
1

Test Generation for Subtractive Specification Errors
Patricia S. Lee, Ian G. Harris

Technical Report CECS-10-02

April 26, 2010

Center for Embedded Computer Systems

6210 Donald Bren Hall

University of California, Irvine
Irvine, CA 92697-2625

{leep, iharris}@ uci.edu

http://www.cecs.uci.edu/

Abstract—Scenario-Based Modeling (SBM) exposes Specification

Translation Errors (STE), which are not captured using

traditional coverage-based test generation techniques that look at

the code, not the specification. We improve test generation by

specifically exposing subtractive STE.

Keywords-scenario; specification; verification; test generation;

coverage metrics; HDL; behavioral; simulation-based; testbench

I. INTRODUCTION

While most metrics (such as line/statement coverage) focus
on the structure of designs, Specification Translation Errors
(STE), which are misunderstandings of design specifications,
are an important set of problems that targets aspects associated
directly with the specification. About 54% of bugs analyzed by
the Intel group for the Pentium® 4 processor design [15] were
specification-level errors. However, STE are often overlooked.
Adding specification based analysis to code-based methods is
argued to provide better error coverage and additionally
improve code-based coverage numbers. The modeling of
designs at this level of abstraction is not what we are
proposing, but rather we are proposing the automated process
of creating testbenches at this level.

Specification-related errors are typical of most errors found
in real-life examples, primarily arising when dealing with large
projects. For instance, several designers that are part of a team
or many teams of designers could be assigned to work on one
specification but assigned to various parts or components of
that specification. One designer or team is involved with
implementing a part of the specification that affects the
behavior of another part of the specification implemented by
another team or designer. Because some intended or
unintended dependencies defined by the specification exist in
the design, it is possible to introduce errors due to
miscommunication or incorrect implementation of the
specification by one or both of the implementation designers or
teams. A dependency defined by the specification could be
incorrectly added or subtracted within the code due to this
misunderstanding of the specification. Additionally, if the
specification is long and detailed, designers typically will
forget or miss certain aspects of the specification in the design.

STE are significant and are not directly captured using
traditional coverage-based test generation techniques.
Traditional methods analyze the code, not the specification. As
a result, subtractive errors of omission (i.e. those which are not

in the code) are overlooked and not detected. A testbench
based on the Hardware Description Language (HDL) does not
always catch bugs showing inconsistencies between the design
and specification. With coverage-based metrics, the code
corresponds directly with the metric, and the coverage is
dependent on the code. To detect these STE, a concrete
method of describing the specification is needed.

Scenarios [20, 21], like live sequence charts [19], describe
“typical” behavior already present in the specification and can
be derived from timing diagrams. They show a sequence of
events to cause a typical behavior to occur. The only
difference of information between scenarios and timing
diagrams is that scenarios do not have real timing elements in
it—it only contains sequences of events. Using Scenario-
Based Modeling (SBM) techniques to create testbenches
exposes errors missed by coverage-based techniques and so
greatly enhances the error detection process by using both
techniques together. In this paper, we are focusing on using
our SBM method of test generation to improve defect detection
coverage for subtractive STE over traditional techniques which
rely primarily on coverage metrics.

After the previous and related works section, a system
overview will be provided in III. Section IV is a description of
scenarios, which are used for creating SBM testbenches, and
Section V steps through examples and implementation details
of the SBM method. Section VI explains STE in more detail,
and Section VII describes the types of errors targeted. Section
VIII details the system, experiments and algorithms. Section
IX explains the testbench generation algorithm. Finally,
Sections X and XI conclude with experimental results and a
concluding analysis.

II. PREVIOUS AND RELATED WORKS

A. Test Generation for Simulation-based Validation

The focus of this paper is on the research of simulation-
based verification using test generation techniques evaluated
with the test criterion of coverage metrics. Input is generated
to exercise the DUT (Device Under Test), and the output is
evaluated in a response checker which compares observed and
expected behavior [2].

Traditionally, test generation in simulation was performed
using random and directed test programs that target design-
based errors, those errors which are related to the design of the
system/DUT and exercise the existing model of the circuit.

