should emphasize the fact that the rectification problem discussed here is based
on the type and number of modifications needed to correct the erroneous implementation
and 1t is not based on the number and type of actual design errors. As explained in
Chapter 4, since there might be more than one way to synthesize a particular function
there can be more than one way to correct an erroneous design. This explains the
existence of equivalent corrections.

Therefore, the output of our DEDC methodology is a set of N—correction tuples that
correct the design. This set might contain the actual and some equivalent corrections.
Throughout this thesis, we will refer to an actual or an equivalent modification tuple as
a valid modification tuple.

The above discussion gives rise to the following definition.

Definition 4 Given a design error model, a diagnosis method is exact on the error
space if every error line tuple it returns is a set of lines of some valid modification tuple.
A DEDC method is exhaustive on the error space if it guarantees to return all set

of lines of all valid modification tuples.

Definition 5 Given a design error model, a DEDC method is exact on the correction

space if every modification tuple it returns is a valid modification tuple. A DEDC method

11

is exhaustive on the correction space if it guarantees to return all valid modification

tuples from the design error model used.

In our presentation throughout this thesis we make the following assumption:

Error Assumption: For every line [that is in some valid set of modification locations

there exists a vector v € V,« that produces a sensitized path from [to some primary

output.

In Section 3.5, we relax this assumption and discuss its implications.

1.3 Previous Work

In this section we will briefly review previous work for the DEDC and EC problems.
Most of the previous methods for the DEDC problem have adopted the design error
model of Abadir et -a,l. [2]. Methods for DEDC can be divided in two categories with
respect to the underlying technique used for error location (diagnosis) and error correc-
tion: (1) the ones based on Boolean function manipulation techniques [20] [22] [23]
[25] [38] [39] [40] A[54] [62] and (2) the ones based on Test Vector Simulation [27] [28]

32] [37] [50] [51] [53] [56] [64] [65].

1.3.1 DEDC Symbolic Methods

The work of [38] and [40] applies to single design errors. In [40], formal verification
is based on Typed Decision Graphs (TDG) and Boolean equations guide the error loca-

tion process. Once an erroneous gate with % inputs is found, 2% new variables need to

12

be introduced to the TDG for correction, which make the proposed approach imprac-
tical. Liaw et al. [38] improved upon the method of [40] by introducing the concept
of dominators during error location and by providing a better gate correction process.
The experimental results of both papers are based on small circuits and the error model
contains only gate changes.

[54] introduces an algorithm where the functional description is partitioned into con-
trol and data—path circuits and rectification of each of them is carried out separately, but
correction has to be done manually. In [20] and [62], extra circuitry derived by Boolean
comparison methods is added at the primary inputs and outputs of the existing imple-
mentation. This extra circuitry rectifies the design but it can increase the circuit area
and circuit delay.

The work in [22] is exact and exhaustive on the error space for single design errors
and the work in [23] considers certain classes of fnultiple design errors. Verification
is performed with the use of BDDs and error location is carried at the intersection of
the backtrace cones of the erroneous primary outputs. An error equation with a single
unknown [22] is formed at candidate lines of the circuit and lines that give no solution
to this equation are deleted for the purpose of error location. The results of the error
equation also drive the correction procedure for single errors in [22] but the method does
not guarantee to return a solution for multiple errors [23].

The work in [39] is also based on Boolean comparisons. It applies to multiple errors
and no error model is assumed. For locating potential modifications an error equation is
formed in a way similar to [22] and heuristics on individual erroneous primary outputs

of G¢ are employed if this error equation does not provide enough information for error

13

location. For correction, a combination of existing correction and logic minimization syn-
thesis tools are used [15] [16] [45], which means that the differences between the original
and final design may not be minimal. In [25] a novel technique for dynamic support for
constructing BDDs on equivalent signals is presented so that the BDD memory explosion
problem is eliminated. The technique of [25] borrows from existing synthesis algorithms
for engineering change [8] and a mapping of equivalent signals between the specification
and the incorrect design is established. This method is independent of any particular

error model.

1.3.2 DEDC Test—Vector Simulation Methods

The work of Tomita et al. in [55] and [56] is based on simulation of IPLDEs (Input
Patterns for Locating Design Errors) drawn from the set of values {0, 1, X'}. These vectors
produce erroneous responses at the primary outputs of the circuit and they are generated
with the use of BDDs [57]. In [55], single output circuits with single design errors are
examined and the gates where the X/X values stop propagating give information on
potential error locations. The method of [37] is along the same lines, but the test vectors
are generated with a method similar to the one in [21]. The work in [56] applies to circuits
with multiple primary outputs and multiple design errors but uses a subset of the error
model of [2]. Based on simulation of the IPLDEs, an error possibility index on every line
in the circuit is used to reduce the number of potential candidates. A unique six—valued
simulation reduces this set further.

[27] [28] use the results of an iterative stuck-at fault simulation procedure to reduce

the space of potential candidates for multiple design error diagnosis. Observations on

14

doﬁinating signals of the circuit, similar to those presented in this thesis and in [22] [23]
[38], speed up the proposed approach that can perform diagnosis with good resolution,
but the method does not perform rectification. In [28] the authors extend the results so
that they diagnose sequential circuits that one-to—one flip—flop correspondence between
the implementation and the specification does not exist. In such a case, combinational
approaches cannot be used.

Wahba and Borrione in [64] [65] propose an exhaustive on the error space diagnostic
algorithm for single design errors based on a backward—-propagation ‘procedure, but the
error model is restricted to three types of errors only. Moreover, the method does not
work on circuits corrupted by multiple design errors. In [65] the concept of possible next
states is defined so that the method can diagnose sequential circuits. Kuehlmann et al.
[32] propose a modified critical path tracing algorithm [3] that starts from failing primary
outputs and identifies suspicious areas in the circuit. The algorithm has good performance
for single errors but the resolution diminishes as the number of errors increases.

Finally, [50] and [51] present two different test simulation-based approaches. In [50],
the minterm differences at the output of the circuit under consideration are used to de-
vise a correction hardware at the primary outputs and rectify the design. Multiple gate
type only changes are then applied and retained if they reduce the size of the hardware.
The method is not exhaustive on the error space as it is based on an experimental obser-
vation that minterm differences at the primary outputs usually increase monotonically
with the number of injected errors. The work of [51] applies to macro-based circuits and
guarantees to return a solution for single macro errors as long as there are vectors that

propagate the error to some primary output(s). Two different types of errors are consid-

15

ered: (1) input combination errors, where a macro produces erroneous responses for some
input combinations, and (2) line interconnection errors. Test—vectors are applied and,
for every macro, four different counters are updated. The values of these counters are
used to screen out macros that are not suitable for correction. The experimental results

of [50] and [51] are available only for small circuits and the run times are not available.

1.4 Thesis Outline and Contribution

In this work we develop a diagnosis and correction method that applies to a wide
variety of design errors [2]. The method detects and corrects multiple errors and is time
efficient for one, two and three design errors. We actually approach the problem from
two different points of view and develop a symbolic (BDD based) method and a method
based on test—vector simulation.

We also examine the quality of test—vector simulation for design error diagnosis and
correction. We compare the results with those obtained by BDDs [12] and conclude that
a test-vector simulation method is an attractive alternative to methods based on global
BDDs.

The importance of test—~vector simulation for multiple design error rectification comes
from t‘he fact that for some circuits we cannot obtain their global BDD representation.
Some circuits, like the ISCAS’85 benchmark multiplier C6288, require exponential size
BDDs [13]. This makes methods based on global BDDs not applicable to some circuits
due to their exponential memory requirements. Test—vector simulation has been also

experimentally proven to be a run—time efficient approach for the problem of multiple

DEDC [27] [28] [55].

16

Our work for error location falls along the lines of the work of [27] [28] [32] [51] and
[56]; it uses test—vector simulation of stuck-at fault vectors [47] together with random
vectors. This approach has been experimentally proven to provide good and fast design
error isolation [2] [5] [27] [28] [32] [51] [56].

For correction we propose two methods. The first method ﬁses test—vector simulation.
In the second method we extend the results of the symbolic method in [22] [23] so that
we correct multiple errors.

Unlike most of the previous methods for the problem of multiple DEDC, our diagnosis
algorithms are independent of the design error model used during correction. Moreover,
no information on the correct gate level description of the design is required and, as
explained earlier, the design error model used for correction is an extension of the one in
[2]. Finally, the run-time performance and error resolution returned by our approach, is
better than previous methods proposed for this problem.

An overview of the proposed methodology appears in Fig. 1.3. The input to the
method is Fp, G¢, Ve, and an initial estimate (or guess) for the desired number of
modifications N. The output of the algorithm, as shown in Fig. 1.3, is a set of N-
correction tuples. If the test—vector simulation based DEDC method is used, this set of
N-correction tuples is subsequently filtered by a verification tool [12] [9] [25] [34] [36]
[31] [41]). The output of this verification process is the final set of valid corrections. If
the method fails to return a valid correction then it is repeated for a higher value of N.

In detail, Chapter 2 proposes a two step error location method. The first step of the
method does an explicit enumeration of error tuples. This makes the method exhaustive

on the error space which means that it guarantees to capture all erroneous lines. On the

17

Random
Vector act
Generator

N
Increase N \L

ERROR DIAGNOSIS
WITH EXPLICIT OR <

5
Functional IMPLICIT ERROR TUPLE ate Level
Spec. Fg ENUMERATION Descr. Go

(Test Vector Simulation)

¢

ERROR CORRECTION

Stuck-at

Vectors

(Symbolic or Test. Vector
Simulation)

Fail Circuit Success | Correct
Verification > G

Figure 1.3 Method Overview

other hand, as is the case with other methods that use explicit error tuple enumeration
[27] [28] [55] [56] [51], the method is not efficient on circuits with a large number of
design errors because the error space grows exponentially to the number of design errors
according to Eq. 1.1. Nevertheless, the method exhibits good run—time performance for
single and double errors as long as the set V. is not empty. A proof of the correctness
of the ‘method, which we believe it is interesting on its own, is also included in Chapter
2.

In Chapter 3, we propose a test—vector simulation procedure that does an implicit
enumeration of error tuples. The procedure is not exhaustive on the error space but we
develop techniques to make it behave exhaustively throughout our experiments. This

method returns a diagnostic solution in a short computational time for one, two, and

18

three errors. In the same chapter, the implication of error masking {10] [51] on the
problem of DEDC is discussed.

In Chapter 4 we present our correction procedures. First, an algorithm based on
test—vector simulation is developed. This algorithm is robust and run-time efficient. We
then proceed by describing a symbolic correction approach that is exact on the correction
space but uses global BDDs. Both approaches are exhaustive on the correction space.

Chapter 5 contains the experimental results that show the efficiency and robustness
of the proposed methodology. The experimental results also suggest that test simulation
1s an attractive alternative to Boolean function manipulation for multiple DEDC.

In Chapter 6 we describe applications of this research in different VLSI CAD areas.

The same chapter contains the conclusion of this thesis.

19

CHAPTER 2

Multiple Design Error Diagnosis With Explicit
Enumeration of Error Tuples

2.1 Introduction

In Chapter 1 we defined the problem of Design Error Diagnosis and Correction
(DEDC). In this chapter, we will describe an effective multiple design error diagnosis
method that is based on test vector simulation. In Section 2.2 we prove a theorem that
shows that the proposed method is ezhaustive on the error space, that is, the method
guarantees to return all lines of the circuit where a rectification can be applied and rec-
tify the design. In addition, the proposed diagnosis methodology is independent of the
design error model used, and does not require a netlist representation of the specification.
Finally, since it is based on simulation of test vectors, it is applicable to large circuits
where methods based on BDDs might fail.

The proposed approach includes two error location steps (Figure 2.1)‘. The first step of
error diagnosis method is Total Observability Measure. Recall that IV is the number
of required modifications that we suspect can rectify the erroneous implementation and
Vaet is a set of vectors that produce erroneous primary output responses. During this
step, for each vector v € V,u, all N—error line tuples are ezplicitly enumerated and

disregarded from subsequent iterations of the algorithm if they do not meet certain

20

requirements. The number of N—error tuples at the beginning of the algorithm is equal
to (# of circuit lines)™ and at every step of the algorithm this number is decreased.
The main objective of Total Observability Measure is to reduce the initial error space
significantly in an efficient and fast manner.

Next, another explicit test vector simulation procedure is introduced, Inverted Sim-
ulation. In Inverted Simulation, each remaining error tuple is examined separately and
disregarded if it cannot correct the circuit for the test vectors that produced erroneous
‘ primary output responses. Inverted Simulation is based on a novel simulation procedure
of every design error excitation scenario at the fan-out cones of the error lines under
consideration. Inverted Simulation is used as part of the diagnosis algorithm presented
in Chapter 3 as well.

Observations on the dominance relation of the lines of the circuit allows us to speed
up both aforementioned error location steps considerably. The experimental results in
Chapter 5 show the effectiveness of our diagnosis methodology by providing sufficiently

good error resolution.

2.2 A Necessary Condition for Circuit N-Source Cor-
rectability

In this section we present an exhaustive on the error space test—vector simulation
procedure that performs design error diagnosis with explicit enumeration of error tuples.
The method borrows from [56], but unlike the work of [56] it only takes into account

lines under simulation with well specified values 0 and 1, ignoring the ones with unknown

21

dom Stuck-at
Vector Vectors
Generator
Number of
Modifications N

TOTAL OBSERVABILITY
MEASURE

¥

INVERTED SIMULATION

|

LIST OF ERROR TUPLES
WITH SUSPICIOUS LINES

CORRECTION

Figure 2.1 Overview of Diagnosis With Explicit Enumeration of Error Tuples

value X. In addition, a formal proof of its correctness is presented. This proof is of
combinatorial nature and it is interesting on its own.

Finally, the proposed method does not require the need of BDDs to compile the input
test vector set Vo;. In our experiments, V,. is compiled from input test—vectors for
stuck-at faults [47] and random test—vector simulation. Abadir et al. [2] proved that
a complete (that is, 100% error coverage) test set for stuck-at faults for the incorrect
circuit is guaranteed to detect errors from a to f (Fig. 1.2) and has a high probability
of detecting the remaining ones. In addition, [2] contains a proof that the substitution
of a gate with a unate function (and vice versa) will always be detected with a complete

stuck-at fault test set. The experiments in [5] confirm the above claims.

22

On the other hand, random test—vector simulation has been used for design error
verification and diagnosis in the past [27] [51]. For these reasons, we choose to verify
the design with vectors for stuck-at faults along with random test—vector simulatioﬁ
and compile the set V. from all those vectors that produce erroneous primary output
responses. The size of V. throughout our experiments is less than 100 vectors, on the
average.

We are now ready to establish the theoretical foundation of our approach.

Definition 6 Let vector v € V,; and let PO; € POg, with incorrect output value under
v. We define the observability measure, OM;, of a line | for vector v and over PO;

recursively as follows:
(a) If 1 is a primary output, then:
— OM} =1 ifl = PO;.
— OM} =0 ifl # PO;.
(6) if 1 is fan-in of a gate G and U is the fan-out of G then:
— OM} = 0, if | has non-controlling value and some other fan-in of G has

controlling value.

— OM} = OM;,, if | has non-controlling value and all fan-ins of G have non-

controlling value.

; OM}
— OM; = —*=, if | has controlling value, where cv is the number of fan-ins of

G with controlling value.

23

(c) if l is a fan-out stem, then OM} = min(l, S, OM}), I drives a buffer at the

fan-out branch of [.

Definition 7 We define the accumulated observability measure AOM} of a line [
over a wvector v € Vot to be the sum of the observability measures of | for all erroneous

primary outputs PO; for v, that is:

AOMY = Y. OM;
err. PO; for v

Intuitively, the observability measure, OM;}, of a line | of G¢ over an erroneous
primary output PO; for v € V,.; denotes the potential of [to change PO; into its correct
value (for v). Similarly, the accumulated observability measure, AOM}, indicates the
potential of [to change all erroneous primary outputs (for v). The recursive definition
of both quantities result in efficient ways for their computation with minimal memory
requirements.

Theorem 1 that follows is essential for the correctness of the error location procedure
presented in Section 2.3. Before we state and prove this theorem we need to prove the

following lemma.

Lemma 1 Let v € Voo, PO. € POg, erroneous for v, and let L, = (l1,...,0) be a
minimal set of lines such that when their values are complemented, PO, turns into its
correct value. If I is a line such that there exists at least one sensitized path from I to

each member of L., then:

oM; > 3 OM;

i=1...k

24

Proof. The proof of the lemma is by induction. Let a k-cut on G¢ be the set of all
lines of G at level k. In this proof, we define the level of the members of L, to be 0,
their immediate fan-ins 1 and so on. The level of a fan-out stem is equal to the maximum
level of its branches plus one. The level of all lines not in the backtrace cone of some
member of L, need not be defined. Observe that under this definition, the level of [is
bounded by the primary input with the minimum such level. Let 7 be the level of [, and
let M S; be any minimal set of lines I’ of the ¢-cut, 7 < 7, such that for every member of
L, there exists at least one sensistized path from some member of M S;. We claim that
Lrems; OM; 2 37 cr, OMY . Proving the claim proves the lemma.

