A Geometric-Primitives-Based Compression Scheme for Testing
Systems-on-a-Chip

Aiman El-Maleh?, Saif al Zahir?, and Esam Khan*

' King Fahd University of Petroleum and Minerals, Dhahran 31261 Saudi Arabia
2 University of British Columbia, ECE Dept., Vancouwver, B.C., Canada
Email: {aimane, esamkhan} @ccse.kfupm.edu.sa, saif_zahir@yahoo.com

Abstract

The increasing complexity of systems-on-a-chip with
the accompanied increase in their test data size has
made the need for test data reduction imperative. In this
paper, we introduce a novel and very efficient lossless
compression technique for testing systems-on-a-chip
based on geometric shapes. The technique exploits
reordering of test vectors to minimize the number of
shapes needed to encode the test data. The effectiveness
of the technique in achieving high compression ratio is
demonstrated on the largest ISCAS85 and full-scanned
versions of ISCAS89 benchmark circuits. In this paper, it
is assumed that an embedded core will be used to
execute the decompression algorithm and decompress
the test data.

1. Introduction

With today’'s technology, it is possble to huild
complete systems containing milli ons of transistors on a
single chip. Systems-on-a-chip (SOC) are wmprised of
a mlledion of pre-designed and pre-verified cores and
user defined logic (UDL). Asthe complexity of systems-
on-a-chip continues to increase, the difficulty and cost of
testing such chips is increasing rapidly [11], [12]. To
test a cetain chip, the entire set of test vedors, for all the
cores and components inside the chip, hasto be stored in
the tester memory. Then, during testing, the test data
must be transferred to the diip under test and test
responses colleded from the dhip to the tester as
ill ustrated in Figure 1.

One of the challenges in testing SOC is deding with
the large size of test data that must be stored in the tester
and transferred between the tester and the diip. The
amount of time required to test a dhip depends on the
size of test data that has to be transferred from the tester
to the dhip and the channel cgpadty.

Tester

Test Data Storage
0001111101
1000100001
1000001111

Channel
Bandwidth
llllllllllllllrrlllllll

[T [1T1T1]
Corel [Core3

|
Core2 1 UDL
[11]1]] [T1]1T1]
TERRNNNNNNNNNNNNNNNNNNEDN
System-on-a-Chip
Figure 1. Test data transfer between the tester and
the circuit under test.

The mst of automatic test equipment (ATE) increases
significantly with the increase in their speed, channel
cgpadty, and memory. As testers have limited speed,
channel bandwidth, and memory, the need for test data
reduction bewmmes imperative. To adiieve such
reduction, several compadion and losdess compresson
schemes were proposed in the literature.

The objedive of test set compadion isto generate the
minimum number of test vedors that achieve the desired
fault coverage. There ae two main types of compadion,
static compadion and dynamic compadion. In static
compadion, the number of test vedors is reduced after
they have been generated. Examples of static
compadion agorithms include reverse order fault
simulation [15], forced pair merging [16], N_by M [1§],
and redundant vedor eimination (RVE) [14]. In
dynamic compadion, the number of vedors is

minimized during the automatic test pattern generation
(ATPG) process Examples of dynamic compadion
agorithms include COMPACTEST [17], and batlenedk
removal [6].

In test data compresgon, the objediveisto reducethe
number of bits needed to represent the test data. For test
data ompresgon, it is essential that the cmpresdon is
losdess Run length coding, Huff man codes, Lempel-Ziv
algorithms, and arithmetic oodes are examples of
losdesscompresson [13].

Severa test data mpresson/decompresson
techniques were proposed in the literature. These
techniques can be dasdfies into two categories; one is
based on BIST and Pseudo-Random Generators (PRG)
and the other is based on deterministic compresson.

Examples of BIST-based compresson techniques are
test width compresgon [2], variable length reseeding [5],
and Design For High Test Compressgon (DFHTC) [10].