2

Some techniques involve a hybrid of these techniques with
specialized algorithms such as [4] which uses a strategy to map
high-level faults into logic-level faults, genetic [5] and b-
algebra [6] which provide a more directed approach. Also,
techniques in test generation have been proposed with
formalize specifications [18]. This paper introduces Scenario-
Based Modeling (SBM) to create testbenches from the original
natural language specification.

One way of classifying test generation targeting a specific
set of coverage metrics is by its abstraction levels of design.
We focus on high abstraction levels of the design at the
behavioral level. While [4, 5, 6] focus on structural errors,
they are also targeting the HDL (Hardware Description
Language) design at the behavioral level. Our proposed test
generation algorithm utilizes high-level scenarios generated
directly from the specification to target specification-based
errors which are related to the specification utilizing functional
validation rather than the relying on the design of the
system/DUT to generate the testbench. This provides high test
quality with respect to finding bugs, errors or faults within the
device with functionality based on the specification to generate
special cases that excite intended and missed design features.
Also, our technique automates the testbench creation process
from these scenarios.

B. Coverage Metrics

Coverage metrics are used to determine the adequacy of a
test and to assess how thoroughly a program is exercised
(whether the test promotes high system activation). It was first
used in software testing to quantify the capacity of a given
input stimulus to activate specific properties of the program
code [7]. In hardware, the most common classifications of
coverage metrics are as follows: code coverage metrics,
metrics based on circuit activity, metrics based on finite-state
machines, functional coverage metrics, error- (or fault-) based
coverage metrics, and coverage metrics based on observability
[2]. Our test generation technique is measured against code
coverage metrics. We are targeting error detection (defect
coverage) and traditional line (statement) coverage and
comparing our approach to random test pattern generation for
data.

C. Specification-based Testing

We assume that the interpretation by designers may be
flawed. This translates to erroneous code. We are targeting
this disconnect between the specification and design. [12, 13]
are two software survey papers which highlight problems with
requirements documents and specification. [12, 13] show that
designers often implement their code incorrectly. [14] talks
about the ambiguity inherent in specification and software
problems associated with this.

III. SYSTEM OVERVIEW

We provide an HDL generator based on scenarios, which
describe “typical” behavior already present in the specification
and can be derived from timing diagrams, for testbench
creation. The output Verliog testbench is simulated to
determine code coverage. If there is a change in the

specification, modifications to the scenarios can easily be
made. This allows customization of the output for direct
testing using this proposed method.

Figure 1 shows a general overview of the test generation
system. From the specification, a set of scenarios are created.
From these scenarios, along with a set of random test vectors
for data, a scenario testbench is generated with n copies of the
original scenario generated testbench code. Our test generation
technique that utilizes a modified set of these scenarios (n
modified or perturbed iterations) also uses a set of random test
vectors for data to generate a scenario testbench from the
Verilog generator.

Figure 1. Scenario-Based Modeling (SBM) System Model.

IV. SCENARIOS

Scenarios describe the behavior of the system and can be
modeled in the same way UML scenarios are modeled.
Scenarios essentially contain the same information as UML
scenarios. Scenarios describe the typical case or behavior that
is present in the specification (i.e. not corner cases). These
“typical” cases are used to generate variants which model the
types of errors we are targeting in our approach. These original
and variant cases are then used to generate tests.

To generate tests from scenarios, a verification engineer
should describe a sequence of events on all inputs. In other
words, this description of a class of input sequences becomes
the set of tests for that specified design. A mapping
relationship exists between scenarios and functionality
specified in the design specification. A scenario describes the
most important and common input sequences which map to a
functionality within the specification. Input assignment
statements (e.g. ‘x = 1’ and ‘y = 0’) are atomic units that are
assigned to token names (e.g. ‘x = 1’ is be assigned to ‘x_hi’
and ‘y = 0’ is be assigned to ‘y_lo’). These eventually build
more complex statements using composition operators to
connect the tokens.

