

A Geometric-Primitives-Based Compression Scheme for Testing
 Systems-on-a-Chip

Aiman El-Maleh1, Saif al Zahir2, and Esam Khan1

1 King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2 University of Briti sh Columbia, ECE Dept., Vancouver, B.C., Canada

Email: { aimane, esamkhan} @ccse.kfupm.edu.sa, saif_zahir@yahoo.com

Abstract

The increasing complexity of systems-on-a-chip with

the accompanied increase in their test data size has
made the need for test data reduction imperative. In this
paper, we introduce a novel and very efficient lossless
compression technique for testing systems-on-a-chip
based on geometric shapes. The technique exploits
reordering of test vectors to minimize the number of
shapes needed to encode the test data. The effectiveness
of the technique in achieving high compression ratio is
demonstrated on the largest ISCAS85 and full-scanned
versions of ISCAS89 benchmark circuits. In this paper, it
is assumed that an embedded core will be used to
execute the decompression algorithm and decompress
the test data.

1. Introduction

With today’s technology, it is possible to build
complete systems containing milli ons of transistors on a
single chip. Systems-on-a-chip (SOC) are comprised of
a collection of pre-designed and pre-verified cores and
user defined logic (UDL). As the complexity of systems-
on-a-chip continues to increase, the diff iculty and cost of
testing such chips is increasing rapidly [11], [12]. To
test a certain chip, the entire set of test vectors, for all the
cores and components inside the chip, has to be stored in
the tester memory. Then, during testing, the test data
must be transferred to the chip under test and test
responses collected from the chip to the tester as
ill ustrated in Figure 1.

One of the challenges in testing SOC is dealing with
the large size of test data that must be stored in the tester
and transferred between the tester and the chip. The
amount of time required to test a chip depends on the
size of test data that has to be transferred from the tester
to the chip and the channel capacity.

The cost of automatic test equipment (ATE) increases
significantly with the increase in their speed, channel
capacity, and memory. As testers have limited speed,
channel bandwidth, and memory, the need for test data
reduction becomes imperative. To achieve such
reduction, several compaction and lossless compression
schemes were proposed in the literature.

The objective of test set compaction is to generate the
minimum number of test vectors that achieve the desired
fault coverage. There are two main types of compaction,
static compaction and dynamic compaction. In static
compaction, the number of test vectors is reduced after
they have been generated. Examples of static
compaction algorithms include reverse order fault
simulation [15], forced pair merging [16], N_by_M [18],
and redundant vector elimination (RVE) [14]. In
dynamic compaction, the number of vectors is

System-on-a-Chip

Core1

Core2

Core3

UDL

Channel
Bandwidth

Tester

Test Data Storage
00011111010
10001000011
10000011111

Figure 1. Test data transfer between the tester and
the circuit under test.

minimized during the automatic test pattern generation
(ATPG) process. Examples of dynamic compaction
algorithms include COMPACTEST [17], and bottleneck
removal [6].

In test data compression, the objective is to reduce the
number of bits needed to represent the test data. For test
data compression, it is essential that the compression is
lossless. Run length coding, Huffman codes, Lempel-Ziv
algorithms, and arithmetic codes are examples of
lossless compression [13].

Several test data compression/decompression
techniques were proposed in the literature. These
techniques can be classifies into two categories; one is
based on BIST and Pseudo-Random Generators (PRG)
and the other is based on deterministic compression.

Examples of BIST-based compression techniques are
test width compression [2], variable length reseeding [5],
and Design For High Test Compression (DFHTC) [10].