Deterministic compresson techniques take advantage
of the high correlation between test vedors. One of these
techniques is proposed in [1] and uses Burrows-wheder
(BW) transformation and a modified version of run
length coding to encode the test data. This technique has
been improved in [3] by applying the GZIP compresson
scheme to strings that are not effedively compressed by
run-length coding. Another technique propcsed in [§]
uses what is cdled variable-to-block run-length coding.
In this technique, a cdeword is used to encode ablock
of data based on the number of zeros followed by a one
in that block. This technique is used for compressng
fully-spedfied test data that feeds a gyclicd scan chain.
A cyclicd scan chain isused to decompressthis data and
transfer it to the “test scan chain”. Golomb code is a
variable-to-variable run-length code that is used in [4] to
enhance the scheme described above. It divides the runs
into groups, ead is of size m. The number of groups is
determined by the length of the longest run, and the
group sizem s dependent on the distribution of test data.
In [9], datisticd coding is used for encoding
deterministic test data. The technique uses a modified
verson of Huffman coding as to minimize the bits
needed for codewords. Although this technique has less
compresson ratio than Huffman coding, the hardware
implementation of the decoder is smpler. Another
technique was proposed in [7] which performs
decompresson of test data based on an embedded
procesor. The tedhnique is based on storing the
differing bits between two test vedors. It divides eath
test vedor into bocks and stores those blocks that are
different from the preceding vector.

In this paper, we introduce anovel and very efficient
compresgon scheme for deterministic testing of SOCs
based on geometric shapes. This <heme is designed
based on test cubes to maximize the mmpresdon ratio.
Test vedor decompresson is performed on chip and is
implemented either in hardware or software. For

Table 1. The used primitive geometric shapes.

Lines Triangles Redangle
(X1, Y1) (X1, Y1) (X1, y1)
Typel I } d {
d ;
(X2, Yo
d
Type2 | —r— §
. X
(X2, Y1) O v)
d
Types | &.\ . <
(X y1)
d (X1 , yl)
(X1, Y1)

hardware decompresson option, a deading circuitry is
placad on the dip to perform the decmpresson
agorithm. However, for software decompresson option,
an embedded core is used to exeaute the decompresson
agorithm and decompress the test data, which is then
applied to the drcuit under test. The decmmpresson
agorithm can be stored in a ROM on the dhip.

2. The Proposed Encoding Algorithm

The proposed encoding algorithm is based on
encoding the O’s or the 1's in a test set by geometric
shapes. In this work, we limited those primitive shapes
to the basic four, namely: point, line, triangle, and
redange & dwownin Table 1. These shapes are the most
frequently encountered shapes in any test set. For the
redanges, two pdnts are needed to encode the shape
and ead point costs 2*log, N, where N is the block
dimension. However, lines and triangles can be
represented by a point and a distance d and this reduces
the number of bits needed to encode them by (log, N)-2
in comparison to encoding them by two pants. Two hits
are used to determine the type of line or the type of
triangle encoded.

Figure 2 shows the dgorithm of the encoder, which
consists of the foll owing main steps:

(i) Test Set Sorting

Sorting the vedorsin atest set is crucial and has a
significant impad on the compresgon ratio. In this gep,
we dm at generating clusters of either 0's or 1'sin such
a way that it may partially or totaly be fitted in one or
more of the geometric shapes siownin Table 1. Several
sorting scenarios have been considered and investigated.
In this work, we used a simple crrelation-based sorting
technique. The sorting may be with resped to 0's (O-

Encoder (N)
Sort_Test_Set ();
Partition_Test_Set (N);
For i = 1to # of segments
For j = 1to# of blocksin i
Extract_Shapes (1, j);
a; = Encode_Shapes ();
Extract_Shapes (0, j);
a, = Encode_Shapes ();
B = # of bitsinj + 2;
E = min (ao, 01,B);
Sore Encoded Bits();
E total += E;
End Encoder;

Extract_Shapes(b, j)
For each bit xin block j {
If x= b Then {

Find the largest line of each type started at x

Find the largest triangle of each type such that
x is the vertix of the right angle

Find the largest rectangle such tha x is its up-
left corner

}
}

Solve a covering problem to find the best group of
shapes covering all bitsb in block j.
End Extract_Shapes;

Figure 2. Test vectors encoding algorithm.

sorting), to 1's (1-sorting) or to bah O's and 1's (0/1-
sorting). The technique is based on finding the distance
D between two vedors A and B that maximizes the
clustersof O'sand 1's.