To prove the claim, we use induction on the level of cuts starting from the members
of L, towards [. For the base case, the claim obviously holds since the members of L, are
a minimal set. Assume it is true for k, we prove that it holds for all minimal sets of the
(k+ 1)-cut. Let M Sgy1 be any such set. Let Si be the set of lines of the k-cut compiled
as follows: for every set of lines of M Si.; that drive the same gate GG, Si contains the
output of G and for every line I’ € M Sy, that drives a branch, Si contains all fan-out
branches of I’. It is straightforward to see that Sy contains at least one minimal set of
lines M Sy (otherwise M Si4; is not minimal). Moreover, if I is a line of MSy driven
by gate G, then by Definition 3(b) the minimal set of lines fan-in to G that belong in
M Si41 should have a sum of observability measures equal to OMf. If they don’t, they
will not be able to complement the value of I'. If ” is a fan-out stem of M Si41, then
by Definition 3(c) I” will have an observability measure value equal to the sum of the

observability measure values of all of its branches (or 1). By the pigeonhole principle,

25

the sum of the observability measures of all lines of M Sy+1 should be greater or equal to

that of the M .Sy ones. This proves the claim and completes the proof.

Theorem 1 Let L = {ly,l2,...,1,}, n > 1 be a set of valid modification locations for an

incorrect Gg. If v € Voo then:

Z AOM;, > # erroneous POs for v
Lel

Proof. To prove the theorem it suffices to show that if PO, is an erroneous primary
output for v then > ., OM} > 1. To prove this, we use induction on the number of
modification locations n. For the proof of this theorem, the level of the primary outputs
is 0, their immediate fan-ins 1 and so on up to the primary inputs. The level of a
fan-out stem is equal to the maximum level of its branches plus one. The base case,
n = 1, holds if we let L, in Lemma 1 be the singleton PO, and [be the only member
of L. If it is true for n, we show that it holds for a set [with n + 1 elements. Let
L' =L — {l € L with mazimum level}. Let also I’ be the line of L' with maximum
level k and let' M Sy, be a minimal set of lines, as defined in Lemma 1, that contains
" and there exists at least one sensitized path from [to every member of MSy — I’
It is straightforward to see that such a minimal set exists because L is a set of valid
modification locations. Let pseudo primary input PI, drive all lines of MS;. By the
induction hypothesis

>, oM >1 (2.1)

1" e{PI,L'—I'}

Using Lemma 1 and Equation 2.1 the induction step follows and completes the proof.

The significance of Theorem 1 lies in the fact that it provides a tool to screen out can-

didate modification locations that have an accumulated observability measure less than

26

the total number of erroneous primary outputs for some vector v € V.. and, therefore,
cannot be a set of valid modification locations. Further observations on the structure
of the circuit, presented in Section 2.3.4, allow us the speed the above computation fur-
ther more. Observe that the theorem is one way only; L might satisfy the condition of
Theorem 1 but not be a set of valid modification locations.

The initial set of potential modiﬁcgtion locations, Cerpor, for a N-source correctable
Gc¢ is upper bounded by the number of all lines of G to the power of modifications N.
By applying the results of Theorem 1 repeatedly on the reduced set Ce,r,, for each vector
of Ve, we are able to reduce the size of Cerror and guarantee that we do not delete any

valid candidate lines. The following example illustrates the above results.

0/0 AN
ORI)0 ®
" / Buffer 1 @ 01 / .
()
Buffer 2 / 1n

a0

4 o /
@

a
/
=

2

®

~1

Figure 2.2 Erroneous circuit for Example 3

Example 3 Fig. 2.2 shows the incorrect implementation of a circuit and the values of

the circuit lines when input vector V = (PI,PI,PI;, PI;) = (0,0,1,0) is applied.

27

The correct implementation of the circuit is obtained if G5 ts replaced by an AND gate,
therefore, G¢ is 1-source correctable. Vector V activates this difference and the tuples on
the lines are pairs of correct/incorrect simulation values. The AOM values of the lines
are in circles. Since there is only one primary output, and this output is erroneous, the
OM and AOM valﬁes coincide.

Because of OM’s recursive definition, the values are computed from primary outputs
towards the primary inputs. Although the circuit of Fig. 2.2 is 1-source correctable observe
- that AOM¥, = 1, but no single modification, from the modification model of Def. 3, can
apply on Gy and correct it. Location Gy is screened out from Copror if we simulate input

vector V' = (1,1,1,0) and apply Theorem 1. In this case AOM};/; is computed to be 0.

2.3 Error Location

The error location procedure with explicit enumeration of error tuples consists of two
steps, Total Observability Measure and Inverted Simulation (Fig. 2.1). These two
steps screen out elements of Ce,,,r where no modification can be applied and rectify the
design.

During Total Observability Measure, the accumulated observability measure value of
each line of G¢ is evaluated for all erroneous outputs and all vectors of V,; according to
Def. 7. In Section 2.3.1 we introduce a technique, based on properties of the observability
measure concept, and prune the search-space dynamically during the computation.

The next step of the error location algorithm is Inverted Simulation where every error

tuple of potential modification locations is examined separately and disregarded if it does

28

not meet certain criteria. Finally, in Section 2.3.4, observations on the structure of the
circuit allows us to speed up both error location steps.

In the following discussion, machine —word is an integer value equal to the computer
machine word length used. Every line [of G¢ is considered to be a data object with four
variable fields: [— level, [— Vgroup, | = Fgroup and [— Tgroup. level is an integer
value that denotes the level of [in the combinational circuit G¢, where the level of the
primary inputs is equal to 0 and the level of a gate in the circuit is equal to the maximum
level of its fan-ins plus one. I — Vgroup is an array of float numbers with cardinality
| Vaer | that keeps the AOM values of [for the vectors of V.. The last two fields are lists
of bit—vectors used during the Inverted Simulation and Correction procedures. We will
explain the use of these lists later. Initially, the value of all entries of Vgroup are zero

and the Fgroup, Tgroup linked lists point to NIL for all lines of the circuit.

2.3.1 Total Observability Measure

The pseudocode that implements the theory presented in Section 2.2 is the Total
Obseérvability Measure(TOM) procedure and it is shown in Fig. 2.3.

The inputs to the algorithm are Fg, G¢, a set of lines C, the set V,.; and the number
of modifications N. At the end of this section, we explain how the algorithm can be
modified to return all modification tuples of cardinality N or less. Evaluation of the OM
values takes place in a backward fashion, i.e. from primary outputs towards primary
inputs. First, all vectors of V,.; are simulated in parallel [66], machine — word vectors at

a time, and the Vgroup|k] fields of the respective erroneous primary outputs are updated

(lines 1-7).

29

ToTAL-OBSERVABILITY MEASURE(Fg, Gg, C, Viu, N)
(* assign POstamps for all vectors of V¢ *)

repeat
Simulate Viechine—wora vectors in parallel from V.
for every vector vx € Voachine—mwords & = 1,-+ .| Vacr |, do

for every erroneous PO; do
PO; — Vgrouplk] + +
total_aomlk] = total_aom[k] + 1
until all vectors of V., are simulated
(* now evaluate OM values for all vectors of V,; and lines C *)
8. for j = (number of levels of G¢) down to 1 do
(* evaluate OM for all j-level lines driven by gates *)

DTS O e b

9. for every line I, driven by gate G, with | — level = j do
10. for every fan-in line I’ of G do
11. for every Vgrouplk] # 0 of | do.
12. evaluate OM;j from OM] as in Definition 3(b)
13. if OM;, # 0 then I' — Vgroup[k] + +
(* evaluate OM for all j — 1-level fan-out stem lines *)
14. for every fan-out stem ! with I — level = (j — 1) do
15. for every Vgrouplk] # 0 of the union of the Vgroups of the branches of I do
16. for every erroneous PQ; for vector vg do
17. OM;} =3, OM;},, I branch of [
18. if OM; # 0 then | — Vgroup[k]+ = min{l,0M}}
19. for all N-tuples L = {I1,lz,...,InN} € Cerrory li...In € C do
20. if 3. cp Ii = Vgrouplk] > total_aoml[k], for all k, then
21. add L in Cepror

22. return{ Cerror)

Figure 2.3 Total Observability Measure Procedure

The loop of lines 8-18 propagates this information towards primary inputs. Let
circutt_level denote the maximum level of a gate in G¢. During the z-th iteration of
the loop, the OM values of all gate—driven lines (lines 9-13) and fan—out stems (lines
14-18) of level (circuit level — i — 1) are computed according to Definition 3 (b) and (c),
respectively. Lines with zero AOM values are deleted from the computation since they

have no values to propagate backwards (lines 11 and 15). Theorem 1 is used to screen

30

out sets of potential modification locations that have an AOM value strictly less than
the total.aom (lines 19-21).

It can be seen that the time and space complezity of the Total Observability Measure
step is linear to the number of lines in the circuit to the power of required modifications
N. This is because the algorithm has to go through all error tuples and apply the TOM
procedure (Fig. 2.3, lines 19-21). This makes the method not efficient for high values of
N on large circuits, a problem that all exhaustive on the error space diagnosis methods
exhibit [27] [28] [51] [56]-

Observe that the algorithm, with a slight modification, can return all potential sets
of modification locations of cardinality NV or less, if such sets exist. This can be achieved
if we modify the code at lines 19-21 (Fig. 2.3) and apply Theorem 1 on all tuples with

cardinality equal or less than N.

T RON
12 @

00 N

on O1

G16

By |
0/0 — Q)
14 1,0\ 02
G17
U1
15

Figure 2.4 Erroneous Circuit for Example 4

31

o1 O1

NAND G@%e 10 G16
Bs, /

/1/0 | ©)

[B6

O ®

1/0
on \ 02
7 G17

G15

Figure 2.5 Erroneous Circuit for Example 5

Example 4 Fig. 2./ shows the incorrect gate-level implementation of a circuit where
Gs is supposed to be an NAND gate and the connection from Iy to Gis (dotted line) is
~incorrect. This circuit is a modified version of the ISCAS’85 benchmark C17 circuit.

The vector applied is Vi = (0,0,1,0,1) at primary inputs Iy, I, I3, I4, Is, respectively.
The pairs of incorrect/correct values for input vector Vi are shown above the respective
lines and the total observability measure of each line I, AOM,VI, is m a circle when
nonzero.

The value of total_aom]l] is equal to 2 since Vi propagates the inconsistencies to both
primary outputs. Initially, the size of Cerror is 361. After completion of the procedure
for vector Vi and N = 2, we have that | Cerror |= 109, that is, all pairs of lines with an

AOM sum bigger or equal than 2.

32

Example 5 As another example, consider the erroneous circuit of Fig. 2.5 where two
gate replacement errors on (Gs and Gis produce erroneous responses at both primary
outputs for input vector (0,1,1,1,0). The simulation and observability measure values
follow the notation of the previous example.

After completion of the procedure for this erroneous vector, the error set reduces to

| Cerror |= 58 pairs.

2.3.2 Inverted Simulation

The main contribution of the previous step is to reduce the size of Cepror significantly
enough so that a more accurate, but computationally “expensive”, screening process can
be applied. Such a process is Inverted Simulation that uses the information of the
Fgroup fields at each line.

During the simulation of vectors for the initial verification step of G, we create
two bit-vectors at every line [of G¢, Fgroup and Tgroup. The ¢-th bit of the Fgroup
(T'group) list holds the value of the line when the i—th vector that activates (does not
activate) the inconsistencies is simulated. Inverted Simulation, and the Correction pro-
cedure described later, make use of these lists. These bit-lists are shown in Fig. 2.6 for
two erroneous input vectors of Fgroup and an AND gate.

During Inverted Simulation, shown in Fig. 2.8, every candidate tuple of Ceppor is
examined separately and deleted if it cannot correct the circuit for all vectors of V.
Since the size of Ce,ror has been significantly reduced after TOM, Inverted Simulation is

efficient. The idea behind this process is as follows.

33

FGROUP

Bit Vectors *\\

2nd Erroneous Vector
m P ——

1st Erroneous Vector

Figure 2.6 Fgroup Bit—Vector Entries

Let L = {lo,l1,...,IN-1} € Cerror and v € V. If L is a set of valid modification
locations, then there exists at least one line [; € L such that its value is incorrect and this
difference is propagated to some primary output(s) during simulation for v. Let L' C L
be the set of all such lines that the design errors on these lines are excited for v. If the
values of the lines of L’ for v are complemented and this difference is propagated to the

respective fan-out cones of I’ then the primary outputs of Fr and G¢ should agree for

v.
If this is not the case, then it is safe to delete L = {lo, l1,...,Ix_1} from the candidate

error list Cepror as it is guaranteed not to be an valid set of modification locations.

Example 6 The numbers in the bit-lists in Fig. 2.7 are the new values of the lines
at the‘ fan—out cones of G2 and Gis when Inverted Simulation is performed for pair
{G12,G15} € Cerror and input test vector V4 = (0,0,1,0,1) for the erroneous circust of
Ezample 4.

Fig. 2.7(a) contains the erroneous circuit under simulation. Fig. 2.7(b) shows the
Inverted Simulation scenario when the potential error on line Gyo is excited and the one

on Gis is not. For this reason, the value of the faulty bit-list of Gy is complemented while

34

the one of Gis s not. Observe that simulation of this potential design error excitation
scenario influences the lines in the union of the fan—out cones of Gz and Gis, namely
{Gi2, Bs, Bs, G1s, G17} and only these lines.

It can be seen from Fig. 2.7(b) that the values at the primary outputs after simulation
of this excitation scenario still differ from the correct ones. This implies that during
stmulation of vector Vi = (0,0,1,0,1) locations G2 and G5 cannot contain design errors
that are and are not excited, respectively.

The remaining two simulations of the potential design error ezcitation scenarios for
Inverted Simulation and vector v are shown in Fig. 2.7(c) and (d). Since none of the sim-
ulations yields a correct response at the primary outputs of Gg, the error pair {G1z, G5}

is guaranteed not to contain a pair of design errors and it should be deleted from Cerror-

Fig. 2.8 outlines the overall procedure. For every set of lines L € Cepror and every
vector v € Ve, 2 — 1 simulations are performed at the fan—out cones of the lines of L
(lines 1-7).

Each such simulation represents a different design error ezcitation configuration sce-
nario for the lines of L where a set L' C L contains lines with excited errors and set L — L’
contains lines with errors that are not excited. The minus one term in 2V — 1 accounts
for the case where no line of L has an erroneous value (for v) and this case should be
obviously excluded.

Inverted Simulation step is carried out efficiently with the use of the Fgroup values
so we need to resimulate only at the fan-out cones of the lines of L'. If L is a set of valid
modification locations then there would be at least one out of the 2V — 1 simulations that

yields correct primary output responses for v. If this is not the case for some vector of

35

11 B ERRCNEOUS
11 PO RESPONSE E
_e 1o n oo " \
4

0[1 01

®
(&)

- Complement ~ @g G16
: ,‘

........ --, @6

(a) Original Circuit and Faulty Bit Lists {b) Inverted Simulation for (G12-excited, G15-not excited)
" . ERRONEQUS 3 ERRONEOUS
o0 20 RESPONSE «_ | % ng, PO RESPONSE E
X 1 Gs % w \ n o101
/ Gl
w92

G17

(c)Inverted Simulation for (G12-not excited, G15-excited) (d) Inverted Simulation for {G12-excited, G15-excited)

Figure 2.7 Inverted Simulation Procedure for Example 6

Vaet, L gets deleted from Cerror (line 8), otherwise, as shown in lines 9-11, the entry of L

in Cerpor 1s replaced with tuple(s) of the form:

(lo, lhy ..., In=1, not(k), v)

for each error excitation configuration k, 0 < k < 2V — 2, that rectifies the circuit
during Inverted Simulation at line 7 for input test vector v. The excitation number

not(k) is a O(N) bit number where the value 1 at the i—th position indicates that the

36

INVERTED SIMULATION(Fe, Ge, by, Ly ..y In-1)

1. for every vector v € V,; do

2. fori=0to2¥ ~2do

3. i = not(f)

4. for j=0to N—1do

5. if (i AND 29) > 1 then

6. l; = Fgroup(v) = not(l; — Fgroup(v))

7. simulate at fan-out cones of ly, Iy, ..., Iy_g for v

8. delete error tuple (ly, 1, - .., In-1) from Cerrpr

9. forevery k, 0<k<2¥ -2do

10. if simulation of excitation configuration not(k) rectifies C for v at step 7 then
11. add error tuple (lo, ly, -, In—1, nOt(E), v) in Cerror
12. restore Fgroup values and values at I, 1y, ..., Iny—1 fan-outs

Figure 2.8 Inverted Simulation Procedure

value of line /; should be complemented during Inverted Simulation for v and the value
of 0 indicates that it should remain unchanged.

The first reason we add multiple copies of error location tuples with their respective
excitation numbers for the same vector comes from the fact that we need to capture valid
error line tuples of cardinality smaller than N as well. To see this, consider the box in
Fig. 2.9 being a circuit under simulation of vector v with only one failing primary output.
The dptted lines are sensitized paths from locations A and B that merge to some gate G
and then propagate to the failing primary output. Without loss of generality, assume that
G has only two fan-ins and v is the only failing input vector. The Inverted Simulation
algorithm for N = 2 will include four entries for the error tuple (4, .B) and vector v,

one for each design error excitation scenario. This is a desired result because all (G),

37

PIs POs
A
—% -
Vector R | Erroneous
[Gh----"" Prim
v S Tat Primicy
/ utput
applied g
pp B .-
—%

Figure 2.9 Multiple Path Sensitization

(A), (B), and (A, B) are valid modification locations for N < 2. Observe that the actual
error(s) might or might not be some of the above error tuples.

The second reason of multiple error tuple addition will become evident during error
correction, presented in Chapter 4. However, the example that follows gives the intuition

behind this multiple error tuple addition.