Deterministic compression techniques take advantage
of the high correlation between test vectors. One of these
techniques is proposed in [1] and uses Burrows-wheeler
(BW) transformation and a modified version of run-
length coding to encode the test data. This technique has
been improved in [3] by applying the GZIP compression
scheme to strings that are not effectively compressed by
run-length coding. Another technique proposed in [8]
uses what is called variable-to-block run-length coding.
In this technique, a codeword is used to encode a block
of data based on the number of zeros followed by a one
in that block. This technique is used for compressing
fully-specified test data that feeds a cyclical scan chain.
A cyclical scan chain is used to decompress this data and
transfer it to the “ test scan chain” . Golomb code is a
variable-to-variable run-length code that is used in [4] to
enhance the scheme described above. It divides the runs
into groups, each is of size m. The number of groups is
determined by the length of the longest run, and the
group size m is dependent on the distribution of test data.
In [9], statistical coding is used for encoding
deterministic test data. The technique uses a modified
version of Huffman coding as to minimize the bits
needed for codewords. Although this technique has less
compression ratio than Huffman coding, the hardware
implementation of the decoder is simpler. Another
technique was proposed in [7] which performs
decompression of test data based on an embedded
processor. The technique is based on storing the
differing bits between two test vectors. It divides each
test vector into blocks and stores those blocks that are
different from the preceding vector.

In this paper, we introduce a novel and very eff icient
compression scheme for deterministic testing of SOCs
based on geometric shapes. This scheme is designed
based on test cubes to maximize the compression ratio.
Test vector decompression is performed on chip and is
implemented either in hardware or software. For

hardware decompression option, a decoding circuitry is
placed on the chip to perform the decompression
algorithm. However, for software decompression option,
an embedded core is used to execute the decompression
algorithm and decompress the test data, which is then
applied to the circuit under test. The decompression
algorithm can be stored in a ROM on the chip.

2. The Proposed Encoding Algorithm

The proposed encoding algorithm is based on

encoding the 0’s or the 1’s in a test set by geometric
shapes. In this work, we limited those primitive shapes
to the basic four, namely: point, line, triangle, and
rectangle as shown in Table 1. These shapes are the most
frequently encountered shapes in any test set. For the
rectangles, two points are needed to encode the shape
and each point costs 2*log2 N, where N is the block
dimension. However, lines and triangles can be
represented by a point and a distance d and this reduces
the number of bits needed to encode them by (log2 N)-2
in comparison to encoding them by two points. Two bits
are used to determine the type of line or the type of
triangle encoded.

Figure 2 shows the algorithm of the encoder, which
consists of the following main steps:

(i) Test Set Sorting

Sorting the vectors in a test set is crucial and has a
significant impact on the compression ratio. In this step,
we aim at generating clusters of either 0’s or 1’s in such
a way that it may partially or totally be fitted in one or
more of the geometric shapes shown in Table 1. Several
sorting scenarios have been considered and investigated.
In this work, we used a simple correlation-based sorting
technique. The sorting may be with respect to 0’s (0-

 Lines Triangles Rectangle

Type1

Type 2

X

Type3

X

Type 4

X

Table 1. The used primitive geometric shapes.

(x1 , y1)

(x2 , y2)

(x1 , y1)
d

(x1 , y1)

d

(x1 , y1)

d

(x1 , y1)

d

(x1 , y1)

d

(x1 , y1)

d

(x1 , y1)

d

(x1 , y1)

d

sorting), to 1’s (1-sorting) or to both 0’s and 1’s (0/1-
sorting). The technique is based on finding the distance
D between two vectors A and B that maximizes the
clusters of 0’s and 1’s.

The distance D may be computed with respect to 0’s
(0-distance), to 1’s (1-distance) or to 0’s and 1’s (0/1-
distance) as follows:

 D = ∑ ++
−

=
+−

1k

0i
1ii ii 1ii)B,W(A)B,W(A)B,W(A

where k is the test vector length and W(A i ,Bi) is the
weight between bits A i and Bi. Table 2, Table 3 and
Table 4 specify the weights used in computing the 0-
distance, the 1-distance, and the 0/1-distance between
two vectors, respectively. Note that for i = 0,
W(A i , Bi-1) = 0 and for i = k-1, W(A i , Bi+1) = 0.

The assignment of a 0.25 weight for an ‘x’ to each of
its immediate neighbors be it an ‘x’ or the sorted bit (‘0’
for 0-sorting, ‘1’ f or 1-sorting and ‘0’ and ‘1’ f or 0/1-
sorting) is chosen due to the following reasons. First,
this weight may help in completing, integrating, or
generating additional geometric shapes that can lead to a
better solution. Second, this can help in generating
blocks fill ed by ‘x’s which can be minimally encoded.
Different weights have been experimented with, and a

weight of 0.25 has been found to produce better results
in most of the cases.