The distance D may be cmmputed with resped to 0's
(O-distance), to 1's (1-distance) or to 0s and 1's (0/1-
distance) asfoll ows:

k-1
D= YW(A;,B_)+W(A.B)+W(A B,
i

where Kk is the test vedor length and W(A; ,B)) is the
weight between bits A; and B;. Table 2, Table 3 and
Table 4 spedfy the weights used in computing the O-
distance, the 1-distance, and the 0/1-distance between
two vedors, respedively. Note that for i = O,
W(A| y Bi-l) =0andfori=k-1, W(A| y Bi+l) =0.

The asdgnment of a 0.25 weight for an ‘x’ to ead of
its immediate neighbors be it an ‘x’ or the sorted hit (‘O’
for O-sorting, ‘1’ for 1-sorting and ‘0" and ‘1’ for 0/1-
sorting) is chosen due to the following reasons. First,
this weight may help in completing, integrating, or
generating additional geometric shapes that cen lead to a
better solution. Sewnd, this can help in generating
blocks filled by ‘x’s which can be minimally encoded.
Different weights have been experimented with, and a

Table 2. Weights for the O-distance between
two test vectors.

0 1 X
0 1.0 0.0 0.25
1 0.0 0.0 0.0
X 0.25 0.0 0.25

Table 3. Weights for the 1-distance between
two test vectors.

0 1 X
0 0.0 0.0 0.0
1 0.0 1.0 0.25
X 0.0 0.25 0.25

Table 4. Weights for the 0/1-distance between
two test vectors.

0 1 X
0 1.0 0.0 0.25
1 0.0 1.0 0.25
X 0.25 0.25 0.25

Table 5. An example of test vector sorting.

original |V [0] O0T1TXT 1[0 XX
Vegorsvzox110001

i3 [1[1]x[1]1]x]o]1
Sorted [v2 [Of-X[1[1]-0[0]0[1
Vedors | vi 0% 1| X| 1-Q| X| X
O-dist) |v3 | 2|2 X|2]1]|X[-Q|1
Sorted | v3 [in].alxlal.al.x{o]i1
Vedors | v2 | 0| X[1] 11+0|/0[0]1
(1-dist) [vi [o]o|] x| 1o X[X

weight of 0.25 has been found to produce better results
in most of the cases.

In Table 5, we show a simple example to ill ustrate the
impad of sorting on test vedor compresson. As can be
sea, sorting the vedors based on the 0-distance requires
the ecoding of two triangles to encode the O's.
However, sorting the vedors based on the 1-distance
requires the encoding of one triange and two lines to
encode the 1's. Thus, for this example sorting based on
the O-distanceresultsin higher compresson.

(if) Test Set Partitioning

A set of sorted test vedors, M, is represented in a
matrix form, RxC, where R is the number of test vedors
and C is the length of ead test vedor. The test set is
segmented into LXK blocks ead of which is NxN bits,
where L isequal to [R/N[and K isequal to [T/N[. A

segment consists of K blocks. In other words, the test set

is segmented into L segments ead contains K blocks.
For test vedors whose @lumns and/or rows are not
divisible by the predetermined block dimension N, a
partial block will be produced at the right end columns
and/or the battom rows of the test data. Since the size of
such partial blocks can be deduced based on the number
of vedors, the vedor length, and the block dimension,
the number of bits used to encode the wordinates of the
geometric shapes can be lessthan log, N. The decoder
remgnizes those speda cases and decodes them

properly.

(iii) Encoding process
As mentioned ealier, the excoding process will be
applied on ead block independently. The procedure
Extract_Shapes(b) will find the best group of shapes that
cover the bits that are equal to b as down in the
algorithm. Encode Shapes determines the number of
bits, a, needed to encode this group of shapes. There ae
two cases that may occur:
(@ The block contains only 0's and x's or 1's
and x’'s. In this case, the block can be encoded as a
redangle. However, instead of this it is encoded by
the acode 01 followed by the hit that fill s the block.
Hence, the number of bits to encode the block a =
3.
(b) The block needs to be encoded by a number
of shapes. In this case, we nedl the foll owing:
e 2 hits to indicae the eistence of shapes and
the type of bit encoded. If the encoded hit is O,
then the cdeis 10, otherwiseitis11.
e P=(2*Log, N — 3) hits to encode the number
of shapes, S. If the number of shapes exceals 27,
then the number of bits needed to encode the
shapes is certainly greaer than the total number of
bits in the block. In this case, the block is not
encoded and thered datais dored.