Example 7 Fig. 2.10(a) shows an incorrect design with an eztra inverter Gy on line
I3 and a gate replacement error on line G3. Observe that under simulation of vector
V =(1,0,1,0), the eztra inverter is not observable * at the output O of the circuit. Since
O is erroneous for vector V, Inverted Simulation will return error tuples (G1,Gs,2,v)
and (G1,Gs,3,v) (Fig. 2.10(c) and (d), respectively). Error excitation configurations 2
and 3 together imply that the value of Gy for V is a don’t care (X). This is expected,

since Gy is not observable for V and it is a fact that will prove useful during correction.

LAn error is observable at a primary output O if there is a vector that causes a sensitized path from
the erroneous line to that primary output.

38

AND gate

1 L 1
11 1 11
Erroneous 2 Incorrect
12 0 0 /
Extra 3 1 Complemented !
Inverter B o 'p/ °
3 1 @1’ g 3 L{>Gc1,__1_
5 2 9 I
14— 14
0 0 0

Complemented
11 0
I2 Cor;ect
0
Comp}l;mented o

1«
1810850 1 @ 1
m— | G2 3L G2

5 /0 4 — 0

U Gy U O g

(=)

Figure 2.10 Recording don't care values

One might argue that Inverted Simulation is an expensive diagnosis procedure since
the time complexity is exponential to the number of desired modifications N. However,
this is not a drawback since the values of N for multiple DEDC are relatively small 2.
Our experimental results suggest that Inverted Simulation is an efficient procedure for
small values of N (< 3). Moreover, since the majority of the machines today use at least
a 32 word bit-length, all 2V — 1 steps of Inverted Simulation for a N-error line tuple L
can be carried efficiently with one simulation at the fan-outs of the lines of L. Finally,
Inverted Simulation works at the back end of the TOM procedure (Fig. 2.1) when the

majority of error tuples have been already eliminated.

?Recall that the experimental results of [1] show that N is usual less than or equal to 2.

39

2.3.3 Handling Unknown Values During Diagnosis

The simulation of good and faulty circuits is usually performed using three-valued
logic: 0, 1, X. Therefore, our diagnosis strategy should cover the unknown value X.

In our presentation in Section 2.2, we assumed that the TOM procedure starts from
a failing primary output where the good circuit has a fully specified value (0 or 1) and
the faulty one has the opposite response. Considering how the procedure works, this
failing primary output cannot have the unknown value X. Now observe that a gate
whose output corresponds to the primary output under consideration either has one or
more controlling inputs, or it has all non—controlling values at its inputs 3. Therefore,
we can set the OM value of all lines with unknown value X equal to 0 and Theorem 1
will still hold.

Unknown values present no problem to the Inverted Simulation procedure as the lines

of the candidate error tuple we simulate always have well-defined (0 and 1) values.

2.3.4 Overall Diagnosis Approach

In this Section we describe the overall approach for error location that uses the concept

of checkpoints.

Definition 8 We define a checkpoint B € G¢ to be either a primary output or a fan-
out stem. We also let the clan By, of a checkpoint B be the set of all lines 1, including
B, such that every path from | to some primary output passes through B and B is the

checkpoint with minimum level.

3We assume that the output of an inverter with input X is still X and not X.

40

Example 8 The black circles in Fig. 2.11 are the checkpoints for the erroneous cir-
cuit of Ezample 4. We also have that Osy,, = {Is, Bo, B3, Gis,Bs, Gi7} and Giage, =

{Br, Bs, G12}-

It should be noted that our definition and use of checkpoints is different from the one
presented in [68]. Moreover, for a line [€ B, B is a dominator for [but it is not
necéssarily an immediate dominator [22].

Computing the set of checkpoints for a circuit G¢ takes time linear to the number of
lines of G¢ and can be done easily with an one pass over the circuit lines. The following
theorem, taken from [22] [38] is crucial for the correctness of the overall diagnosis strategy.

Note that the theorem is independent of any design error model.

Theorem 2 Let lines [,I' € G¢ where I' dominates | *. If there exists no modification

on l' that can rectify G then there ezists no modification on [that rectifies Go as well.

Intuitively the theorem holds because if a line I’ dominates an erroneous line [then
every sensitized path from [to the erroneous primary output(s) must necessarily pass
through 7'.

The overall strategy for error location, shown in Fig. 2.12, is as follows: at first, the
procedures of Total Observability Measure and Inverted Simulation are applied to the
set of checkpoints B of the circuit G¢ (lines 1-4). In this manner, the error location
procedure deletes clans of the circuit that do not contain a design error. In this step
of the algorithm we need not save the excitation configuration number during Inverted

Simulation (line 4).

“We say that a line I’ dominates line [if and only if all paths from [to all primary outputs pass
through .

41

11

01

B

X
Clan G12 G16

12

Checkpoint G12

I3
14

Checkpoint 02

\

02

I5

Figure 2.11 Checkpoints and Clans for the Circuit of Example 8

Next, a new set of candidate lines is formed from the lines of the clans of checkpoints

of C!

error

(line 5). Finally, the two steps of the error location procedure are applied to
this new set of lines in order to compile the final Cepror set (lines 6-9). At the end of
the invocation of the Inverted Simulation procedure at line 8 the format of the candidate
list Cepror may contain multiple entries for error line tuples but each of them will have a

different excitation configuration number (or vector) signature.

2.4 Summary

In this chapter we presented an exhaustive on the error space method for multiple
design error diagnosis that is based on test vector simulation. The method is independent
of the design error model used as it identifies lines that can correct a design for a certain
amount of vectors V,.; and regardless of the error model that is used. In addition, the

proposed approach does not require any naming equivalence between the design and the

42

ERROR_LOCATION(F¢, Gg, Vi, N)
Beheckpoints = {Bi, ..., B} = checkpoints of G¢
C!.,.r =Total Observability Measure(F¢, G¢, Beheckpoints; Vacts N)
for every error-tuple Ly, ..., Ly-1 € C. . do
Inverted Simulation(Fg, Ge, Lo, ..., Ln-1)
C = union of clans of checkpoints B; € some pair of C. .
(* find the final Ceppor from the checkpoints *)
Cerror =Total Observability Measure(F¢, Gg, C, Vou, N)
for every error-tuple Ly, ..., Ly_1 € Cepror do
Inverted Simulation(F¢, Gg, Lo, ..., Ln-1)

return(Cerror)

Bl el e D e

B B

Figure 2.12 Overall Diagnosis Approach

specification and it is applicable to large circuits where methods based on BDDs might
fail.

The first step of the diagnosis method is Total Observability measure. During this
step, for each erroneous vector v, erroneous tuples of cardinality less than or equal to N,
where N is usually less than or equally to 2, are explicitly enumerated and disregarded
from subsequent iterations of the algorithm if they do not meet the requirements of
Theorem 1. The main objective of Total Observability Measure is to reduce the error
space in an efficient and fast manner.

Next, an efficient test vector simulation procedure is introduced, Inverted Simulation.
In Inverted Simulation, each remaining error tuple is examined separately and disre-
garded if it cannot correct the circuit for the test vectors with erroneous primary output
responses. Inverted Simulation is based on a novel simulation procedure of every design

error excitation scenario at the fan-out cones of the error line tuple under consideration.

43

Finally, observations on the dominance relation between lines of the circuit allow to speed

up both aforementioned error location steps considerably.

44

CHAPTER 3

Multiple Design Error Diagnosis With Implicit
Enumeration of Error Tuples

3.1 Introduction

In this chapter we describe a diagnosis method for multiple DEDC that does an im-
plicit enumeration of error tuples. Our experimental results in chapter 5 show that the
method is efficient for diagnosis of designs with a large number of design errors (N > 2).
The method is not exhaustive on the error space, however, we develop techniques and
present heuristics that make it behave very close to exhaustive throughout our experi-
ments.

An overview of the proposed methodology is shown in Fig. 3.1. The method described
here is an extension of the work presented in [3] [4] [52] [60] [61]. Instead of explicitly
enumerating the set of all error tuples and reducing the error space from there [27] [28]
[55] [56] [51] [58] [59], we start with an initial estimate of the set of error tuples. This
set is further reduced by Inverted Simulation. If at the end of the procedure the error
set has qualifying candidates, we proceed with correction (Fig. 3.1). If the error list is
empty it means that either the circuit is N-source correctable but the error estimate
was not accurate enough, 6r the circuit is M-source correctable for some M > N.

Assuming that the design is N—source correctable, we repeat the error diagnosis procedure

45

Random

Stuck-at
Vector Vectors
Generator
Number of
Repeat Modifications N

Diagnosis With /

Implicit Error :

Tuple Enumeration #—%
: Descr. G

Inverted
Simulation

{

List of Error
Tuples

QUTPUT
Correction

Figure 3.1 Overview of Diagnosis With Explicit Enumeration of Error Tuples

with a different estimate. If the error list is still empty after a number of iterations of
the algorithm, usually 3 or 4, then we can conclude that the circuit is not N-source
correctable and we run the algorithm for a higher value of V.

The experimental results in Chapter 5 show that the proposed approach has good
error resolution and it is run—time efficient as it can return results for designs corrupted
with multiple errors within seconds.

Recall from Chapter 1 that a line [, fan—in to an AND or NAND (OR or NOR) gate, has
controlling value for input vector v if the value of [is 0 (1). If I drives a NOT or a

BUFFER it always has controlling value. Moreover, a line whose value changes during

46

simulation under the presense of some fault(s) is called a sensitized line and a path of

sensitized lines is called a sensitized path [10].

3.2 Tracing Backwards from Erroneous Outputs

In this section we describe the path—traceback procedure developed in [60] to diagnose
bridging faults. We also give a proof of correctness of the procedure in the context of
multiple design errors.

Path-traceback borrows from eritical path tracing [3], star algorithm [4], and support
sets [52]. However, there are some subtle differences.

The above procedures were developed for diagnosis of single stuck-at faults. In other
words, the procedures assume that only one line can be the source of error. For multiple
design errors ! the source of failing primary outputs can be more than one line. Addi-
tionally, critical path tracing can result in approximations that will affect design error

diagnosis due to multiple path sensitization and partial self-masking [60].

3.2.1 Critical Path—Tracing

Before we describe the path—traceback procedure, we will give a brief overview of the
critical path-tracing algorithm [10]. In the following discussion, we consider lines with

well specified values (0 or 1).

Definition 9 A line [has critical value = for vector v if and only if vector v detects the

error stuck-at T. If | has critical value for some vector v then | is a critical line for v.

1A circuit corrupted by a bridging fault can also be viewed as a N-source correctable design for
N <2. N can be 1 for a bridging fault because of the Byzantine Generals problem [42].

47

Definition 10 A gate input is sensitive for vector v if and only if changing the value of

the gate input changes the value of the gate output.

The main idea behind critical path—tracing is to identify paths composed by critical
lines starting from primary outputs.

By definition, every primary output is critical under test v. Critical path-tracing
begins at a primary output and marks as critical all the sensitive inputs of a gate with
a critical output [3]. This process is repeated until a primary input is reached. In this
manner, critical path-tracing can identify single stuck-at faults detected by test vector

v.

€ 0
0
b c 0
0
LD
91 k

(b) Approximation Due to Partial Self-Masking

Figure 3.2 Critical Path-Tracing Approximations

48

However, critical path tracing can result in approximations that will affect diagno-
sis and, therefore, miss potential error lines. The following example, taken from [60],

illustrates this problem.

Example 9 In Fig. 8.2(a) and (b), bold lines are critical lines. In Fig. 3.2(a), line c
stuck—at 0 is critical but path—trace entering from line j stops at j as none of the fan-ins
h and k of the géte that drive j are sensitive. Thus, path-trace procedure will not include
line ¢ which is eritical. This problem is referred as multiple path sensitization.

A similar problem occurs in Fig. 8.2(b). Line b stuck—at 0 is critical but path-trace
stops at e since line ¢ stuck—at 1 is not critical. This problem is known as partial self-

masking.

Techniques to alleviate the above problems by separate examination of reconvergent
fan—outs have been proposed [43]. However these procedures add to the computational
cost of the algorithm. Further, critical path-tracing was developed for single stuck-at
faults and not for sets of faults.

Critical path—traceback [60], presented in the next section, alleviates these problems

by doing a “conservative” line selection.

3.2.2 Critical Path—Traceback

Critical Path-Traceback [60] starts from an erroneous primary output that marks as
critical. Then it traces backwards towards the primary inputs selecting critical lines as
follows (Fig. 3.3): If the output of the gate G has been marked as critical and G has one
or more fan-in(s) with controlling values then it randomly selects (marks) as critical any

one of them. If G has all fan—ins with non—controlling inputs, then it marks as critical

49

all fan-ins. If a branch is critical, then the algorithm automatically marks critical the

stem of the branch.

- G has one or more controlling inputs:
* Select any one of them

OO

} 1

- G has all non-controlling inputs:
* Select all of them

| [0
pixE
| —

- A branch has been selected:
* Select stem
L

Non critical line

Critical line

Figure 3.3 Critical Path—Traceback Line Selection Algorithm

Example 10 For the circuit of Fig. 3.2(a), assuming that line j is selected by critical
path—traceback, the algorithm can proceed by selecting lines {j, h,d,e,c,a}. For the circuit
of Fig. 3.2(b) and assuming that line j is selected by critical path—traceback, the algorithm
proceeds by selecting lines {j, h, e, ¢, a,p,b}.

Observe that in both cases, the procedure includes critical lines a and b.

Define Vf to be the set of lines selected by path-traceback when tracing from erroneous
primary output PO; and vector v;. The following theorem, which we prove here, is crucial

for the correctness of our approach.

50

Theorem 3 Let N-source correctable design Go and L = {ly,ls,...,In} be any valid
correction tuple. If v; is a vector that activates the inconsistencies, and PO; is an erro-

neous primary output for v;, then Vf contains at least one element from L.

Proof. Let L’ be the minimal subset of lines of L so that when their values get
complemented for v; and this diﬂereﬁce is propagated towards the primary outputs, PO;
returns to its correct value.

Clearly, by definition of L', there is one or more sensitized paths from each member

| of I’ to PO;. We claim that V;f contains some element [€ L.

Let V;’n be the set of all lines selected that far by path-traceback at the n—th step
of the algorithm. For example, for the circuit of Fig. 3.2(b) we have that V;,J;z = {j,h}.
With the use of induction, we will show that for every n, V;in contains a line of some
sensitized path from some ! € L’ to PO;. Proving this proves the claim as the algorithm
will eventually select / in V;,, for some n < maz circuit level.

For the base case n = 1, path—traceback does select the erroneous primary output
PQO;. Let us assume that it holds for n steps, that is, ijn contains line !’ of some sensitized
path from [to PO;.

To prove that it holds for the next iteration of path—-traceback, observe that if I/ € V;’n
is a br.anch then the stem will automatically be included in V},,, by the algorithm. If
I' is a fan—out of a gate with multiple controlling fan—ins, then observe that all fan—ins
with controlling values need to be changed so that I’ changes its value. Thus, every such
fan-in will belong to some sensitized path(s) from elements of L’ and induction holds for

Vi

7m+1c

o1

Same reasoning as above shows that induction holds for the case where I is a fan—out
of a gate with all non-controlling fan-ins. This completes the induction and proves the

claim.

3.3 Single Error Location

In this section we describe our diagnosis method for the single design error case. This
case is the simplest one and the method presented here is a direct extension of the results
of Section 3.2.2.

How does Theorem 3 translate under the Error Assumption of Section 1.2.2 for the
single design error case?

Let . be a valid error location. For the single error case, the Error Assumption reduces
to the statement that V. is a non—empty set of vectors that activate the inconsistencies.
Further, according to Theorem 3, critical path—traceback is guaranteed to include /. in
every set V;-i and for all erroneous primary outputs PO; and vectors v; € V,. In other
words, [, will exist in the intersection of lines of all V;-i’s, that is,

l. € N Vi, d=1,.0,| Vaet | (3.1)

7
PO; erroneous for v

This observation is also shown in Fig. 3.4. The box represents the initial error space,

that is, all the lines of the circuit. V;}, V2 and V3? are three sets of lines selected by path—

traceback for 3 different runs of the algorithm. The error set, Cepror, is the shaded area

which also is the intersection of the lines of V3, V? and V? according to Equation 3.1.

Due to Theorem 3, Cerror in the figure above must contain all single valid modification

locations.

52

Error Space

Figure 3.4 Space Pruning For Single Error Diagnosis

It can be seen from Fig. 3.4 that every run of path-traceback for a different set of
erroneous primary output and input vector has the potential to reduce the error space
but never increases it. Diagnosis for single design errors with implicit enumeration of
error pairs is shown in Fig. 3.5. Initially, we quickly reduce the error space by applying
path—traceback for the vectors of V,.;. Once the algorithm has deleted the majority of
error candidates, Inverted Simulation is performed (Section 2.3.2) to reduce the error

space further.

3.4 Multiple Design Error Diagnosis

For a design G¢ corrupted by multiple errors, Theorem 3 says that every run of the

path-trace back procedure is guaranteed to include at least one line of each valid error

53

IMPLICIT_SINGLE.ERROR DIAGNOSIS(F, Ge, Vi)
1. Corror = {G¢ circuit lines}
2 for every vector v; € Vo do
3. for every erroneous P0O; do
4. Cerror = CerrorN PATH_TRACE.BACK(v;, PO;)
5 for every tuple (lo, 11, ...y Iy—1) in Cerror do
6 INVERTED_SIMULATION(F¢, Ge, lo, b, -+, In-1)
7 return(Cepror)

Figure 3.5 Implicit Diagnosis for Single Design Errors

tuple. However, since the different V}j sets might contain different element(s) of different
error tuple(s), Equation 3.1 does not hold any longer.