In Table 5, we show a simple example to ill ustrate the
impact of sorting on test vector compression. As can be
seen, sorting the vectors based on the 0-distance requires
the encoding of two triangles to encode the 0’s.
However, sorting the vectors based on the 1-distance
requires the encoding of one triangle and two lines to
encode the 1’s. Thus, for this example sorting based on
the 0-distance results in higher compression.

(ii) Test Set Partitioning

A set of sorted test vectors, M, is represented in a
matrix form, RxC, where R is the number of test vectors
and C is the length of each test vector. The test set is
segmented into LxK blocks each of which is NxN bits,
where L is equal to NR / and K is equal to NC / . A

segment consists of K blocks. In other words, the test set

Encoder (N)
 Sort_Test_Set ();
 Partition_Test_Set (N);
 For i = 1 to # of segments
 For j = 1 to # of blocks in i
 Extract_Shapes (1, j);
 α1 = Encode_Shapes ();
 Extract_Shapes (0, j);
 α0 = Encode_Shapes ();
 B = # of bits in j + 2;
 E = min (α0, α1,B);
 Store_Encoded_Bits ();
 E_total += E;
End Encoder;

Extract_Shapes(b, j)
 For each bit x in block j {
 If x = b Then {
 Find the largest line of each type started at x
 Find the largest triangle of each type such that

x is the vertix of the right angle
 Find the largest rectangle such tha x is its up-

left corner
 }
 }
 Solve a covering problem to find the best group of

shapes covering all bits b in block j.
End Extract_Shapes;

Figure 2. Test vectors encoding algorithm.

Table 5. An example of test vector sorting.

v1 0 0 1 X 1 0 X X
v2 0 X 1 1 0 0 0 1

Original
Vectors

v3 1 1 X 1 1 X 0 1

v2 0 X 1 1 0 0 0 1
v1 0 0 1 X 1 0 X X

Sorted
Vectors
(0-dist.) v3 1 1 X 1 1 X 0 1

v3 1 1 X 1 1 X 0 1
v2 0 X 1 1 0 0 0 1

Sorted
Vectors
(1-dist.) v1 0 0 1 X 1 0 X X

Table 2. Weights for the 0-distance between
two test vectors.

 0 1 x
0 1.0 0.0 0.25
1 0.0 0.0 0.0
x 0.25 0.0 0.25

Table 3. Weights for the 1-distance between
two test vectors.

 0 1 x
0 0.0 0.0 0.0
1 0.0 1.0 0.25
x 0.0 0.25 0.25

Table 4. Weights for the 0/1-distance between
two test vectors.

 0 1 x
0 1.0 0.0 0.25
1 0.0 1.0 0.25
x 0.25 0.25 0.25

is segmented into L segments each contains K blocks.
For test vectors whose columns and/or rows are not
divisible by the predetermined block dimension N, a
partial block will be produced at the right end columns
and/or the bottom rows of the test data. Since the size of
such partial blocks can be deduced based on the number
of vectors, the vector length, and the block dimension,
the number of bits used to encode the coordinates of the
geometric shapes can be less than log2 N. The decoder
recognizes those special cases and decodes them
properly.

(iii) Encoding process

As mentioned earlier, the encoding process will be
applied on each block independently. The procedure
Extract_Shapes(b) will find the best group of shapes that
cover the bits that are equal to b as shown in the
algorithm. Encode_Shapes determines the number of
bits, α, needed to encode this group of shapes. There are
two cases that may occur:

(a) The block contains only 0’s and x’s or 1’s
and x’s. In this case, the block can be encoded as a
rectangle. However, instead of this it is encoded by
the code 01 followed by the bit that fill s the block.
Hence, the number of bits to encode the block α =
3.
(b) The block needs to be encoded by a number
of shapes. In this case, we need the following:
• 2 bits to indicate the existence of shapes and
the type of bit encoded. If the encoded bit is 0,
then the code is 10, otherwise it is 11.
• P = (2*Log2 N – 3) bits to encode the number
of shapes, S. If the number of shapes exceeds 2P,
then the number of bits needed to encode the
shapes is certainly greater than the total number of
bits in the block. In this case, the block is not
encoded and the real data is stored.