S
. Z L, ; where L; is computed as foll ows
&

- If shapeiisapoint, L; =2+ 2*log, N
(shape type, coordinates).

- If shapeiisalineor atriande, L; =4
+ 3*log, N (shape type, type of line or
triangle, point and distance)

- If shape i is a redangle, L; = 2 +
4*log, N (shapetype, 2 pants)

S
Therefore, 0 =2 + P+ Z L
1=

If 0o and a; are greaer than B (N*N+2), then it is
better not to encode the block. Instead, the red data is
stored after a 2-bit code (00). The procedure
Store Encoded Bits will dedde which case is the best
(encoding O's, encoding 1's, or storing the red data)
based on E, the minimum of ay, a,, and B.

Decoder ()
Read (# of Vectors (R), Vector_Length (C), N);
Compute_Parameters ();
For i = 1 to # of segments {
For j= 1to#of blocksini {
b;by = Read_Bits (2);
Case bibg
00: Read_Bits (N* N);
01: b_type= Read Bits (1);
Fill_Block (j, b_type);
10 : Decode_Shapes (0);
11 : Decode_Shapes (1);
End Case;
}
Output_Segment ();

}
End Decoder;

Decode_Shapes (b)
Num_Shapes = Read_Bits (2*1og, N -3);
For j = 1to Num_Shapes
Shape_type = Read_Bits (2);

Case Shape _type
00: ¢ = Get_Coordinate ();
Fill_Point (b,c);

01:t= Get_Type();
¢ = Get_Coordinate ();
d = Get_Distance ();
Fill_Line(b, t, c,d);

10: t= Get_Type();
¢ = Get_Coordinate ();
d = Get_Distance ();
Fill_Triangle(b, t, c,d);

11: ¢, = Get_Coordinate ();
¢, = Get_Coordinate ();
Fill_Rectangle (b,c1,c,);

End Decode_Shapes;

Figure 3. Test vectors decoding algorithm.

3. Decoding Process

The deooding processis smple and straightforward.
In this work, we asume that an embedded processor on
a dip will implement the decoding agorithm. A
framework ill ustrating the detail s of how the test vedors
can be transferred from the embedded processor to the
tested parts of the dip has been outlined in [7]. A
similar framework can be used for our dewmding
agorithm.

Figure 3 shows the dgorithm of the decoder. It first
reals the aguments given by the encoder and computes
the parameters nealed for the decoding process These
parameters include the number of segments, the number

Table 6. Compression results of the proposed scheme for various block sizes.

Block 8x8 Block 16x16

Cmp. Ratio Cmp. Ratio
Circuit | Scan No. 1-distance | O-distance | O/1-distance | 1-distance | O-distance | O/1-distance | CPU

Size | Vec (seQ

c7552 207 73 37.873 37.35 37.754 28.661 30.66 33.618 3
c2670 233 44 49.815 50.39 51.853 45416 46.635 47444 3
s5378 214 97 50.496 49961 51.551 41418 4261 44.19 4
9234 247 105 42834 42.803 43.451 38.249 38.442 38.905 3
s15850| 611 94 59,778 60.898 60.32 58.81 59.301 59.632 15
s13207| 700 233 83.703 83518 84.145 84.497 84.566 85.012 51
s38417| 1664 | 68 46.114 46.552 46.497 42.788 43.024 4247 29

Table 7. Comparison with the techniques by Jas and Touba [7] and Chandra and Chakrabarty [4].

Proposed Scheme Jasand Touba [§] Chandra and Chakrabarty [4].
Circuit Org. Cmp. Cmp. Org. Cmp. Cmp. Org. Cmp. Cmp.
Bits Ratio Bits Bits Ratio Bits Bits Ratio Bits
c7552 15111 | 37.873| 9388 62721 | 42.39 36134 - - -
c2670 10252 | 51853 | 4936 35183 | 58.45 14619 - - -
s5378 20758 | 51.551 | 10057 | 29850 39.0 18209 23754 40.70 14086
9234 25935 | 43451 | 14666 | 48906 26.6 35897 39273 4334 22252
s15850 | 57434 | 60.898 | 22458 | 86151 | 46.65 | 45962 76986 4711 40717
s13207 | 163100 | 85.012 | 24446 | 186200 | 7332 | 49678 | 165200 | 7478 41664
s38417 | 113152 | 46552 | 60478 | 247936 | 59.06 | 101505 | 164736 | 4412 92055

of blocks in a segment and the dimensions of the partial
blocks. In order to remnstruct the vedors, eat segment
has to be stored before sending its vedors to the drcuit
under test. For ead segment, its blocks are decoded one
at a time. The first two hits indicate the status of the
block as foll ows:

e 00: the block is not encoded and the following

N*N bits are thered data.