Additionally, [1] defines symbols, at the lowest level of
abstraction (tokens), to describe atomic sets of external signal
transitions, while those at higher levels describe arbitrarily
complex sequences of these tokens. Production-based
specifications (PBS) [1] were described to be more concise and
easier to debug and understand due to local nature of each
production in the specification. Each production is
simultaneously active for all input transitions so that the
designer need not worry about the explicit construction of the
global control flow, which is necessary in designing a
procedural specification. In the same way, scenarios used in
SBM are created from atomic tokens to create higher levels of
complex sequences.

This work was supported by the National ARCS (Achievement Rewards

for College Scientists) Foundation, Inc. under the named Hulings Scholar

Fellowship.

This work was supported by the National ARCS (Achievement Rewards

for College Scientists) Foundation, Inc. under the named Hulings Scholar

Fellowship.

Correct
Scenarios

Testbenches

Modified
Scenarios

Verilog

Generator

Scenario

Modifier

3

V. DETAILED SCENARIO EXAMPLE

The IEEE 1500 specification [11] is used to expound
further a scenario. The IEEE 1500 specification describes a
test wrapper component which consists of a Wrapper Bypass
(WBY), Wrapper Instruction Register (WIR), and Wrapper
Boundary Register (WBR). Figure 6 shows an overview of the
IEEE 1500 design. Most system on a chips (SoCs) consist of
multiple cores that must interact with one another, and the
IEEE 1500 specification describes this system of interaction as
well as each individual core’s wrapper behavior. This design
was implemented in eight modules.

Figure 2. IEEE 1500 Design.

An example of a high-level scenario would be “placing an
instruction into the Wrapper Instruction Register (WIR).” To
do this, first activate the WIR (using the “SelectWIR” signal).
Then, an instruction is shifted in. Finally, the WIR is updated
with the instruction shifted in.

Figure 3. WSP Timing Diagram from IEEE 1500 Specification (with focus

on Update).

From the timing diagram in Figure 3, the three steps
mentioned for placing an instruction into the WIR can be
extrapolated. The control signals are SelectWIR, ShiftWR, and
UpdateWR. Each of the three steps is a building block for the
main high-level scenario. To demonstrate what a part of the

scenario may look like, the third step (update) will be further
explained.

 Section 14.1 of the IEEE 1500 Specification, Rule b reads
as follows (see Figure 4):

The UpdateWR signal shall be sampled on the falling edge of WRCK.

Figure 4. IEEE 1500 Specification Rule Example.

This rule can be translated into a scenario graph. Figure 5
shows an example of an excerpt of a scenario graph from a
mid-level assignment that is built from low-level assignments.

Figure 5. IEEE 1500 Specification Excerpt of Scenario Graph Example

These scenarios are modeled using the production algebra
presented in [1]. These are typical expressions in turn derived
from standard compiler theory. To derive a scenario from the
timing diagram, we built a high-level scenario or event with
lower level signal assignments which represent token events.
From scenario graphs, such as that mentioned in Figure 5, a
testbench is built. Scenarios are built hierarchically from
lower-level signal assignments.

VI. SPECIFICATION TRANSLATION ERRORS

Specification Translation Errors (STE) are
misunderstandings of design specifications and are focused on
aspects associated directly with the specification. The
sequence of behavior with changed events creates a test space
around the behavior. The motivation for changing the system
with these changed events (i.e. the sequence of events are
modified, deleted, or changed in order) models a possible
misunderstanding within the neighboring behavior. To model
the variances of added or subtracted code due to these possible
misunderstandings, the scenarios are modified in order to
capture additional potential bugs and catch corner statement
coverage which are not detected by utilizing correct scenarios
developed from the specification directly.

Three types of errors are modeled:

• Additive

• Modification

• Subtractive

An additive error is one in which the designer adds a
dependency that is not specified in the design. In the code,
added possibilities in the form of extra code are again not in the
specification.

A modification error is one in which a set of signal
modifications change the values of the signals (high to low,
negedge to posedge and vice versa) as well as operations and
control sequences. In the code, these modifications are the
product of a misunderstanding of the specification.