• ∑
=

S

i
iL

1

; where L i is computed as follows

- If shape i is a point, L i = 2 + 2*log2 N
(shape type, coordinates).
- If shape i is a line or a triangle, L i = 4
+ 3*log2 N (shape type, type of line or
triangle, point and distance)
- If shape i is a rectangle, L i = 2 +
4*log2 N (shape type, 2 points)

 Therefore, α = 2 + P + ∑
=

S

i
iL

1

If α0 and α1 are greater than B (N*N+2), then it is
better not to encode the block. Instead, the real data is
stored after a 2-bit code (00). The procedure
Store_Encoded_Bits will decide which case is the best
(encoding 0’s, encoding 1’s, or storing the real data)
based on E, the minimum of α0, α1, and B.

3. Decoding Process

The decoding process is simple and straightforward.
In this work, we assume that an embedded processor on
a chip will i mplement the decoding algorithm. A
framework ill ustrating the details of how the test vectors
can be transferred from the embedded processor to the
tested parts of the chip has been outlined in [7]. A
similar framework can be used for our decoding
algorithm.

Figure 3 shows the algorithm of the decoder. It first
reads the arguments given by the encoder and computes
the parameters needed for the decoding process. These
parameters include the number of segments, the number

Decoder ()
 Read (# of Vectors (R), Vector_Length (C), N);
 Compute_Parameters ();
 For i = 1 to # of segments {
 For j = 1 to # of blocks in i {
 b1b0 = Read_Bits (2);
 Case b1b0
 00 : Read_Bits (N* N);
 01 : b_type = Read_Bits (1);
 Fill_Block (j, b_type);
 10 : Decode_Shapes (0);
 11 : Decode_Shapes (1);
 End Case;
 }
 Output_Segment ();
 }
End Decoder;

Decode_Shapes (b)
 Num_Shapes = Read_Bits (2*log2 N -3);
 For j = 1 to Num_Shapes
 Shape_type = Read_Bits (2);
 Case Shape_type
 00 : c = Get_Coordinate ();
 Fill_Point (b,c);
 01 : t = Get_Type ();

 c = Get_Coordinate ();
 d = Get_Distance ();
 Fill_Line(b, t, c,d);
 10 : t = Get_Type ();
 c = Get_Coordinate ();
 d = Get_Distance ();
 Fill_Triangle(b, t, c,d);
 11 : c1 = Get_Coordinate ();
 c2 = Get_Coordinate ();
 Fill_Rectangle (b,c1,c2);
End Decode_Shapes;

Figure 3. Test vectors decoding algorithm.

of blocks in a segment and the dimensions of the partial
blocks. In order to reconstruct the vectors, each segment
has to be stored before sending its vectors to the circuit
under test. For each segment, its blocks are decoded one
at a time. The first two bits indicate the status of the
block as follows:

• 00: the block is not encoded and the following
N*N bits are the real data.
• 01: fill t he whole block with 0’s or 1’s
depending on the following bit.
• 10: There are shapes that are fill ed with 0’s.
• 11: There are shapes that are fill ed with 1’s.

For those blocks that have shapes, the procedure
Decode_Shapes is responsible for decoding these
shapes. It reads the number of shapes in the block and
then for each shape it reads its type and based on this it
reads its parameters and fill s it accordingly.

After all the blocks in a segment have been decoded,
the segment is output to the circuit under test vector by
vector.

4. Experimental Results

In order to demonstrate the effectiveness of our
scheme, we have performed experiments on a number of
the largest ISCAS85 and full -scanned versions of
ISCAS89 benchmark circuits. The experiments were run

on a Pentium II processor with a speed of 350 MHz and
a 32 Mbyte RAM. We have used the test sets generated
by MinTest [14], which are highly compacted test sets,
that achieve 100% fault coverage of the detectable faults
in each circuit. Test cubes were generated from each
test set as this has the advantage of keeping unnecessary
assignments as x’s, which enables higher compression.
Then, the test vectors were sorted to maximize the
compression. In this work, test vectors were sorted based
on a greedy algorithm. Test vectors sorting based on the
0-distance, the 1-distance, and the 0/1-distance was
performed. For both the 0-distance and 0/1-distance
sorting, the test vector with more 0’s was selected as the
first vector. However, for the 1-distance sorting, the
vector with more 1’s was selected as the first vector.