e 0% fill the whole block with O's or 1's

depending on the foll owing bit.

e 10 There ae shapesthat arefill ed with 0's.

e 11 There ae shapesthat are filled with 1's.

For those blocks that have shapes, the procedure
Decode _Shapes is responsible for dewding these
shapes. It reals the number of shapes in the block and
then for ead shape it reads its type and based on this it
realsits parameters and fill sit acordingly.

After all the blocks in a segment have been decoded,
the segment is output to the drcuit under test vedor by
vedor.

4. Experimental Results

In order to demonstrate the dfediveness of our
scheme, we have performed experiments on a number of
the largest ISCAS85 and full-scanned versions of
ISCAS89 kenchmark circuits. The experiments were run

on a Pentium 1l processor with a speed of 350 MHz and
a 32 Mbyte RAM. We have used the test sets generated
by MinTest [14], which are highly compaded test sets,
that achieve 100% fault coverage of the detedable faults
in ead circuit. Test cubes were generated from eadh
test set as this has the advantage of keguing unrecessary
asdgnments as x’'s, which enables higher compressgon.
Then, the test vedors were sorted to maximize the
compresson. In this work, test vedors were sorted based
on a gready algorithm. Test vedors rting based on the
O-distance, the 1-distance, and the 0/1-distance was
performed. For both the O-distance and (/1-distance
sorting, the test vedor with more 0's was sleded as the
first vedor. However, for the 1-distance sorting, the
vedor with more 1'swas sleded as the first vedor.

The test sets were partitioned into blocks of sizes 8x8
and 16x16, respedively. Then, the proposed encoding
algorithm was applied for eat case separately as srown
in Table 6. The second column in the table shows the
scan size, which is basicdly the width of a test vedor.
The third column indicaes the number of test vedorsin
the test set. The compression ratio is computed as:

#Original Bits — #Compressed Bits
#Original Bits

X100

Comp. Ratio =

As can be see, the dfediveness of the proposed
encoding agorithm is clealy demonstrated as high
compresson ratio was obtained for all the drcuits. For
most of the drcuits, sorting based on the 0/1-distance on
an 8x8 block size produced the best results.

The last column in Table 6 shows the total CPU time
used for compressng the test vedors based on the two
block sizes and based on the three types of distance
sorting, i.e. the total CPU time used to produce the best
result, which is highlighted in the table.

Based on the compresson results in Table 6, our
technique adieves an average mpresson ratio of
around 54% based on highly compaded tests. In Table
7, we mmpare the compresson ratio oltained by our
technique with that obtained by the techniques proposed
in [7] and [4]. It isimportant to pdnt out that although
the test sets used in our work are different from those
used in [7] and [4], they are mnsiderably smaller. Ascan
be seen from the table, for all the mmpared circuits, our
techniqgue adieves dgnificantly higher compresson
ratio than the technique in [4]. Furthermore, in four of
the drcuits, out of seven, our technique adtieves higher
compresson ratio than the technique in [7]. It should be
observed here that for the three drcuits where the
technique in [7] adhieves higher compresson ratio, their
original test sets are significantly larger, i.e. they contain
much more redundancy, which leads to higher
compresson ratio. For example, the original test set used
in [7] for the drcuit c7552is more than four times larger
than the original test set we used.

All the mmpressed test sets were deoded and
verified by fault simulation. The deading algorithm is
very fast and the decoding time for ead test set was in
fradions of a second.