In this section, we define the concept of an Intersection Graph originally presented
in [60] for bridging fault diagnosis. This graph is a data structure useful in keeping track
of the different kind of information that path—trace back has to offer. We also define a
novel concept of a N—graph reduction that will allow us to direct our search for valid

N-error tuples in the potential error space of an N—source correctable design.

Definition 11 The Intersection Graph(IG) G = (V,E) of a G¢ is an undirected
graph where each vertez V; € V contains a set of lines from G¢ denoted as lines(V;).

Edge (V;,V;) is in E if and only if lines(V;) N lines(V;) # 0.

Example 11 The intersection graph of Fig. 3.6 contains 6 vertices Vi, Va,...,Vs. Each
vertez contains some lines from the circuit of Fig. 3.2(b) and two vertices are adjacent if

and only if the intersection of their line sets is non—empty according to Def. 11.

54

Figure 3.6 An Example of an Intersection Graph

Definition 12 Let IG G = (V,E) and let Vg = {V1,Vo,...,Vn}, N > 1, be N distinct
vertices of G such that Vi, j,1 <1,7 < N andi+# j, we have that lines(V;) Nlines(V;) =

0. For every V; € Vg let V¥ be the set defined as follows:

V;adj ={V;, : Vi, €V is adjacent to V; and not adjacent to any vertex of Va — Vi}

We define an N—graph reduction that respects Vg on G the new IG G' = (V', E')
that we get if ¥i,1 < i < N, we replace every set VP% = {Vi,,Vi,..., Vi, } with a new
node V; where lines(V,) = lines(V;)Nlines(V,)Nlines(Vi,)N...NIines(V;,) and compute

the new edge adjacencies of G'.

Definition 13 An IG G = (V, E) is called N-reducible if and only if there ezists an

N—graph reduction on G.

95

Figure 3.7 A Reduced Intersection Graph

Example 12 Fig. 8.7 shows the resulting graph when a 2—graph reduction that respects
Vr = {Va,Va} is performed on the IG of Fig. 8.6. In detail, Vi¥ = {Vs} and V¥ = {V5}.
Observe that Vi & V¥ because it is adjacent to Vj.

According to Def. 12 we have that lines(Vy) = lines(V2) N lines(Vs) = {a} and
lines(V]) = lines(Vy) Nlines(V3) = {p}. Notice that the reduced graph of Fig. 3.7 is both

2 and 3 reducible.

3.4.1 Pruning the Error Space Through Graph Reductions

In this section we describe how we can use the concept of a reducible IG so that
we prune the error space. We first give a procedure to construct and process an IG for
an erroneous design G¢ and then we present some interesting properties of this data—

structure.

56

Il (0, 0)

12 (0, 0)

14

02
1,1) @M

15

Figure 3.8 Erroneous Implementation for Example 13

Definition 14 Let Go be a N-source correctable design. Define IG G° = (V° E°) to
be the initial IG. Every vertex in VO is the set of lines from a run of the path-traceback
procedure for a different erroneous primary output PO; and a different vector v; € V.
Define G' = (V*, E?), i > 0 to be the resulting IG after i consecutive N-graph reductions
on G° where an arbitrary number of verter additions from path—trace back can interleave

the reductions.
The following examples illustrate the construction of the IG for two erroneous circuits.

Example 13 Fig. 3.8 contains the erroneous circuit of Fxample 4 (Section 2.8.1) sim-
ulated for two input vectors (0,0,1,0,1) and (0,0,1,0,0). The values of the vectors at

respective lines are shown within parentheses.
The first vector produces erroneous results for both primary outputs, while the second

vector activates the inconsistencies at primary output Gig. Fig. 8.9(a) contains the initial

57

Vi
Gl16 GS8 G17 B6 BO

G15 GI12
i1 B2 I3 B4 I2

(a) GO path-trace back for first erroneous vector

i Vo
G16 G8 G17 B6 BO
G17 B6 BO
11 B2 I3 g;s Igu G15 G12

B4 I2

2-graph reduction

V3 ; Vg4

Gl6 G8 G16 G8

(b) GO after path-trace back for second vector (left) and
d after a 2-graph reduction (right).

Figure 3.9 Example of Circuit Graph Construction and Graph Reduction

IG G° when path-traceback is performed from each of the erroneous primary outputs for
the first input vector. V; is the vertex created when path~traceback originates from output
Gie and Vo when path—traceback starts from Gyr.

The left side of Fig. 3.9(b) contains the situation when path—trace is performed for
the second input vector and erroneous primary output Gy7. Verter Vi is added to G°
and it is adjacent to Vi. The result of this vertex addition is the existence of a 2-graph

reduction that respects Vg = {Vi1, Va} (or, equivalently, V§ = {V5,V2}). The result of this

58

reduction is shown to the right of Fig. 3.9(b) where vertices Vi and V3 have been replaced

by Vi where lines(Vy) = lines(V4) N lines(Va).

11 (0,1)

12 (0,0)

Gs (.9 : (1) o1
NAND Gat\ F G16
B5
.' 'S

(1,0) o2

I5
@)
' V2
G16 B5 G12 G17 B6 Gi2
B4 I2 } LB? G9 14

V3

B4 12 G15

G17 B6 G12
BO 12

(b)

Figure 3.10 Erroneous Implementation and IG for Example 14

Example 14 Consider the erroneous circuit of Fig. 3.10(a) where Gi5 is a NAND gate
replacement error and the connection I,—Gqs is an extra wire error. The circuit is sim-
ulated for two input vectors, (0,0,1,1,0) and (1,0,1,0,1) and the values are shown in
parenthesis above each line. The first vector produces erroneous results in both primary

outputs, while the second vector produces erroneous results at O,.

59

The resulting IG is a cligue and it is shown in Fig. 3.10(b). Vi and Vs are the resulting
nodes when path—trace back begins from O; and Oy for the first vector, respectively. Va is

the IG node that results from path-trace back for the second vector.

The following theorem is important for the correctness of our diagnosis approach. We
should emphasize the fact that the theorem holds for N-graph reductions on an IG for
an N-source correctable design only (Def. 14). We will have the chance to discuss the

implications of this requirement shortly after the proof of the theorem.

Theorem 4 Let Go be an N-source correctable design. Every vertez of G' = (V*, EY),
where ¢ > 0 contains at least one line from each valid modification tuple. Moreover, G*

can have at most N vertices non—adjacent to each other.

Proof. Initially, we show that if the theorem holds for G* then it also holds after a
vertex has been added to G".

If every vertex of G* contains at least one line from each valid modification tuple,
adding a new vertex from path—trace back will not violate this property (Theorem 3) and
the first part of Theorem refiglthm holds. The second part of the theorem also holds for
suppose, towards a contradiction, that there was a set V4;; of N4k, k£ > 0, non-adjacent
verticés after a vertex addition occurred on G®. Then, since every vertex contains at
least one element of every valid modification tuple and G¢ is N—source correctable, there
should be at least two vertices of Vj;, that are adjacent, a contradiction.

Now we show that the theorem holds for any number of N—graph reductions. We will

prove this with the use of induction on the number of reductions.

60

For ¢ = 0 the theorem holds as every vertex in V° contains at least one element of
every valid modification tuple due to Theorem 3. Furthermore, G° cannot have more than
N non-adjacent vertices because assume, towards a contradiction, that there were N +k,
k > 0, vertices V4, Va, ..., VN1 non-adjacent to each other. Let L = {l3,1,,...,In} be a
set of modification locations. Theorem 3 implies that each vertex contains at least one
distinct line of L there should be at least two vertices in V* that contain the same line
and, thus, are adjacent, a contradiction.

Assume that the theorem holds for G*, we’ll prove that it holds for G™*! for a reduc-
tion respecting set V.

To prove that the first part of the theorem holds for G**!, observe that each set
V4 V; € Vg, should contain the same line from each valid modification tuple, otherwise
there would be two vertices V;,V;,7 # j of Vg that are adjacent. Since every vertex
in V% contains the same line of every valid modification tuple, these lines should also
appear in their intersection.

To prove the second part of the theorem, assume that G*** has N + k,k > 1 non—
adjacent vertices V = {V4, Va,..., Vnyi}. Since each vertex contains at least one line from
each valid modification tuple (first part of this theorem proved in previous paragraph)
and the design is N-source correctable, this implies that there would be at least two
vertices in V' that are adjacent, a contradiction.

Observe that the above theorem also gives a lower bound on the number of modifica-
tions needed to rectify an erroneous Gg; if G°, for some 7, has N non—adjacent vertices,
then the design is guaranteed not to be K-source correctable for K < N due to The-

orem 4. However, the design might be M-source correctable for some M > N since,

61

Vg

V7

Figure 3.11 A 2-Graph Reduction on a 3-Source Correctable Design

according to the theorem above, an M-source correctable design can have at most M
non-adjacent vertices.

It was emphasized earlier that Theorem 4 holds only if we perform N-graph reductions
on an N—source correctable design. What happens if we waive this requirement and allow
a K-graph reduction on an N-source correctable design for K < N? Unfortunately, as
the following example illustrates, Theorem 4 does not longer hold and we may jeopardize

the error resolution.

Example 15 The IG on the left of Fig. 3.11 is an IG for some 3—source correctable
design. Assume that (A, B,C) and (X,Y,Z) are two valid modification location triples.

Suppose we perform a reduction that respects Vg = {V;,Va}. The resulting graph is
shown in the right side of the figure. The reduction on V deletes lines B and C, while

the reduction on V deletes lines Y and Z and Theorem 4 does not longer hold.

62

Theorem 5 Let Gt = (V;, E;) for N-source correctable G¢. If we perform a K-graph

reduction, K < N then Theorem / does not necessarily hold.

Proof. Immediate from Example 15.

3.4.2 Implicit Enumeration

In this section we describe our implicit design error tuple enumeration diagnosis al-
gorithm. The question that we address is how to enumerate a set of valid error tuples
Corror given an IG G'.

Given an IG G, the first action is to find the maximum number K of non—adjacent
vertices. As explained in the previous section, K also serves as a lower bound on the
necessary number of modifications to correct the design. However, given G*, the design
can be N—source correctable for any N > K. Therefore, in our discussion and final algo-
rithm, an initial guess IV of the potentially desired number of modifications is required.

This guess N should always be bigger than or equal to K.

Definition 15 Given an IG G* = (V*, E*) we define an n—sample of Vi, n <| V|, to

be the union of lines of n randomly picked vertices of V*.

Depending on the structure of G¢, a different error enumeration technique for Cerror

is used. These techniques are as follows:

¢ K = 0:If K =0 it implies that G® is a clique, that is, there exists an edge between
every two vertices of G?. To compile Cepyor, we pick the vertex V € V? with the
smallest number of lines. Observe that line(V) is guaranteed to contain one line

from each valid modification location due to Theorem 4.

63

Figure 3.12 Subgraph of a Clique IG

We then pick an n-sample of V* for some small n. In our experiments, n is usually
less than 10. Finally, we ezhaustively compile N—tuples where the first element of
each tuple is a line from line(V) and the remaining NV — 1 elements are from the

union of the lines in line(V) and the n-sample.

e K > 0: If K > 0 it means that there is at least one set of K non—adjacent vertices
{Vi,Va,...Vx} in Vi. To compile Cerror for this case, we pick an n-sample of V¢
for some small n. Subsequently, we ezhaustively compile N-tuples where the j—th
entry of the first K elements of each tuple is taken from lzne(V;) and the remaining

N — K elements are selected from the n-sample 2.

2QObserve that the n—sample is an empty set when N = K.

64

Then for every set of K non-adjacent vertices of G*, {V{,V4,...,Vi}, we delete
the error tuples from C..,.r that don’t have a subset of k lines, each of them in

some distinct line(V}).

Example 16 Implicit enumeration for the IG of Fig. 3.9(b) yields 21 error pairs as
K = N = 2. These pairs are: (Gis, G17), (G, Be), (Gs, Bo),(Ghe, G1s),(Ghe, Gr2),
(Gre; Ba)(Gie; I2),(Gs, Ghr), (Gs, Be),(Gs, Bo),(Gs, Gis), (G, G12),(Gs, Ba),(Gs, 12),
(I, Gv7),(11, Bs),(I1, Bo) (11, G1s),(I1, Gi2),(I1, Bs) and (11, 12).

Equivalently, for the clique of Fig. 8.10(b) we have a total of 40 pairs if we pick as a
1-sample vertex V3 and 80 pairs if the 1-sample is V,. In both cases, the vertex with the

smallest line set s V;.

Assume that G¢ is indeed N-source correctable. Unless K = N, the resolution of
the implicit error enumeration method described above clearly depends on the n—-sample.

The importance of a good n—sample is demonstrated in the example that follows.

Example 17 Fig. 8.12 contains a subgraph of a clique IG for some 3-source correctable
design. Clearly, K = 0. Assume that (A,B,C),(M,N,K) and (X,Y,Z) are three modi-
Jfication tuples. If n =2 and our 2-sample is Vi and V3 (V; is the smallest element) then

Corror Wil not contain none of the above modification tuples. A good 2—-sample is V; and

Va.

How do we know if we picked a good n-sample? Fortunately, Inverted Simulation, an
exhaustive on the error space procedure for the set of vectors Vact, provides an answer to

this question.

65

Suppose that we compile C,r,r in the forms of N-error tuples for some erroneous G¢
that we suspect it is N-source correctable as described above. If Ccrpor contains one or
more valid corrections, then these corrections should qualify during Inverted Simulation.

If Cerror 1s empty after Inverted Simulation it means that it did not contain any
valid correction and we repeat the implicit Ce,,,r enumeration process for a different,
and possibly larger, n—sample. If after many iterations of this algorithm Cppyor remains
empty, then we can conclude with high confidence that G¢ is M—source correctable for

some M > N.

IMpLICIT_ERROR-DIAGNOSIS(Fg, Ge, N, n, iters)
1. for every vector v; € V,; do

2. for every erroneous PO; do

3. Place V} = PATH_TRACE_-BACK(v;, PO;) in Vo
4. V;u =V

5. while V/, #0 do

6. Randomly choose VieV) and add it in IG G

7. Delete V; from V),

8. while there are N-graph reductions in G do

9. REDUCE_IG(G, N)

10. Cerror=IMPLICIT_ERROR_ENUMERATION{N, n)

11. for every error tuple {lo, ki, ..., Iv—1) in Cerror do

12. INVERTED_SIMULATION(F,, G, ly, ..., In-1)

13. if Cerror = B goto line 4 unless max # of iterations iters is reached
14. return(Cerror)

Figure 3.13 Implicit Diagnosis for Multiple Design Errors

66

3.4.3 Multiple Error Location

We are now ready to describe the overall error diagnosis approach with implicit enu-
meration of error tuples for N > 1. The case where N = 1 is covered in Section 3.3.

The multiple diagnosis algorithm is shown in Fig. 3.13. The input to the algorithm
are the specification, implementation, a guess IV of the design correctability, a number n
for the random sample and a maximum number of iterations ¢ters the procedure should
be repeated if Cerpor is empty.

In lines 1-3 we compile a set of distinct vertices V,;; from consecutive path-trace back
runs for all vectors of V,.; and all erroneous primary outputs. The IG graph is built in
lines 5-9; vertex insertions (line 6) are followed by N-graph reductions (lines 8-9) until
V. is empty and no more reductions are possible.

The error set Ce,ror is created in line 10 in the way described in Section 3.4.2. Every
invocation of IMPLICIT_ERROR_ENUMERATION() uses a different sample.

If Cerror becomes empty during Inverted Simulation (lines 11-12) then we repeat the
process (line 13) unless we reached the maximum number of iterations iters and we exit
with an empty error set.

In our implementation, the procedure of Fig. 3.13 is applied on the checkpoints of the
circuit G¢. Due to Theorem 2 from Section 2.3.4, the theory developed in this chapter
also holds for the checkpoints of the circuit alone. In our experiments, once the algorithm
of Fig. 3.13 terminates for the checkpoints of G with output the set Ce,,o., We create a
new C,..,. from the clans of the checkpoint of Cerror. Then we run Inverted Simulation

on the elements of C7,, .. so we get the final set of modification tuples.

67

3.4.4 Implementation Issues

In this section, we discuss an efficient implementation of the multiple design error

diagnosis algorithm and present heuristics that improve error resolution.

e We represent the IG in an adjacency list format where the set lz’nes(V}i) of every
vertex V;-i is being kept as a bit—vector; the k—th entry of the vector is 1 if and only if
the k-th line of G¢ is contained in V;’ This makes it efficient to perform reductions

and do implicit error enumeration through the use of the bit—wise operations AND

and OR [60].

e The complement G of G is also maintained. This makes it efficient to find the

non-adjacencies used for reduction and implicit enumeration.

e Recall from Section 3.2.2 that path—trace back has sometimes to make a choice on
the line to select for the next iteration. A different selection of lines gives different,

and possibly better, results.

In our implementation, we keep a reference counter on each line of the circuit.
This counter is initially equal to zero. Every time a line is selected by path—trace
back, the respective reference counter is incremented; every time the line is deleted
due to a graph reduction the reference counter gets decremented for all instances
the line is present. When path—trace back has to select from many lines, it selects
the one with the lowest reference—counter. This line is less likely to to introduce

adjacencies into the IG.