The test sets were partitioned into blocks of sizes 8x8
and 16x16, respectively. Then, the proposed encoding
algorithm was applied for each case separately as shown
in Table 6. The second column in the table shows the
scan size, which is basically the width of a test vector.
The third column indicates the number of test vectors in
the test set. The compression ratio is computed as:

100X
Bits Original

Bits Compressed Bits Original
Ratio Comp

#

##
.

−
=

Table 6. Compression results of the proposed scheme for various block sizes.

 Block 8x8
Cmp. Ratio

Block 16x16
Cmp. Ratio

Circuit Scan
 Size

No.
Vec

1-distance

0-distance 0/1-distance 1-distance 0-distance 0/1-distance CPU
(sec)

c7552 207 73 37.873 37.35 37.754 28.661 30.66 33.618 3
c2670 233 44 49.815 50.39 51.853 45.416 46.635 47.444 3
s5378 214 97 50.496 49.961 51.551 41.418 42.61 44.19 4
s9234 247 105 42.834 42.803 43.451 38.249 38.442 38.905 3
s15850 611 94 59.778 60.898 60.32 58.81 59.301 59.632 15
s13207 700 233 83.703 83.518 84.145 84.497 84.566 85.012 51

s38417 1664 68 46.114 46.552 46.497 42.788 43.024 42.47 29

Table 7. Comparison with the techniques by Jas and Touba [7] and Chandra and Chakrabarty [4].

 Proposed Scheme Jas and Touba [8] Chandra and Chakrabarty [4].
Circuit Org.

Bits
Cmp.
Ratio

Cmp.
Bits

Org.
Bits

Cmp.
Ratio

Cmp.
Bits

Org.
Bits

Cmp.
Ratio

Cmp.
Bits

c7552 15111 37.873 9388 62721 42.39 36134 - - -
c2670 10252 51.853 4936 35183 58.45 14619 - - -

s5378 20758 51.551 10057 29850 39.0 18209 23754 40.70 14086
s9234 25935 43.451 14666 48906 26.6 35897 39273 43.34 22252
s15850 57434 60.898 22458 86151 46.65 45962 76986 47.11 40717
s13207 163100 85.012 24446 186200 73.32 49678 165200 74.78 41664
s38417 113152 46.552 60478 247936 59.06 101505 164736 44.12 92055

As can be seen, the effectiveness of the proposed
encoding algorithm is clearly demonstrated as high
compression ratio was obtained for all the circuits. For
most of the circuits, sorting based on the 0/1-distance on
an 8x8 block size produced the best results.

The last column in Table 6 shows the total CPU time
used for compressing the test vectors based on the two
block sizes and based on the three types of distance
sorting, i.e. the total CPU time used to produce the best
result, which is highlighted in the table.

Based on the compression results in Table 6, our
technique achieves an average compression ratio of
around 54% based on highly compacted tests. In Table
7, we compare the compression ratio obtained by our
technique with that obtained by the techniques proposed
in [7] and [4]. It is important to point out that although
the test sets used in our work are different from those
used in [7] and [4], they are considerably smaller. As can
be seen from the table, for all the compared circuits, our
technique achieves significantly higher compression
ratio than the technique in [4]. Furthermore, in four of
the circuits, out of seven, our technique achieves higher
compression ratio than the technique in [7]. It should be
observed here that for the three circuits where the
technique in [7] achieves higher compression ratio, their
original test sets are significantly larger, i.e. they contain
much more redundancy, which leads to higher
compression ratio. For example, the original test set used
in [7] for the circuit c7552 is more than four times larger
than the original test set we used.

All the compressed test sets were decoded and
verified by fault simulation. The decoding algorithm is
very fast and the decoding time for each test set was in
fractions of a second.