5. Conclusions

In this paper, a fast and very efficient compresson/
decmpresgon scheme for testing systems-on-a-chip has
been presented. The technique is based on encoding the
test data by geometric shapes. The test data is partitioned
into blocks and then ead block is encoded separately.
To increase the compresson ratio, the scheme exploits
test vedors reordering, the block size the type of bit to
be encoded, and whether or not to encode the block.
Experimental results on ISCAS85 and full-scanned
versions of ISCAS89 bkenchmark circuits demonstrate
the dfediveness of the technique in adchieving Hgh
compresgon ratio. An average of 54% compresson
ratio is achieved on highly compaded test sets. In this
work, we asumed that the decompresson of test data is
performed in software by an embedded processor.
Hardware implementation of the decompresson
agorithm will be investigated in future work.

Acknowledgment

The aitthors would like to thank King Fahd
University of Petroleum & Mineralsfor suppart.

References

[1] T. Yamaguchi, M. Tilgner, M. Ishida, and D.S. Ha, “An
Efficient Method for Compresdng Test Data,” Proc. of Int. Test
Conference, pp. 191-199, 1997

[2] K. Chakrabarty, B.T. Murray, J. Liu, and M. Zhu, “Test
Width Compresdon for Built-In Self-Testing,” Proc. of
International Test Conference, pp. 328-337, 1997.

[3] M. Ishida, D.S. Ha, and T. Yamaguchi, “COMPACT: A
Hybrid Method for Compresson Test Data,” Proc. of VLS Test
Symposium, pp. 62-69, 1998

[4] A. Chandra and K. Chakrabarty, “Test Data Compresson
for System-On-a-Chip using Golomb Codes,” Proc. of |IEEE
VLS Test Symposium, 200Q

[5] J Raski, J. Tyszer, and N. Zacdaria, “Test Data
Demmpresson for Multiple Scan Designs with Boundary
Scan,” |EEE Trans. Computers, pp. 11801200, Nov. 1998

[6] S. Chakradhar and A. Raghurethan, “Bottlened Removal
Algorithm for Dynamic Compadion in Sequencial Circuits,”
|EEE Trans. Computer-Aided Design, 1997.

[7] A. Jas and N.A. Toubgs, “Using an Embedded Processor for
Efficient Deterministic Testing of System-on-a-Chip,” Proc. of
IEEE Int. Conf. on Computer Design (ICCD), 1999

[8] A. Jas and N.A. Toubs, “Test Vedor Decompresson via
Cyclicd Scan Chains and its Applicaionto Testing Core-Based
Designs,” Proc. of Int. Test Conf., pp. 458464, 1998

[9] A. Jas, JG. Dastidar and N.A. Touba, “Scan Vedor
Compresson/ Decompresson Using Statisticd Coding,” Proc.
of Int. Test Conference, pp. 458464, 1998

[10] A. Jas, K. Mohanram, and N.A. Touba, “An Embedded
Core DFT Scheme to Obtain Highly Compressed Test Sets,”
Proc. of IEEE Asian Test Symposium, 1999

[11] R. Chandramouli, and S. Pateras, “Testing Systems on a
Chip,” |IEEE Spectrum, pp. 42-47, Nov. 1996.

[12] Y. Zorian, EJ. Marinisen, and S. Dey, “Testing
Embedded-Core Based System Chips,” Proc. of Int. Test
Conference, pp. 130-143 1998

[13] G. Gibson et-a, Digital Compression for Multimedia,
Morgan Kaufmann Publishers, Inc., 1998

[14] |. Hamzaoglu and J. H. Patel, “Test Set Compadion
Algorithms for Combinational Circuits’, Proc. Int. Conf.
Computer-Aided Design, Nov. 1998

[15] M. Schulz, E. Trischhler, and T. Sarfert, “SOCRATES: A
Highly Efficient Automatic Test Pattern Generation System,”
IEEE Trans. Computer-Aided Design, pp. 126-137, Jan. 1988
[16] J Chang and C. Lin, “Test Set Compadion for
Combinational Circuits,” |IEEE Trans. Computer Aided
Design, pp. 13701378 Nov. 1995

[17] 1. Pomeranz, L. Reddy, and S. Reddy, “COMPACTEST:
A Method to Generate Compad Test Sets for Combinational
Circuits,” Proc. of Int. Test Conference, pp. 194203 1991
[18] S. Kgjihara, |. Pomeranz, K. Kinoshita, and S. Reddy,
“Cost-Effedive Generation o Minimal Test sets for Stuck-at
Faults in Combinational Circuits,” |IEEE Trans. Computer
Aided Design, pp. 14961504 Dec. 1995