68

If all lines have the same reference counters, then the one that is closest to the
primary inputs is selected. This line has the potential to create a shorter path from

the primary outputs to the primary inputs during path-trace back.

Finally, if one of the choices is a branch whose stem has already been selected by

path—trace, we select the branch since it adds nothing to the selected set of lines.

3.5 Error Masking

Consider the simple circuit of Fig. 3.14(a). This circuit is corrupted by two design
errors; (4 should be an OR gate and (3 should be an AND gate. Nevertheless, the error
on (1 is not observable ® at no primary output. However, observe that the error on Gy
is observable when the error on G is corrected (Fig. 3.14(b)). This situation is referred
in the literature as error masking [10][51].

Error masking has not been a problem in our presentation so far because of the Error
Assumption of Section 1.2.2 that required that at least one sensitized path exist from
the error location to some primary output . However, the implication of error masking
on multiple DEDC is important.

Observe that the circuit of Fig. 3.14(a) is 2-source correctable, but every algorithm

that will perform a single rectification will fail because the circuit of Fig. 3.14(b) is still

3See section 2.3.2

*The other implication if we drop the Error Assumption is that Ve might not contain vectors that
activate and propagate all design error to some primary output(s). The experiments in this thesis
and [27] show that a relatively small size of input test vectors used for verification is sufficient for
Error Assumption to hold. However, there is no theoretical foundation to support the argument. For

a discussion of how to have a V. via symbolic methods so that the Error Assumption holds, see
Section 4.3.3.

69

PI W

PI AND

PI

(b) Error G 1 observed at output 0

Figure 3.14 Example of Error Masking

erroneous. On the other hand, no algorithm, to our knowledge, will try to attack the
design as a 2-source correctable since the error on Gy is not observable.

If a design fails to be N—source correctable for small values of NV it might be because of
error masking. In our experiments, error masking did not occur in 2—correctable designs
and it was rare in 3-correctable design. In less than 10% of the cases for the ISCAS’85
benchmark circuits C3540, C5315, and C7552 it happened for an error to be masked for
all input vectors by some other design errors. Our intuition and experiments suggest

that error masking is more likely to occur as the value of N increases.

70

A solution to this problem with our diagnosis methodology is to track the erroneous
primary outputs for each input vector of V,.. Diagnosis is performed as explained in
Chapters 2 or 3 and if some simulation of a vector v € V,.; for Inverted Simulation yields

new erroneous primary outputs, diagnosis is performed for all such new outputs.

Example 18 Line Gy qualifies Inverted Simulation for input vector (0,1) as it corrects
Os. However, Oy will give a new erroneous primary output response for Inverted Simu-
lation on G;. Since there’s no sensitized path when we complement the value of G412 to

O for vector (0,1), the erroneous response on O; should come from an error previously

masked.

Multiple diagnosis steps obviously add to the computational cost of the algorithm

but they are necessary so that we can handle error masking.

3.6 Summary

In this chapter we presented a multiple design error diagnosis approach that performs
an implicit enumeration of error pairs. This eliminates the exponential explosion of
error space (Eq. 1.1) but it does not guarantee, on a theoretical level, to return all valid
modiﬁca,tion tuples, that is, it is not exhaustive on the error space. This happens because
the set of error tuples returned sometimes depends on a random sample.

The algorithm is based on a unique path-traceback algorithm, similar to path-tracing
used for diagnosis of stuck-at faults. The information produced by path-trace back is

used to construct a graph. Different graph operations allow us to process this graph and

71

reduce the error space dynamically. Finally, we use the processed graph and the concept
of an n—sample to implicitly enumerate N—error tuples.
In the last part of this chapter, we discuss the implication of error masking in the

area of multiple DEDC and we propose an approach to a solution for this problem.

72

CHAPTER 4

Design Error Correction

4.1 Introduction

The purpose of diagnosis is to reduce the number of potential error tuples significantly.
Once this is achieved, circuit rectification needs to be performed. In this Chapter, we
describe two Design Error Correction techniques; the first uses test-vector simulation and
the second is symbolic.

Both methods are exhaustive on the correction space in the sense that they will not
miss a correction if such correction exists in the modification model of Def. 3. This is
because the symbolic method runs over the one based on test—vector simulation which is
exhaustive on the error space by construction.

The symbolic method is also exact on the correction space. This means that thereis a
guarantee that each member of the output list of corrections will successfully rectify the
design; The experimental results in Chapter 5 suggest that test—vector simulation gives
exact on the correction space results too although there is no theoretical foundation
to prove it. Since the simulation results are based on a small fraction of the input
vector space, there is no guarantee that they will correct the circuit for all vectors.
Nevertheless, such a method is still useful and interesting to explore because once the list

of potential corrections has been narrowed down to a very small number, an appropriate

73

verification tool can be used to check the correctness of the new implementation for each

such correction.

4.2 Correction with Test Vector Simulation

In this section we describe a run~time efficient and exhaustive on the correction space
test vector simulation technique for multiple design error correction. The technique
compiles ezhaustively the correction list and verifies it with random vectors along with
the vectors for stuck-at faults that did not activate the inconsistencies during diagnosis.

More in detail, a list of all possible corrections from Def. 3 and for every remaining
candidate of Ceprpor is compiled ezhaustively.

Recall that during the Inverted Simulation step we keep track of potential N—error

line tuples in the form of the following equation:
L= {Zo, Zl; ceny IN_l, not(k), 'U}

The above tuple implies that error location tuple {ly, 1, ..., {y—1} can correct vector
v € Vo if the Fgroup bit-list value for v gets complemented (retains its value) for line
I; when the 2°~th bit in the error excitation scenario not(k) is equal to 1 (0).

The main idea behind our error correction scheme is to find all possible corrections
from Def. 3 for each line /; so that when applied, they produce Fgroup values that respect
at least one of the error excitation configurations for every input vector v € Vact.

The theorem that follows formalizes this idea.

Theorem 6 Let input vector v € Ve and let {lo, 11, ..., Iy—1} be a suspicious set

of error lines for error configurations not(k;),not(ky),...,not(ky) of an N-source cor-

74

rectable circutt. In other words, the following N—error line tuples are part of the output

of Inverted Simulation:

{lo, l1, ..., IN-1, not(k1), v}
{Zo, Zl, caey lN—l; not(kz), 7)}
{lo, Zl, Weey ZN_l, not(km), ’U}

Let Cy,C1,...Cn_1 be a set of corrections that rectify the design. Then the value of
i, Vo, 0 < ¢ < N — 1, under simulation of vector v when C; is applied should be in the

set:
{2° AND not(k),2° AND not(ky),...,2° AND not(kyn)}

Equivalently, the new value of I; for v can be either a 0, or a 1, or a don’t care (X).

Proof. Immediate from the way Inverted Simulation works (Fig. 2.8).

4.2.1 Wrong Gate Correction

Suppose that we are considering a Wrong Gate type correction for a line I; of some
error tuple and let erroneous vector v € Vo (v € Fgroup, equivalently). The new gate
configuration that will drive /;, when applied, should produce a new value on I; for v that
exists in the union of the excitation configurations that rectify the design according to
Theorem 6. Moreover, this condition should hold for all vectors v € V.

The following example illustrates the above observations.

75

Example 19 Correction is applied for the pair of error locations {G1,G2} shown in

Fig. 4.1(a) and error tuples

(Gla G27 17 ’01)
(Gl, Gz, 1, ’02)
(G17 G2> 37 U2)

Fzcitation configuration 1 for vector v implies that v p’r‘oducés correct results at the
primary outputs if the potential error on Gy is activated and the error on Ga is not.
Equivalently, excitation configuration 3 for vector v means that both errors on GGy for this
error tuple during Inverted Stmulation for v are activated.

Assume that the correction pair under consideration is a missing gate for Gy and a
gate replacement error for Go. This is shown in Fig. 4.1(b), where G' # G; and G5 # Gs.
Moreover, assume that when we apply this correction pair and simulate according to the
fan-in values shown in Fig. {.1(a) we get the new fan—out values of the shaded bozes in
Fig. 4.1(b).

We observe that the new values for vy are {G1, G2} = {0,1} and they respect excitation
scenario 1 and Theorem 6 . The same holds for the second vector ve and this correction

pair qﬁaliﬁes; Observe that if the error tuple

(Gl, Gz, 3, ’02)

did not exist in the original list, then the above correction pair would not qualify and

it would have been removed from the list of potential corrections.

6

0 / u
5 @ :
0] %Lt K [0 | X 0
n XZ G 1 n X2 G
Xl ¥ Xl @ 1 YNEW
o] K [0 |
1
XG x6
b s < 7% B— |
X S
(a) ERRONEOUS CIRCUIT (b) PAIR OF CORRECTIONS THAT QUALIFIES

Figure 4.1 Wrong Gate Correction on an Error Pair

4.2.2 Wrong Wire Correction

Wrong Wire Corrections are performed in a similar manner to the one described above
as they also obey Theorem 6. The only additional work for wire related corrections is
that we need to consider wires that do not create combinational loops.

Once we satisfy this requirement for a particular candidate, we proceed exhaustively

to compile the list of Wrong Wire Corrections.

4.2.3 Wrong Gate/Wrong Wire Correction

For corrections of the Wrong Gate/Wrong Wire case, we compile an exhaustive
list of all Wrong Gate corrections from Def. 3 and apply the techniques of the previous

paragraphs on each candidate correction of this list.

7

TVS_CORRECTION(Cerrory Vast)
1. for every distinct set of error lines L = {lp, l1,...,Iv-1} € Cerror
2. Let v; be a vector of V,.; and
not(ky),not(ks), . . .,not(k,) all excitation scenarios of L for v;
Corry, = TVS_CORRECT_VECTOR(L, not(ki),not(ks), ..., not(kn), v:)
for every vector v; € Voo, 7 # 1, do
Let not(k1), not(ks),. .., not(k,) all excitation scenarios of L for v;
Corry, = Corr,N TVS_CORRECT_VECTOR(L, not(ky), not(ks),. .., not(k,), v;)
Let Corr = UCorry, for every distinct set of error lines ;.
Verify every member of Corr with stuck-at/random vector simulation

N oo e

TVS_CORRECT_VECTOR(ly, h, --., In-1, not(k1), not(ks), ..., not(kn), v)

1 fori=0toN—~1do

2 Apply Wrong Gate correction on I;

3. Compute new_fan—out_value(l;) for v

4 if new_fan-out_value(l;) € {2AN Dnot(k;),2' AN Dnot(k;), ...,
2! AN Dnot(k)} then

5. add correction in Corry,

6. Apply Wrong .Wire correction on I; (when necessary, consider
every line I’ ¢fan—out.cone(l;))

1. Compute new_fan-out_value(l;) for v

8. if new_fan-out_value(l;) € {2° AND not(k,),2° AND not(k),...,
28 AND not(k,)} then

9 add correction in Corry,

10. Let Corr, be the cartesian product Corry X Corry, X ... X Corryy,_,
11, return(Corr,)

Figure 4.2 Design Error Correction With Simulation

4.2.4 Overall Correction Strategy

Once the list of potential corrections has been compiled exhaustively as described in
the previous three sections, an additional verification step is performed.
This step uses the vectors that did not activate the inconsistencies in the first place

(T'group values, see section 2.3.2). For every set of potential corrections, the corrections

78

are applied and simulation is performed at the fan-out cones of the respective lines. This
step can be carried efficiently with parallel bitwise test—vector simulation [66].

The candidate corrections that give an erroneous response at the primary outputs of
the circuit are deleted. The set of N—correction tuples that remain is also the output of
the correction algorithm.

It is straightforward to see that for each error location tuple, the correction procedure
described above, although exhaustive on the correction space, it is an efficient one. Gate
related corrections are performed locally to the line under consideration, while wire related
corrections require a single pass over the circuit lines.

The overall procedure for error correction with test—vector simulation is illustrated
in Fig. 4.2. TVS_CORRECTION is the procedure that performs correction by calling
TVS_CORRECT_VECTOR iteratively for every vector. TVS_CORRECT_VECTOR is the
procedure that returns a set of corrections for an error tuple and a single vector v ac-
cording to Theorem 6. TVS_CORRECTION returns the final set of corrections by taking
the intersection of the sets returned by TVS_CORRECT-VECTOR (Fig. 4.2, line 6) and
verifying them with stuck-at and random vectors. We omit the Wrong Gate/Wrong Wire

Case from Fig. 4.2 since it is a straightforward extension of the pseudocode described.

79

4.3 Correction with BDDs

4.3.1 Boolean Equations
4.3.1.1 Forming an Error Equation

In this section, we generalize the results of [22] and [23] and describe a BDD based
method for correction of multiple errors. The method is computationally more expensive
than the one described in the previous section because it involves the invocation, main-
tenance and manipulation of BDDs. However, in comparison to the work of [23] and
[39] that also use similar symbolic techniques, the algorithm described here guarantees
to return all N—correction tuples for NV > 1 that rectify the design, if such modifications
exist in the modification model that is used in the particular run of the algorithm.

First, we need to give some useful definitions and define the concept of an error equa-
tion with multiple unknowns. In the discussion that follows we use the terminology

of Section 1.2.1. When a symbol is underlined it denotes a wvector element.

Definition 16 Let z = {z1,%2,...,2n} be a set of distinct circuit lines of an incorrect
Go and let X = {X1,Xs,...,Xn} be a set of new input variables. The modified
network G% for G¢ is obtained if we replace the set of lines of z with the respective

elements of X.
Definition 17 Let EQ®(PI,X) be the sum of the exclusive-ORs of respective Fo and

G% primary outputs, that is:

EQ°(PL,X)= Y. PO{Fc)® PO;(GE) (4.1)

VYerroneous PO;

80

We call EQ*(PI,X) = 0 an error equation with unknown vector value X.

ErrorEquation(PI,X) = 0

X={X‘1’X|2’ ...7X'N} 96
POy
PIl %;< K< P02
P12 ® X0
Jo x>
° N |po,
e| ~X
Py @ I ———]xox
L PO,
POy
(Black Box) e
[3
Fc FOm

Figure 4.3 Circuitry of an Error Equation

The concept of an error equation can be clearly explained if we describe the circuitry
that forms an error equation for a network G¢. This is shown in Fig. 4.3 where the upper
box represents G¢ and the bottom box Fp.

In the same figure, we observe that the signals of z = {z;,%2,...,zx} in G¢ have
been disconnected from their original functions and they have been connected to the set
of new input variables X = {X3,X,,...,Xy}. This also creates the modified network
G’g of Def. 16. Originally, the primary outputs of both G¢ and Fy are functions of

the (common) primary input variables PI = {PI;, PI,,...,PIy}. Once the modified

81

network is formed, the primary outputs of G% become a function of PI and the set of
variables X.
The XOR operations at the primary outputs of Fp and G% is also known in the
literature as the mitter [9]. The operation of the XOR operation between POf¢ and
x

PO? C is equal to zero if and only if both outputs produce the same boolean function.

The following Example illustrates the above concepts.

Example 20 Fig. 4.4 shows the circuitry that forms an error equation for the modified
network G}Ci, shown in the dotted boz.

The two design errors injected in G¢ are on gate Gy, an extra inverter error, and gate
Gs, an AND gate replacement error. The function implemented at the primary output of
the specification, POp,, is PI;PI, and the function implemented at the primary output
of Go is PIPIs + PI,. The error equation of Fig. 3.3 is equal to EQ*(PI,X) =

(X1 + PI3)X, ® PLLPI2.

4.3.1.2 Solving an Error Equation

What can we say about the solution of an error equatibn? Intuitively, a solution
for an error equation EQ*(PI,X) = 0 is such a set of N functions for the elements of
X that depend on PI and when implemented on the respective lines of z, they make
respective primary outputs of Fo and G¢ implement the exact same functions. Simply
put, every solution to an error equation is a valid set of circuit corrections.

An error equation does not always have a unique solution. As explained shortly after,
there can be cases that an error equation has a set of solutions [11]. The fact that there

can be more than one set of lines where the respective error equation has a solution in

82

PI,

. /

PI, ——:—-{>O* » AND gate PO
L/
Extra Inverter X
i G2
[XOR[- (X #PL) X) ® (PIy PL)=0
\V
PI; Error Equation
FC PO 4
PIL,
PI,

Figure 4.4 Error Equation Circuitry for Examples 20 and 22

addition to the fact that an error equation can have multiple solutions even for the same
set of lines, justifies the existence of equivalent corrections for an erroneous Gg.

Finally, if an error equation EQ%(PI,X) = 0 does not have a solution for the ele-
ments of the vector set X, it simply means that the circuit cannot be rectified with any
modifications on the lines of X regardless the design error model that is used.

The following theorem [11] provides a necessary and sufficient condition for a solution
to an error equation to exist and also describes a recursive way to find such a solution. It
is based on successive elimination of variables where the problem of solving a single

N-variable equation is transformed to that of solving N-single variable equations. Under

33

this approach, the solution of the i-th equation depends on the solutions assigned to the

previous ¢ — 1 equations.

Theorem 7 Let EQ*(PI,X) = 0 be an error equation and let the function fi be defined

as follows:
o fn(X)=EQ"(PI,X)
@ fz'_l(Xl,Xg, «es 7—Xi—1) - fi(Xl,Xg, e 7Xz'—1, O)fi(Xl,Xz, e 7X'i—17 1), 1 S Z S N

The error equation has a solution if and only if fo = 0 and the solution interval !

for the i-th variable, 1 <: < N, is:

fi(XhX27 ren ’X‘i—lyo) S -Xz S fi(Xh X27- . 7Xi——171) (42)

The example that follows, taken from [11], illustrates the application of Theorem 7

on an error equation.