5. Conclusions

In this paper, a fast and very eff icient compression/
decompression scheme for testing systems-on-a-chip has
been presented. The technique is based on encoding the
test data by geometric shapes. The test data is partitioned
into blocks and then each block is encoded separately.
To increase the compression ratio, the scheme exploits
test vectors reordering, the block size, the type of bit to
be encoded, and whether or not to encode the block.
Experimental results on ISCAS85 and full -scanned
versions of ISCAS89 benchmark circuits demonstrate
the effectiveness of the technique in achieving high
compression ratio. An average of 54% compression
ratio is achieved on highly compacted test sets. In this
work, we assumed that the decompression of test data is
performed in software by an embedded processor.
Hardware implementation of the decompression
algorithm will be investigated in future work.

Acknowledgment

The authors would like to thank King Fahd

University of Petroleum & Minerals for support.

References

 [1] T. Yamaguchi, M. Tilgner, M. Ishida, and D.S. Ha, “An
Eff icient Method for Compressing Test Data,” Proc. of Int. Test
Conference, pp. 191-199, 1997.

 [2] K. Chakrabarty, B.T. Murray, J. Liu, and M. Zhu, “Test
Width Compression for Built -In Self-Testing,” Proc. of
International Test Conference, pp. 328-337, 1997.

 [3] M. Ishida, D.S. Ha, and T. Yamaguchi, “COMPACT: A
Hybrid Method for Compression Test Data,” Proc. of VLSI Test
Symposium, pp. 62-69, 1998.

 [4] A. Chandra and K. Chakrabarty, “Test Data Compression
for System-On-a-Chip using Golomb Codes,” Proc. of IEEE
VLSI Test Symposium, 2000.

 [5] J. Rajski, J. Tyszer, and N. Zaccharia, “Test Data
Decompression for Multiple Scan Designs with Boundary
Scan,” IEEE Trans. Computers, pp. 1180-1200, Nov. 1998.

 [6] S. Chakradhar and A. Raghunathan, “Bottleneck Removal
Algorithm for Dynamic Compaction in Sequencial Circuits,”
IEEE Trans. Computer-Aided Design, 1997.

 [7] A. Jas and N.A. Touba, “Using an Embedded Processor for
Eff icient Deterministic Testing of System-on-a-Chip,” Proc. of
IEEE Int. Conf. on Computer Design (ICCD), 1999.

 [8] A. Jas and N.A. Touba, “Test Vector Decompression via
Cyclical Scan Chains and its Application to Testing Core-Based
Designs,” Proc. of Int. Test Conf., pp. 458-464, 1998.

 [9] A. Jas, J.G. Dastidar and N.A. Touba, “Scan Vector
Compression/ Decompression Using Statistical Coding,” Proc.
of Int. Test Conference, pp. 458-464, 1998.

 [10] A. Jas, K. Mohanram, and N.A. Touba, “An Embedded
Core DFT Scheme to Obtain Highly Compressed Test Sets,”
Proc. of IEEE Asian Test Symposium, 1999.

 [11] R. Chandramouli , and S. Pateras, “Testing Systems on a
Chip,” IEEE Spectrum, pp. 42-47, Nov. 1996.

 [12] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing
Embedded-Core Based System Chips,” Proc. of Int. Test
Conference, pp. 130-143, 1998.

 [13] G. Gibson et-al, Digital Compression for Multimedia,
Morgan Kaufmann Publishers, Inc., 1998.
 [14] I. Hamzaoglu and J. H. Patel, “Test Set Compaction
Algorithms for Combinational Circuits’ ’ , Proc. Int. Conf.
Computer-Aided Design, Nov. 1998.
[15] M. Schulz, E. Trischhler, and T. Sarfert, “SOCRATES: A
Highly Eff icient Automatic Test Pattern Generation System,”
IEEE Trans. Computer-Aided Design, pp. 126-137, Jan. 1988.
[16] J. Chang and C. Lin, “Test Set Compaction for
Combinational Circuits,” IEEE Trans. Computer Aided
Design, pp. 1370-1378, Nov. 1995.
[17] I. Pomeranz, L. Reddy, and S. Reddy, “COMPACTEST:
A Method to Generate Compact Test Sets for Combinational
Circuits,” Proc. of Int. Test Conference, pp. 194-203, 1991.
[18] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. Reddy,
“Cost-Effective Generation of Minimal Test sets for Stuck-at
Faults in Combinational Circuits,” IEEE Trans. Computer
Aided Design, pp. 1496-1504, Dec. 1995.