Example 21

Equation: f(a, b, z1, T2, z3) = bz + bzjzs + bzjzs + d'zhzl + d'zzh+
+a'zize + abzez3 =0

Variables: PIL = (a, b).

Unknowns: X = (zi1, z2, z3), N = 3.

Successive Variable Elimination:

'Recall that f(z) < g(z) for boolean functions f, g if and only if f(z)g(z) = 0.

84

fs = formula for f

fo = by + Vaizs + d'zyaly + d'zizs + a'bz), (eliminate z3)
fi = bzy + a'bzy (eliminate z3)
Jfo = a'b (eliminate z1)

Condition for a EQ solution to exist:

{l
o

fo = a'b

If a’b = 0 then solution intervals are:

a’b

IN
A

L1 b
a'b+a'zi+bzy < zp < Vo +abz)

a'zy + bz + Wiz, +d'zy, < x5 < Vaizh, + abzizs + ab'zh + a'bVzyizs

It can be seen from Theorem 7 that an error equation does not necessarily have one
unique solution, if such a solution exists. This is because a solution interval can some-
times allow a variable to have more than one valid values within the interval. Moreover,
successive elimination requires that the solution interval of X;, 1 <4 < N, be dependent
on the value of all variables X;,Vj < 7. Nevertheless, the order of variable elimination

does not change the solution interval for the variables [11].

Example 22 With respect to the erroneous circuit of Ezample 20 we have that EQ*(PI, X) =
fo(X) = PLX, Xy + PLXoPIs + PLX: X, + PLX,PIs+ PLLX,PL,PI; + PLPLX,,
fi(X1) = PLXiPLPI;, and fo = 0. The latter implies, due to Theorem 7, that the

error equation has a solution.

85

The solution interval for variable Xy is PI;PI,PI; < X; < 1. If we let X; take the
constant value of 1, we have that fo(X; = 1,X2) = PLX, + PILLX, + PLPI, X, and
the solution interval for X, becomes PI1Ply, < X, < PI}PI,. It can be seen that this

interval contains only one solution for X, that s, P11 PI,.

4.3.2 Symbolic Diagnosis and Correction

In this section we describe the overall approach for DEDC with the use of BDDs. The
modified algorithm for error diagnosis and correction with the use of BDDs is shown in
Fig. 4.5.

Diagnosis is performed in a way similar to the one presented in Chapters 2 and
3 (Fig. 4.5, lines 2 and 9) with the exception of lines 57 where the error equation is
built for the qualifying checkpoints from Inverted Simulation. Since, by definition, the
checkpoints dominate over the lines of their clans, if the union of clans for a set of
checkpoints contains a set of valid modification locations for G¢, then the error equation
will have a solution for the checkpoints as well [17]. This observation along with the code
in lines 5-7 allow us to speed up the diagnosis procedure and disregard at an early point
of the algorithm clans that guarantee not to contain any valid modification locations.

Omnce diagnosis has been performed for the circuit (lines 1-11), an exhaustive list
of corrections is compiled from the results of test vector simulation according to the
procedure described in Section 4.2 (line 12).

Subsequently, each correction tuple CT = {CTi,CTz,...,CIn} € Ceorrections Of this

list is examined separately and disregarded if some correction C'T; violates the correction

86

BDD_D1AGNOSIS_CORRECTION(F¢, G¢, Viu, N)

build error equation EQ(PI, X)
delete Ly from C..,. if EQ(PI,X) has no solution

C = union of clans of checkpoints B; € some pair of C'

error

1. Beheckpoints = {B1, ..., B} = checkpoints of G¢

2. Cerror =Implicit.or Explicit_Error_Enumeration(Fr, Go, Bereckpoints, Vacty V)
3. for every error-tuple Ly, ..., Ly-y € C.,,. do

4, Inverted Simulation(F¢, Ge, Lo, ..., Ln-1)

5. for every error-tuple Ly = {Lo, ..., Ln-1} € C’ .. do

6.

7.

8.

(* find the final Cyrror of checkpoints *)
9. Cerror =Implicit_or_Explicit Error Enumeration(F¢, Ge, C, Vou, N)
10. for every error-tuple Ly, ..., Ly-1 € Cerror do
11. Inverted Simulation(F¢, Ge, Lo, ..., Ln-1)
12. CTcarrections = TVS—COTTeCtiOn(CaTroﬁ I/a.ct)
13. for every correction tuple CT € CT.orrections dO

14. form error equation by composing resp. checkpoint error equation
15. Check solution intervals for each member of CT
16. If CT violates some solution interval delete from CTorrections

17. return(ccarreciions)

Figure 4.5 Symbolic Design Error Correction

interval given by Theorem 7 (lineé 13-16). As mentioned earlier, the correction interval
for each variable remains the same regardless of the order the variables are eliminated.

Finally, we should mention the fact that the error equation for CT can be easily con-
structed from the error equation of the checkpoints (lines 5-7) of the diagnosis algorithm
(line 14). This can be achieved with the bdd_compose command which is available in most
BDD packages. This observation allows us to save time and reuse parts of the previous
computation. |

The list of corrections that qualify the solution interval checking of lines 13-16 is also

the output of the algorithm (line 17).

87

4.3.3 Producing Vectors With Erroneous Responses

Lets return to equation 4.1 in Def. 17. Observe that if the set X is the empty set,
that is, G¢ and Gé(" coincide, then equation 4.1 can be used to provide input test vectors
with incorrect primary output responses for an erroneous Ge.

All these vectors are exactly the ones that give such a primary input assignment so
that 4.1 gets a true value. Intuitively, such an assignment of input values is the one that
produces at least one different primary output response in G¢ and Fg. Returning to

Example 20, we observe that an input vector with erroneous primary output response is

any vector that makes (PI,PI; + PL;) ® (PI;PI,) equal to 0.

4.4 Summary

In this chapter, we described two procedures that perform design error correction
once diagnosis is completed. Both of them are ezhaustive on the correction space, that
is, they will return all apiolicable corrections that rectify the design if such corrections
exist in the modification model that it is used. The modification model we used is the
one of Def. 3 (Chapter 1 which is an eztension of the one described in [2].

The first correction approach is based on test vector simulation and it exhaustively
produces a list of potential corrections from the results of the stuck-at vectors that
activate the inconsistencies. Verification with random test vector simulation is performed
as a last step so that potential corrections with erroneous primary output responses are

deleted from the correction list.

88

Next, we described a symbolic approach for correction that uses the concept of an
error equation with multiple unknowns. The symbolic approach works on top of the test
vector simulation correction procedure. Although it is not a run-time efficient procedure
since it involves the use of BDDs, it is exact on the correction space as it guarantees to
return all and only the corrections that indeed rectify the design, if such corrections
exist in the modification model that it is used.

Since exhaustive input vector simulation is prohibited for most circuits, it is of interest
to know the quality of a simulation procedure driven by a small subset of the input test
vector space for multiple DEDC. This is an issue that we investigate throughout our

experiments in Chapter 5.

89

CHAPTER 5

Experimental Results

5.1 Introduction

We implemented the diagnosis and rectification algorithms presented in the previous
chapters in C language, and ran it on a Sparc 10 workstation with 220MB of memory.
We tested the algorithms on ISCAS’85 benchmark circuits with the characteristics of
Table 5.1 for 1-source, 2-source and 3-source correctable designs with all three types of
design errors of Def. 5.1. The types and locations where the errors were injected were
selected randomly.

The initial number of error candidates for each of these designs is shown in Table 5.2.
These numbers are computed according to equation 1.1 from Chapter 1. Observe that
the correction space, assuming the error model of [2] or Def. 3, is an order of magnitude
larger since we have to consider additional input wires for error locations.

The average values of the results of our experiments on the circuits of Table 5.1 are

reported in the following sections. All run—times of our results are in seconds.

90

ckt Description # of primary | # of primary | # of gates | # of lines # of average
name inputs outputs checkpoints | clan size
(432 | Priority Decoder 36 7 234 545 89 6.1
€499 | Error Correcting 41 32 620 1224 155 7.8
(880 | ALU and Control 60 26 385 880 126 7.0
C1355 | Error Correcting 41 32 548 1355 259 51
(1908 | Error Correcting 33 25 882 1908 384 4.9
(2670 | ALU and Control 157 63 1193 | 2670 454 5.8
(3540 | ALU and Control 50 22 1169 3540 601 5.8
(5315 | ALU and Selector 178 123 2309 5315 806 6.5
C7522 | ALU and Control 207 108 3514 7552 1300 5.8

Table 5.1 ISCAS’85 Circuit Characteristics

5.2 Results on Diagnosis With Explicit Enumeration

of Error Tuples .

In this section we discuss the experimental results of the diagnosis algorithm described
in Chapter 2.

We tested our diagnosis algorithm with explicit enumeration of error tuples for 1-
source and 2-source correctable designs. We repeated the experiments 60 times for
each circuit, 30 times the design was 1-source correctable and 30 times it was 2-source
correctable. The results of our experiments are reported in Tables 5.3 and 54

The second column contains the average time needed during the initial circuit verifi-
cation step. As explained in Section 1.2.1, t‘his step simulates vectors for stuck-at faults,
and random vectors, if necessary, in order to compile V,;. This is also the step where the

Fgroup and Tgroup linked lists at every line of the circuit are created. In our experi-

91

ckt 1-source Corr. | 2-source Corr. | 3-source Corr.
C432 545 297025 161878625
(499 1224 1498176 1833767424
(880 880 774400 681472000
(1355 1355 1836025 2487813875
(1908 1908 3640464 | 6946005312
(2670 2670 7128900 19034163000
(3540 3540 12531600 44361864000
(5315 5315 28249225 150144630875
C7522 7552 57032704 | 430710980608

Table 5.2 Initial Error Space for Error Diagnosis

ments, V,» was never empty unless the error injected was redundant, that is, it doesn’t
change the functionality of the circuit at the primary outputs [17]. The average size of
V.t Tequired for an efficient solution to DEDC is given in the third column.

Columns 4 and 5 contain the average times for the Total Observability Measure and
Inverted Simulation diagnosis procedures, respectively. These values contain the run—
times for both iterations of the procedures, first on the checkpoints and then on the
lines of clans that qualified. The computational savings during error location due to the
structural observations of a circuit presented in Section 2.3.4 is significant, but expected,
if we observe the values of column 8 in Table 5.1. This column contains the average
clan size for each circuit. This number also denotes the average speed up for 1-source

correctable designs versus a naive approach that considers all lines of the circuit. For

92

the 2-source correctable designs, the speed up is larger and it is lower bounded by the

square of the numbers of column 8.

ckt | Verif. | | Vo | | TOM | Inv.Sim. | Total Error | # of Error
name | Time Time | Time | Location Time| Tuples
C432 | 88 | 40 1.9 0.9 1.8 5.9
C499 | 20.1 50 11.1 4.9 16.0 8.1
C880 | 89 | 50 | 4.9 2.3 7.2 3.2
C1355 | 164 | 60 6.8 8.5 15.3 9.0
C1908 | 21.2 | 80 7.0 9.4 16.4 6.7
C2670 | 24.5 60 8.1 7.8 15.9 8.9
C3540 | 182 | 80 9.9 7.1 17.0 6.3
(5315 | 29.9 80 9.6 11.1 20.7 7.1
C7522 | 360 | 100 | 108 | 115 22.3 6.0

Table 5.3 Explicit Diagnosis for 1-Source Correctable Designs

Another way to view the above result is the diagram of Fig. 5.1 that shows the average
number of error tuples over the time needed for diagnosis for the 2-source correctable
C432. The dotted line indicates the end of the first iteration of the two procedures on
the checkpoints of C432 and the beginning of the application of the diagnosis procedures
on the clans that qualified. The reduction in the number of error tuples is dramatic;
within 3.9 seconds, that is, 10.0% of the overall CPU time for diagnosis, the algorithm
has deleted 67.1% of the potential error pairs, while within 27.2 seconds the algorithm
deletes 99.75% of Cerror (on the average).

Finally, the last column of each of the Tables 5.3 and 5.4 contains the average number

of error tuples after the completion of the diagnosis procedure. These numbers indicate

93

ckt Verif. | | Vit | | TOM | Inv.Sim. | Total Error | # of Error
name | Time Time | Time |Location Time | Tuples
C432 | 13.1 | 150 | 182 | 207 38.9 31.8
C499 | 262 | 220 | 374 | 254 68.2 44.2
C880 | 15.0 | 150 | 30.1 | 17.2 47.3 36.1
C1355 | 202 | 220 | 55.8 | 69.1 124.9 40.5
C1908 | 29.7 | 220 | 89.9 | 1384 228.3 60.8
C2670 | 40.3 | 300 | 101.4| 1836 285.0 49.2
C3540 | 38.1 | 300 | 78.1 | 1112 189.3 241
Ch315 | 443 | 320 | 30.1 | 621 92.1 47.2
CT522 | 58.0 | 320 | 128.3| 199.8 328.1 39.3

Table 5.4 Explicit Diagnosis for 2-Source Correctable Designs

that the proposed diagnosis algorithm has good resolution. We should mention that the

worst case run-time behavior of the proposed approach was less than three times the

average case.

5.3 Results on Diagnosis With Implicit Enumeration

of Error Tuples

In this section we present our experimental results of the diagnosis algorithm with

implicit enumeration of error tuples presented in Chapter 3.
We tested our diagnosis algorithm for 1, 2, and 3-source correctable designs. We

repeated our experiments 20 times for each circuit and each different correctability sce-

94

no. of

potential
error pairs
for C432
300000
TOM and Inverted Simulation
on checkpoints of C432 223,‘,’;2%%
, iteration
150000 i
|
) TOM and Inverted
' Simulation on clans
‘
3
720 - e . .
30 35 40
time (seconds)

Figure 5.1 Diagnosis Speed Up for the 2-Source Correctable C432

nario. The average results of our experiments are shown in Tables 5.5, 5.6, 5.7, 5.8, 5.9,
and 5.10.

Tables 5.5, 5.6, and 5.7 contain the IG characteristics for the different correctability
scenarios. The second column contains the number of graph vertices (or, equivalently, the
number of runs for path—trace back) created from different vectors of V,.; and different
erroneous primary outputs (Fig. 3.13, lines 1-3). The average number of failing primary
outputs per vector was less than 5. The next column(s) contains the average number of
vertices that contain some error(s). For Table 5.5 this number is obviously equal to the
number of vertices since the design is 1-source correctable (Theorem 4).

Finally, the last 3 columns of each table contain the maximum, minimum and average

size of line(V) for the vertices of the IG including the ones that are created after a

95

ckt Total # of IG # of IG # Lines Per Node
name Nodes Nodes With Error | Min | Max | Ave
C432 30 30 3.8 | 50.3 | 183 |
(499 32 32 2.0 [113.1]31.2
(880 28 28 3.1 1512 {189
C1355 40 40 8.3 | 175.2 | 54.3
(1908 40 40 45 | 171.8 | 23.7
(2670 40 40 3.6 | 283.5 | 513
(3540 40 40 5.2 |241.4 | 39.1
C5315 40 40 59 1122.0 | 27.8
C7522 45 45 8.3 | 191.9 | 51.3

Table 5.5 IG Characteristics for 1-Source Correctable Designs

reduction. It follows from our discussion in Section 3.4.2 that the smaller the average
size of a vertex is, the better performance our implicit enumeration algorithm will have.
For this reason, reductions on the IG is a desired operation as they shrink the size of
lzne(V) for all the vertices V that participate in the reduction.

Tables 5.8, 5.9, and 5.10 contain the results of our implicit enumeration diagnosis
algorithm presented in Section 3.4.3 1.

Column 2, for each table, contains the size n of the random vertex sample and the
next column contains the average number of algorithm iterations ¢ters. The algorithm
iterates when the n—sample does not provide a good estimate for diagnosis and Cerror

is empty after Inverted Simulation (Fig. 3.13, lines 4-13). Our results indicate that the

1Some of the columns are not applicable to the 1~source correctable experiments.

96

ckt | Total # of IG | # of IG With Error | # Lines Per Node
name Nodes Errl Err2 Min | Max | Ave

(432 40 29.8 24.8 94 | 423 | 8.2
(499 65 34.2 39.7 1431 93.2 | 85.9
(880 30 39.4 346 1608|192 | 10.6
(1355 38 3.1 33.5 34.9 | 145.2 | 824

(1908 80 42.8 47.0 208 | 172.3 | 55.2
(2670 80 41.9 910 8.6 |122.3 | 43.8
(3540 100 73.9 64.4 22.5 | 231.8 | 89.0
(5315 100 62.3 574 7.3] 89.3 | 22.9
C7522 150 89.5 101.7 9.0 1102.3 | 31.8

Table 5.6 I1G Characteristics for 2-Source Correctable Designs

algorithm is able to give a solution for multiple error diagnosis without any repetition in
most of the times.

Column 4 indicates the CPU time of our implicit enumeration excluding the Inverted
Simulation step (Fig. 3.13, lines 4-13) for one iteration of the algorithm. To obtain the
average time for all iterations, one should simply multiply the value of this column with
the one of column 2.

The fifth column contains the type of graph that we most often obtained during IG
processing. A number in this column indicates the maximum number of non-adjacencies.
The clique case is the most computationally expensive case to handle, while a N—
disconnected component IG for a N-source correctable design is the faster to handle
as each component will contain a distinct element of some error tuple(s). In addition,

the latter case provides with better error resolution.

97

ckt | Total # of IG | # of IG With Error | # Lines Per Node
name Nodes Errl | Err2 | Err3 | Min | Max | Ave

(432 80 783 | 494 | 444 | 6.1 | 55.6 | 23.0
(499 110 345 | 406 | 36.9 | 7.1 | 888 | 43.3
880 80 84.3 | 69.9 | 71.3 | 3.3 | 40.6 | 14.9

C1355 100 37.8 | 422 | 31.0 | 28.8 | 138.9 | 85.6
(1908 120 56.7 | 47.0 | 42.9 | 12.3) 141.2 | 41.5
C2670 120 56.7 | 48.2 | 51.4 | 10.8 | 104.3 | 44.0
(3540 150 721 | 776 | 69.8 | 14.7]177.1 | 85.6
C5315 200 56.4 | 53.3 | 44.5 | 11.0 | 104.5 | 48.7
C7522 200 11121 102.8 | 85.6 | 19.8 | 188.9 | 77.3

Table 5.7 IG Characteristics for 3-Source Correctable Designs

The next three columns for each table contain the average number of error tuples
generated by the implicit enumeration procedure (column 5), the average number of
error tuples after Inverted Simulation (Fig. 3.13, line 12) and the Inverted Simulation
time for one iteration of the algorithm. The total average time is equal to the time of
this column multiplied by the average number of iters (column 3).

The total time of our implicit diagnosis algorithm is shown in the last column. Con-
sidering the initial error space of Table 5.1 and Tables 5.8, 5.9, and 5.10, we conclude
that the algorithm is able to produce diagnostic results with good error resolution within
a short computational time.

Recall Theorem 5 from Section 3.4.1. This theorem says that if we perform a K-
graph reduction on an IG for a N—source correctable design, we might sacrifice on error

resolution. In our experiments for 3—source correctable designs, we performed 2-graph

98

ckt iters | Graph Proc. | IG Type | Error Tuples | Error Tuples | IS | Total
name Time Before IS After IS | Time | Time
(432 - 0.8 - 7.3 1.5 04 | 1.2
(499 - 1.1 - 13.1 2.1 0.9 | 2.0
(880 - 0.7 3.8 1.4 03 | 1.0
(1355 - 1.0 - 7.6 2.2 02 | 1.2
C1908 - L5 - 12.3 2.9 04 | L9
(2670 - 1.9 - 14.4 3.4 04 | 2.3
(3540 - 2.0 - 11.8 3.8 09 | 2.9
(5315 - 2.1 - 18.0 3.1 .1] 3.2
C7522 - 2.1 - 21.8 2.9 13 | 34

reductions when applicable. In more than 60% of the cases the error resolution diminished
in such a level that we were not able to get any valid location triples, that is, Inverted
Simulation returned with an empty set. In the remaining cases, we were able to return
with a solution although the majority of valid triples had been eliminated as Theorem 5
implies. However, the run-time performance of the algorithm improved significantly
compared to the one when 2-graph reductions were not allowed.

Our experiments suggest that we should allow such K-graph reductions since they
improve the run—time performance. If Inverted Simulation returns with no results for a

small number of ¢ters, we should gradually increase the value of K until a valid set of

locations has been returned.

99

Table 5.8 Implicit Diagnosis for 1-Source Correctable Designs

ckt | n | sters | Graph Proc. | IG Type | Error Tuples | Error Tuples | IS Time | Total
name Time Before IS After IS Time
C432 |2 10 1.3 clique 72 8.3 1.6 2.9
C499 | 2] 1.0 18 2 1722.3 16.1 4.9 6.7
C880 |2 L5 1.6 2 194.2 4.1 2.9 4.5
C1355 [3| 1.9 2.7 2 4018.6 (i 83 | 11.0
Cl908 [4| 15 6.9 clique 3709.5 7.3 71| 14.2
C2670 | 4| 1.6 5.8 2 3252.0 16.3 1.1 | 16.9
C3540 13| 1.3 4.9 clique 7195.8 14.1 123 | 19.0
C5315 141 1.0 3.9 2 631.7 7.3 5.8 9.7
CT522 14| 15 44 2 13117 13.4 71 | 115

5.4 Results on Error Correction

In this section we present the experiments for our error correction methodology pre-
sented in Chapter 4. For the purpose of the symbolic approach, all boolean functions are
expressed by Binary Decision Diagrams (BDDs) [12]. We used the shared BDD library

developed by Brace et al [7] with dynamic variable ordering (sift algorithm) for circuits

2670 and C7552 [53].

Without loss of generality, we implemented and obtained the experimental results
of our error correction techniques as a back end of the diagnosis algorithm with ex-
plicit enumeration of error tuples. These results are reported in Table 5.11, for 1-source
correctable designs, and Table 5.12, for 2-source correctable designs. As mentioned in

section 5.2, we repeated the experiment 30 times for each circuit and each correctability

scenario.

100

Table 5.9 Implicit Diagnosis for 2-Source Correctable Designs

ckt n | iters | IG Proc. | IG Type | Error Tuples | Error Tuples | IS Time | Total
name Time | Before IS After IS Time
C432 | 5| 15 8.3 2 8136.5 11.7 2.1 | 314
C499 | 6 | 1.9 | 103 2 243445 18.0 47.1 | 974
C880 | 5| 18 8.1 3 1088.0 | 2.9 213 | 294
C1355 | 7 | 15 10.9 clique 175300 21.3 139.7 | 180.6
Cl908 | 8 | 1.5 | 144 2 68544.9 28.1 89.2 |183.6
C2670 | 6 | 1.5 19.1 2 74355.6 29.5 1084 2275
C3540 | 5 | 1.9 | 210 clique 212776 22.3 254.1 | 345.1
Ch3151 8 | 1.5 | 192 2 77001.2 18.1 1429 |362.1
CT522 |14 18 | 313 2 871104.3 31.9 495.1 1626.4

Table 5.10 Implicit Diagnosis for 3-Source Correctable Designs

Columns 2 and 3 from each table contain the run—time results for the test vector
simulation based correction procedure of Section 4.2. Column 2 has the time needed to
compile exhaustively the list of all possible corrections and column 3 contains the average
time for their verification. The average number of random test vectors used during this
verification step is given in column 4. Column 5 contains their hit-ratio in activating
the inconsistencies. Experimental results on the performance of vectors generated for
stuck-at faults for design error verification can be found in [5).

The run-times reported in column 6 of Tables 5.11 and 5.12 exhibit the performance
of the BDD based correction procedure described in Section 4.3 when it returns all
applicable corrections for G¢. The values of this column also contain the time needed to

build the error equation for each error location checkpoint tuple.

101

ckt | TVS Corr. | TVS Verif. | # Random | Rand.Vect. | BDDs Corr. | # Corr.
name Time | Corr. Time | Vectors | hit-ratio Time Tuples
C432 1.7 0.9 10000 108 % 1.8 1.9
C499 49 1.2 10000 217 % 8.7 2.5
(880 44 0.9 8000 181 % 24 1.0
(1355 43 14 12000 20.0 % 19.8 2.8
1908 6.9 1.8 12000 185 % 9.3 2.1
C2670 9.0 2.1 12000 173 % 98.2 2.5
(3540 8.2 3.6 14000 246 % 778 2.3
(5315 9.9 1.9 14000 248 % 17.1 2.2
Cm22 | 120 2.3 14000 29.3 % 244.3 1.4

Table 5.11 Error Correction for 1-Source Correctable Designs

The algorithm can be easily modified to exit after the first correction is found. In
such a case, the run-times are a fraction of the ones shown in the tables (columns 1
and 5). Nevertheless, in our experiments, we were also interested in the number of
equivalent corrections as well. This number was usually less than 20 valid correction
tuples. Since the algorithm is exhaustive on the error space, it guarantees to return all
equivalent modifications from the modification model that is used at the particular run.
The average number of correction tuples returned by our symbolic correction approach
is shown in column 7 of the tables.

Table 5.13 contains the correction hit—ratios of the error correction technique of
Section 4.2 when a smaller number of random test—vectors is used for correction verifica-
tion (Section 4.2.4, Fig. 4.2). With hit-ratio we mean the percentage of the corrections

returned by the symbolic correction technique of Section 4.3 versus the number of cor-

102

ckt | TVS Corr. | TVS Verif. | # Random | Rand.Vect. | BDDs Corr. | # Corr.
name Time | Corr. Time | Vectors | hit-ratio Time Tuples
(432 14.3 8.2 10000 242 % 38.1 8.2
C499 39.8 41 10000 528 % 188.8 19.1
C880 9.3 13 8000 61.8 % 68.5 2.3
C1355 | 944 10.9 12000 59.9 % 179.5 6.7
1908 924 14.5 12000 38.0 % 101.2 4.2
C2670 | 160.9 9.0 12000 61.7 % 132.6 134
(3540 | 128.3 10.1 14000 58.3 % 149.2 8.9
C5315 | 1321 6.5 14000 53.2 % 142.3 4.7
C7522 | 155.7 14.2 14000 46.2 % 240.0 18.2

Table 5.12 Error Correction for 2-Source Correctable Designs

rections returned by the test vector simulation correction algorithm alome. Since, for

most circuits, exhaustive test vector simulation is prohibited, the numbers of this Table

indicate the guality of test vector simulation for the number of vectors used.

For the vectors indicated in column 4 of Tables 5.11 and 5.12 the correction hit-ratio
is 100% for all circuits. It should be emphasized the fact that this is an experimental
result only. The work of [2] contains a formal proof that some interconnection errors
are indeed hard to detect. This is also confirmed in the work of [5] where a test—vector
generation algorithm for design errors is developed; the error coverage for some design
errors is less than 100% since a small number of less than 200 input vectors is used. The

numbers of Table 5.13 agree with the above results as they suggest that there are design

errors that are hard to detect and correct.

103

ckt 1-source Corr. 2-source Corr.

name | # of Random Vectors | hit-ratio | # of Random Vectors | hit-ratio
(432 2000 97.8 % 2500 100 %
(499 3500 96.6 % 3500 90.1 %
(880 1200 100 % 2500 100 %
(1355 3000 99.1 % 3500 91.8 %
C1908 4000 99.0 % 4000 - 96.5%
C2670 4200 972 % 4500 89.8 %
(3540 4200 932 % 5000 94.1 %
C5315 4500 935 % 6000 98.9 %
C7552 5000 94.9 % 7000 913 %

Table 5.13 Correction hit-ratio for a Reduced Number of Random Vectors

5.4.1 On the Performance of Test—Vector Simulation to DEDC

In perspective, how useful is a DEDC method solely based on test-vector simulation?
The 100% correction hit-ratios with the random vectors of Tables 5.11 and 5.12 and
the run—time results of Section 5.3 indicate that diagnosis and correction provided by a
relatively small fraction of the input test—vector space is indeed a good and attractive
alternative to the one based on BDDs.

Even if there is no formal proof to establish the above result, a method that performs
diagnosis and correction with test—vector simulation is very useful since it is run—time
efficient. Furthermore, our experiments show that the proposed test—vector simulation
based methodology is able to narrow down the number of potential corrections signif-
icantly. Next, a verification tool [12] [9] [25] [34] [36] [31] [41] can perform individual

correction verification Fig. 1.3 and guarantee that the circuit is rectified.

104

CHAPTER 6

Related Research Topics

6.1 Design Error Diagnosis of Sequential Circuits

As explained in Section 1.2.1, the combinational design error methodology described
in this thesis can apply to sequential circuit diagnosis if there is a one-to—one flip—flop
correspondence between the specification and implementation.

Consider the sequential gate-level implementation of Fig. 6.1(a) where { PI;, PI,...,PI,}
are the primary inputs, { POy, PO,, ..., PO,,} are the primary outputs, {X1, Xa, ..., Xz}
is the present state, and {Y3,Y5,...,Y%} is the next state. If a one-to—one correspondence
of the flip—flops { F Fy, FF,,...,FF;} of the gate-level implementation with those of the
specification exists, then we can apply the transformation shown in Fig. 6.1(b) and apply
a combinational DEDC method. In the circuit of Fig. 6.1(b), each current (next) state
is represented as a pseudo primary output (input).

If sﬁch a transformation is not feasible, for example, there is a different number of state
elements between Fiz and G¢, combinational DEDC techniques are no longer applicable.
The problem of sequential circuit DEDC has been examined in [28] [64]. These methods
use an iterative array representation of the implementation, shown in Fig. 6.2, where the
design is expanded in time. The set of inputs for time frame s is equal to the new primary

input vector v; for frame ¢ and the value of the state-elements from frame ¢ — 1. Next,

105

PIq
PI,

PI,

Combinational

Part

| POg
PO,

PO,

(a) Sequential Circuit

PIg PO
PIz PO,
Combinational
PIn POy
bt <1 . X
Yz ¢| Part : %
Yi X?

k

{b) Extraction of Combinational Logic

Figure 6.1 Sequential Circuit Diagnosis

combinational techniques are adapted where the erroneous design is the set of circuitry in

time frames ¢4, ts, ... ,%;, where % is the first time frame with an erroneous PO response.

This iterative array representation seems to be a mandatory requirement when a flip—

flop equivalence between Fiy and G¢ is not available. Nevertheless, such a representation

is expensive when vectors that activate the inconsistencies need to be expanded for many

time frames. In addition, conventional combinational DEDC methods will fail for situa-

tions that the circuit needs to be expanded for many time frames because the error space

increases according to Eq. 1.1 for the circuitry under diagnosis [28].

106

PI,

PI,

PI,

wu
2o
38—
i

V \ V
Time Frame 1 Time Frame 2 Time Frame 3

Figure 6.2 Iterative Array Expansion of a Sequential Circuit

6.2 Engineering Change

Given an old and a new specification along with a design that implements the old
specification, the problem of Engineering Change is to resynthesize the design so that it
implements the new specification. It is also desired that this resynthesis procedure will
reuse as much from the old design as possible. A detailed description of the problem and
its relation to DEDC can be found in Chapter 1.

Previous work for the EC problem includes [8], [26], [39], and [62]. Most of the
previous work assumes that both old and new specifications are given in terms of a
netlist. For example, the old and new specifications are netlists before an automated
tool performed some optimization steps and the design is the optimized circuit.

If this is the case, a naming correspondence between signals of the specification and

the implementation might exist. This allows a mapping of equivalent signals between the

107

specification and the existing design [8] [39]. This mapping is utilized so that the new
design will re-use as much as possible from the existing one. A detailed description of

the work of [39] and [62] can be found in Section 1.3.

PIs POs

Figure 6.3 An Approach for Engineering Change

In many cases, though, such a naming correspondence is not available and the spec-
ification is viewed as a “black box” that can only give the primary output responses in
terms of the primary inputs. This version of the Engineering Change problem is very sim-
ilar to‘ that of DEDC, however, one must not necessarily expect that a few modifications
(1, 2 or 3) are always enough to appropriately resynthesize the design.

Prompted by the results of our diagnosis algorithm with implicit enumeration of er-
ror pairs (Chapter 3) we propose a two-stage resynthesis approach for the Engineering
Change problem when no line naming equivalence is available. During the first stage,

implicit enumeration will be used in order to identify a small number of candidate check-

108

point signals (Section 2.3.4) that need to be modified to correct the design. We denote
these signals with [y, /3, and I3 in the design of Fig. 6.3.

During the second stage of diagnosis, implicit or explicit enumeration can be used
in the clans of the checkpoints (shaded areas in Fig. 6.3) to identify more signals and,
subsequently, perform rectification (Chapter 4) on them. In this manner, we manage to
address the increase of problem complexity due to high error multiplicity.

In addition, observe that although the specification is not able to provide any signal
values for lines z1,...,%n,Y1,- -+ Ym, 21,-- -, 2%, and Iy, I, I3 during this second stage of
diagnosis, these values are available from Inverted Simulation during the first diagnosis
step (Theorem 6).

Finally, if the above method is not able to return results for some circuits, rectification
of individual erroneous outputs can be utilized in a way similar to that of [25]. This
approach requires that each erroneous primary output be rectified individually. Such
an approach might not offer the highest design reuse rate, but it has a good chance to

achieve rectification.

6.3 Design Optimization

La£ely, a number of multi-level logic optimization techniques have been developed
that rely on gate substitutions and rewiring [14] [16] [19] [45] [35] [48] [67]. The main
idea behind all these methods is to perform some transformations at the netlist level
of the design in order to achieve certain optimization goals such as timing, area, and

power. These transformations usually involve gate substitutions, wire additions and wire

deletions.

109

The algorithms that drive the transformation in the above literature differs; some
work uses ATPG techniques [35], some other uses redundancy addition/removal [14]
[16] [19] [67] and some work incorporates symbolic techniques [45] [48]. However, the
important observation is that most of the proposed transformations are very similar to
the correction scheme proposed in [2] and used in this thesis.

The following example, adapted from [19], outlines an optimization procedure based

on redundancy addition/removal.

Example 23 Consider the irredundant circuit in Fig. 6.4(a) where the shaded wire is
the target wire to be removed. The additional connection from Oy to Go (Fig. 6.4(b))
is redundant, that is, it does not alter the functionality of the circuit at Oy. However,
adding this extra wire, wires G1-G4 and Ge-Gr7 become redundant. These wires and

some of the gates associated with them can be removed, resulting in the optimized circusit

of Fig. 6.4(c).

The procedure described in the example above has a direct relation to the diag-
nosis/rectification procedures described in this thesis. To see that, observe that since
the circuit of Fig. 6.4(a) is irredundant, removing wire G1~G4 will make it erroneous.
Consequently, the diagnosis algorithm with ezplicit enumeration of error tuples followed
with rectification will indeed return the extra wire in Fig. 6.4(b) in the list of potential
corrections.

Moreover, consider the situation where we allow more than one simultaneous wire
additions/removals and gate substitutions. Considering the results in Chapter 5, we ob-

serve that multiple circuit perturbations * will result in a greater number of modifications

1A circuit perturbation is a single wire addition, wire removal, or gate substitution [14]

110

b «— tedundant o1
d ; redundant

'
reuna.nt g8)7 1
I 5

@ ®)

©

Figure 6.4 Optimization via Redundancy Addition/Removal

that rectify the design. This is because a bigger number of perturbations gives a better
opportunity to exploit the don’t care space of the design. However, selecting a set of
perturbations and corrections that yields the best optimization results is still an open

problem.

6.4 Conclusion

With the increase of logic size and complexity, logic design errors can occur. Logic
design errors are functional mismatches between the logic implementation and the spec-

ification. In this thesis, we examined the problem of multiple design error diagnosis and

111

correction. Experimental results were used to exhibit the robustness of the proposed
approach and confirm theoretical results.

For error diagnosis, we proposed two different techniques. The first guarantees to
return the actual and all equivalent error locations that rectification can be performed.
However, the complexity of this method increases exponentially with the number of error
locations which makes it not applicable to circuits corrupted with a high cardinality of
errors. For this reason, a non exhaustive on the error space diagnosis method was devel-
oped. The method exhibits good run-time performance although it does not guarantee
to return all possible modification locations. Both methods use test-vector simulation as
the underlying technique, thus, they are applicable to all circuits.

For error correction, two methods were proposed, one based on test—vector simulation,
and one based on Boolean function manipulation techniques. In our experimental results,
we compare the quality of test—vector simulation for multiple design error diagnosis and
correction with the one offered by symbolic techniques, and we conclude that test—vector
simulation is indeed an attractive alternative.

Since many resynthesis methods rely on circuit modifications similar to the dgsign
errors discussed in this work, we believe that the tools and techniques developed in this

thesis will be helpful to provide solutions to problems in other CAD areas.

112

References

[1] E.J.Aas, K.Klingsheim, and T.Steen, “Quantifying design quality: A model and
design experiments,” in Proc. of FURO-ASIC, pp.172-177, 1992.

[2] M.S.Abadir, J.Ferguson, and T.E.Ferguson, “Logic Verification via Test Genera-
tion,” in IEEFE Trans. on Computer-Aided Design, vol.7, pp.188-148, January 1988.

[3] M.Abramovici, P.R.Menon, and D.T.Miller, “Critical Path Tracing: An Alterna-
tive to Fault Simulation,” in IEEE Design and Test of Computers, vol.1, pp.89-93,
February 1984.

[4] S.B.Akers, B.Krishnamurthy, S.Park, and A.Swaminathan, “Why is Less Informa-
tion from Logic Simulation More useful in Fault Simulation?,” in Proc. of the IEEFE
Int’l Test Conf., pp.786-800, 1990.

[5] H.A.Asaad, and J.Hayes, “Design Verification via Simulation and Automatic Test
Pattern Generation,” in Proc. IEEE/ACM Int’l Conf. on Computer Aided Design,
pp.174-180, 1995.

[6] C.L.Berman, and L.H.Trevillyan, “Functional Comparison of Logic Designs for VLSI
Circuits,” in Proc. IEEE/ACM Int’l Conf. on Computer Aided Design, pp. 468—471,
1991.

[7] K.S.Brace, R.L.Rudell, and R.E.Bryant, “Efficient Implementation of a BDD pack-
age,” in Proc. ACM/IEEF Design Automation Conference, pp.40-45,, 1990.

[8] D.Brand, A.Drumm, S.Kundu, and P.Narain, “Incremental Synthesis,” in Proc. of
the IEEE/ACM Int’l Conference on Computer—Aided Design, pp.14-18, 1994.

[9] D.Brand, “Verification of Large Synthesized Designs,” in Proc. IEEE/ACM Int’]
Conf. on Computer Aided Design, pp. 534-537, 1993.

[10] M.Abramovici, M.Breuer, and A.Friedman, “Digital Systems Testing and Testable
Design,” Computer Science Press, 1990.

[11] F.M.Brown, “Boolean Reasoning: The Logic of Boolean Equations,” Kluwer Aca-
demic Publishing, 1990.

[12] R.E.Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” in
IEEFE Trans. on Computers, vol.C-35, no.8, pp.677-691, 1986.

[13] R.E.Bryant, “On the Complexity of VLSI implementation and graph representations
of boolean functions with application to integer multiplication,” in IEEE Trans. on
Com[puters, Vol.40, No.2, pp.205-213, Feb.1991.

113

[14] S.-C.Chang, K.-T.Cheng, N.-S.Woo, and M.M.-Sadowska, “Layout Driven Logic
Synthesis for FPGAs,” in Proc. of ACM/IEEE Design Automation Conference,
pp.808-313, 1994.

[15] K.C.Chen, Y.Matsunaga, M.Fujita and S.Muroga, “A resynthesis approach for net-
work optimization,” in Proc. of ACM/IEEE Design Automation Conference, pp.667—
691, 1986.

[16] K.-T.Cheng, and L.A.Entrena, “Multi-level logic optimization by redundancy addi-

tion and removal,” in Proc. of Furopean Conference on Design Automation, pp.373-
377, 1993.

[17] P.-Y.Chung, “Diagnosis and Correction of Logic Design Errors,” Ph.D. Thesis, Dept.
of Electrical and Computer Engineering, Univ. of Illinois at Urbana—Champaign,
1993.

[18] C.Ebeling, “Geminill: A Second Generation Layout Validation Tool,” in Proc.
IEEE/ACM Int’l Conf. on Computer Aided Design, pp.322-325, 1988.

[19] L.A.Entrena, and K.-T.Cheng, “Combinational and Sequential Logic Optimization
by Redundancy Addition and Removal,” in IEEE Trans. on Computer—Aided Design
of Integrated Circuits and Systems, vol.14, no.7, pp.909-916, July 1995.

[20] M.Fyjita, Y.Tamiya, Y.Kukimoto, and K.-C.Chen, “Application of boolean unifica-
tion to combinational synthesis,” in Proc. of the IEEE/ACM Int’l Conference on
Computer—Aided Design, pp.510-513, 1991.

[21] P.Goel, “An implicit enumeration algorithm to generate test for combinational cir-
cuits,” in IEEE Trans. on Computers, vol. C-30, pp.215-222, March 1981.

[22] P.-Y.Chung, Y.-M.Wang, and L.N.Hajj, “Logic Design error diagnosis and correc-
tion,” in IEEE Trans. on VLSI Systems, vol.2, pp.320-332, September 1994.

[23] P.-Y. Chung, and I.N.Hajj, “Diagnosis and Correction of Multiple Design Errors in
Digital Circuits,” in IEEE Trans. on VLSI Systems, vol. 5, no. 2, pp. 233-237, June
1997.

[24] R.B.Hitchock, “Timing Verification and Timing Analysis Program,” in Proc.
ACM/IEEE Design Automation Conference, pp.594-604, 1992.

[25] S.-Y.Huang, K.-C.Chen, and K.-T.Cheng, “Error Correction Based on Verification
Techniques,” in Proc. of ACM/IEEE Design Automation Conference, pp.258-261,
1996.

[26] S.-Y.Huang,K.-C.Chen, and K.-T.Cheng, “Incremental Logic Rectification,” in Proc.
of IEEE VLSI Test Symposium, pp.148-149, 1997.

114

[27] S.-Y.Huang, K.-T.Cheng, and K.-C.Chen, “ErrorTracer: A Fault Simulation-Based
Approach to Design Error Diagnosis, ” in Proc. of IEEE Int’l Test Conference,
pp.974-981, 1997.

(28] S.-Y.Huang, K.-T.Cheng, K.-C.Chen, and J.-Y.J.Lu, “Fault-Simulation Based De-
sign Error Diagnosis for Sequential Circuits,” in Proc. ACM/IEEE Design Automa-
tion Conference, pp.667-691, 1998.

[29] S.-Y. Huang and K.-T. Cheng, “Formal Equivalence Checking and Design Debug-
ging,” Kluwer Academic Publishers, May 1998.

[30] W.Hunt, “Microprocessor Design Verification,”, in Journal of Automated Reasoning,
vol5(4), pp.429-460, Dec. 1989.

[31] J.Jain, J.Bitner, D.S.Fussell, and J.A.Abraham, “Probabilistic Design Verification,”
in Proc. IEEE/ACM Int’l Conf. on Computer Aided Design, pp.468-471, 1991.

[32] A.Kuehlmann, D.I.Cheng, A.Srinivasan, and D.P.LaPotin, “Error Diagnosis for
Transistor Level Verification,” in Proc. of Design Automation Conf., pp.218-224,
1994.

[33] Y.Kukimoto, M.Fujita, “Rectification Method for Lookup-Table Type FPGA’s,” in
Proc. of Int’l Conf. on Computer Aided Design, pp.54—61 1992.

[34] W.Kunz, D.Pradhan, and S.Reddy, “A Novel Framework for Logic Verification in a
Synthesis Environment,” in IEEE Trans. on Computer—Aided Design. vol.15, pp.20—
32,, 1996.

[35] W.Kunz, and P.R.Menon, “Multi-Level Logic Optimization by Implication Analy-
sis,” in Proc. of Int’l Conf. on Computer Aided Design, pp.6—13, 1994.

[36] W.Kunz, and D.Stoffel, “Reasoning in Boolean Networks: Logic Synthesis and Ver-
ification Using Testing Techniques,”, Kluwer Academic Publishers, 1997.

[37] S.-Y.Kuo, “Locating logic design errors via test generation and don’t-care prop-
agation,” in Proceedings of European Design Automation Conference, pp.466—471,
1992.

[38] H.-T.Liaw, J.-H.Tsaih, and C.-S.Lin, “Efficient Automatic Diagnosis of Digital Cir-
cuits,” in Proc. of IEEE/ACM Int’l Conference on Computer—~Aided Design, pp.464—
467, 1990.

[39] C.-C. Lin, K.-C. Chen, S.-C. Chang, and M.M-.Sadowska, “Logic Synthesis for En-
gineering Change,” in Proc. of ACM/IEEFE Design Automation Conference, pp.647-
652, 1995.

115

[40] J.C.Madre, O.Coudert, and J.P.Billon, “Automating the diagnosis and the rectifi-
cation of digital errors with PRIAM,” in Proc. of the IEEE/ACM Int’l Conference
on Computer—Aided Design, pp.30-33, June 1989.

[41] Y.Matsunaga, “An Efficient Equivalence Checker for Combinational Circuits,” in
Proc. of Design Automation Conf., pp.629-634, 1996.

[42] P.C.Maxwell, and R.C.Aitken, “Biased Voting: A Method for Simulating Cmos
Bridging Faults in the Presence of Variable Gate Logic Thresholds,” in Proc. IEEE
Int’l Test Conference, pp.63-72, 1993.

[43] P.R.Menon, Y.Levendel, and M.Abramovici, “SCRIPT: A Critical Path Tracing
Algorithm for Synchronous Sequential Circuits,” in JEEE Trans. on Computer Aided
Design, vol.10, Pp.738-747,, June 1991.

[44] G.DeMicheli, “Synthesis and Optimization of Digital Circuits,” McGraw-Hill, Inc.,
1994.

[45] S.Muroga, Y.Kambayashi, H.C.Lai, and J.N.Culliney, “The transduction method -
design of logic networks based on permissible functions, ” in IEEE Transactions on
Computers, pp.1404—1424, 1989.

[46] F.Najm, “A Survey of Power Estimation Techniques in VLSI Circuits,” in [FEE
Trans. on Very Large Scale Integration Systems, 2(4), pp.446—455, Dec. 1994.

[47] T.M.Niermann, and J.H.Patel, “HITEC: A test generation package for sequential
circuits,” in Proc. of European Automation Conf., pp.214-218, 1991.

[48] R.V.Panda, “Synthesis Techniques for VLSI Low-Power Circuits,” Ph.D. Thesis,
Univ. of Illinois at Urbana-Champaign, September 1996.

[49] G.Pelz, and U.Roettcher, “Circuit Comparison by Hierarchical Pattern Matching,”
in Proc. IEEE/ACM Int’l Conf. on Computer Aided Design, pp.322-325, 1991.

[50] I.Pomeranz and S.M.Reddy, “On diagnosis and correction of design errors,” in IEEE
Trans. on Computer—Aided Design, vol. 14, pp.255-264, February 1995.

[51] I.Pomeranz and S.M.Reddy, “On error correction in macro-based circuits,” in IEEFE
Trans. on Computer—Aided Design, pp.1088—-1100, 1997.

[52] A.Raghunathan, and S.T.Chakradhar, “Acceleration Techniques for Dynamic Vector
Compaction,” in Proc. of the IEEE/ACM Intl. Conf. on Computer-Aided Design,
pp.810-817, 1995.

[53] R.Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,” in
IWLS Workshop Notes, session 3a, pp.1-12, 1993.

116

[54] K.A.Tamura, “Locating Functional Errors in Logic Circuits,” in Proc. of the Design
Automation Conference, pp. 185-191, June 1989.

[55] M.Tomita,H.-H.Jiang,T.Yamamoto, and Y.Hayashi, “An algorithm for locating de-
sign errors,” in Proc. of IEEE/ACM Int’l Conference on Computer—Aided Design,
pp.468-471, 1990.

[56] M.Tomita, T. Yamamoto, F.Sumikawa, and K. Hirano, “Rectification of Multiple
Logic Design Errors in Multiple Output Circuits,” in Proc. of the Design Automation
Conference, pp.212-217, 1994.

[57] M.Tomita, N.Suganuma, and K.Hirano, “Pattern Generation for Locating Logic
Design Errors,” in IEICE Trans. Fundamentals, vol. E77-A, 1994.

[58] A.G.Veneris, and I.N.Hajj, “A Fast Algorithm for Locating and Correcting Simple
Design Errors in VLSI Digital Circuits,” in Proc. of 7th IEEE Great Lakes Sympo-
stum on VLSI, pp.45-50,, 1997.

[59] A.G.Veneris, and I.N.Hajj, “Error Diagnosis and Correction in VLSI Digital Cir-
cuits,” in Proc. of IEEE Midwest Symposium on Circuits and Systems, pp.1005-
1008, 1997.

[60] S.Venkataraman, “Simulation and Deduction Based Techniques for Fault Diagnosis,”
Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign, September 1997.

[61] S.Venkataraman, and W.K.Fuchs, “A Deductive Technique for Diagnosis of Bridging
Faults,” in Proc. IEEE/ACM Int’l Conf. on Computer Aided Design, pp.562-567,
1997.

[62] Y.Watanabe and R.K.Brayton, “Incremental Synthesis for Engineering Changes,”
in Proc. of IEEE/ACM Int’l Conf. on Computer Design, pp.40-43, 1991.

[63] A.M.Wahba, and E.J.Aas, “Verification and diagnosis of digital systems by ternary
reasoning,” in Proc. IFIP W(G10.2 Advanced Research Working Conf. on Correct
Hardware Design Methodologies, 1993.

[64] A.M.Wahba, and D.Borrione, “Design Error Diagnosis in Sequential Circuits,” in
Proc. of Correct Hardware Designs and Verification Methods, Lecture Notes in Com-
puter Science No.987, pp.171-188, Spriger Verlag, 1995.

[65] A.M.Wahba, and D.Borrione, “A Method for Automatic Design Error Location and
Correction in Combinational Logic Circuits,” in Journal of Electronic Testing, The-
ory, and Applications, vol.8, no.2, pp.113-127, April 1996.

[66] J.A.Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. Lindbloom, and T. Mc-
Carthy, “Fault Simulation for Structured VLSI,” in VLSI Systems Design, pp. 20—
32, Dec. 1985.

117

[67] Q.Wang, and S.B.K.Vrudhula, “Multi-Level Optimization for Low Power Using Lo-
cal Logic Transformations,” in Proc. ACM/IEEE Design Automation Conference,
pp.270-277, 1996.

[68] N.Yanagida, H.Takahashi, Y.Takamatsu, “Multiple Fault Diagnosis in Sequential

Circuits Using Sensitizing Sequence Pairs,” in Proc. of Fault Tolerant Computing
Systems, pp.86—95, 1996.

118

Vita

Andreas G. Veneris was born in Athens, Greece, in 1969. He received his Diploma
degree in Computer Engineering and Informatics from University of Patras, Greece, in
1991, and M.Sc. degree in Computer Science from University of Southern California,
Los Angeles, in 1992. During his undergraduate years he was the co-author of a book
on the programming language FORTRAN. From 1992 to 1998 he was employed as a
research assistant at the University of Southern California and at the Coordinated Science
Laboratory at the University of Illinois. In January 1998 he was a Visiting Lecturer for
the University of Illinois, Department of Computer Science, which he will be joining again
as Visiting Assistant Professor after completing his Ph.D. degree.

Since 1984, Andreas G. Veneris has been working as a music journalist for interna-
tional publications. He also worked for an early version of Mosaic and collaborated for
the first Internet cybercast (Grammy Awards, Los Angeles, 1995). His research interests
inclu(ie VLSI synthesis and testing, CAD for VLSI, and combinatorics.

He is currently a member of AAAS, IEEE, Mufon, and The Planetary Society.

119

	98-2225a.pdf
	98-2225b.pdf