SetUpdate -> UpdateHi&&NegEdge;

UpdateHi -> “UpdateWR = 1”;

NegEdge -> ClkHi, ClkLo;

...

...

4

A subtractive error is one in which the designer subtracts or
leaves out a dependency that is in the specification of the
design. Subtractive errors are not present in the code and only
present in the specification.

In verifying that the behavior of a design matches the
specification, SBM is needed to formalize the specification and
help to provide a framework for modeling and generation of
tests based on the specification rather than just focusing on the
structure of a design. SBM used in conjunction with structure-
based metrics will bolster error coverage because errors that do
not fall within the rubric of those specific to the design’s
structure but based on dependencies or specified non-
dependencies in the specification will additionally be
identified.

These are not errors in the specification but in the
translation of the specification. To explain the use of scenario-
based modeling for test generation to discover specification-
based errors, we propose simple application of the SBM
technique to illustrate how scenarios assist in a deeper coverage
of error detection for designs. For instance, a blackjack
application has a certain set of rules.

One such rule is as follows (see Figure 6):
An ace doubles as a 1 and an 11 (depending on which is most advantageous to

the player).

Figure 6. Example of a rule in blackjack.

Coded in its entirety, the rule is as follows (see Figure 7):

int handValue (hand) {
...
if (card == ace) {

// total_value is the computed card value total
 if (total_value > 10) {
 ace_value = 1;
 } else {
 ace_value = 11;
 }
 total_value = total_value + ace_value;
}
}

Figure 7. Coded example of a rule in blackjack.

However, if the grayed out part of the specification happens
to be left off or not caught by the designer (i.e. this is a missed
part of the specification by the designer that may not have been
implemented in the code, and it is not a problem with the
specification itself), the rule and coding drastically change.

If the designer omitted the part of the rule in the
specification which stated that an ace could be an 11 (in
addition to being a 1), a traditional test generation technique
would not catch this omission by the designer in the code
because it is an error caused by an omission (not incorrect
implementation) of a rule. Achieving 100% coverage will not
necessarily reveal a bug such as this. Because of this,
generating tests based on scenarios is a good idea because the
scenarios which are based on the specification (not code)
would not miss this property.

VII. TYPES OF TARGETED ERRORS

We are targeting subtractive errors that can easily happen in
designs with large specifications and that cannot be detected

without information from the specification itself. For instance,
the IEEE 1500 specification is one of the smallest
specifications available and is approximately 130 pages in
length. There is a lot of room for misunderstandings and
mistakes. Also, specifications often change (and so
dependencies may be missed. If parts of the specification are
implemented by separate groups, this adds a further level of
complexity. It is easy for a designer to read a part of the
specification out of context and add or leave out an important
dependency. Perturbation errors match those errors that one
would make due to a misunderstanding of the specification.
These errors would model the erroneous from the original
because it is an implementation and model of the
misunderstanding of the specification. Statement coverage
could not assist the verification engineer in identifying this type
of error. This motivates why scenario-based modeling will
detect these scenario-based errors.

Expanding on the scenario which was derived from the
specification (Figure 4), a Verilog testbench (Figure 8) can be
derived from the scenario (Figure 5).

// Verilog Header
// Additional signals
...
@(negedge WRCK)
UpdateWR = 1;
...
// Verilog Footer

Figure 8. IEEE 1500 Specification Scenario to Verilog Testbench Example.

Targeting the three errors which perturb the design in an
undesirable way, the following are additive, modification and
subtractive errors.

...
@(negedge WRCK)
UpdateWR = 1;
ShiftWR = 1;
...

Figure 9. Additive Error Injection Example.

Figure 9 is an example of a Verilog testbench excerpt
created to detect a particular additive error. The “ShiftWR =
1;” statement is the added signal.

...
@(negedge WRCK)
UpdateWR = 0;
...

Figure 10. Modification Error Injection Example.

 Figure 10 is an example of a Verilog testbench excerpt
created to detect a particular modification error. The original
“UpdateWR = 1;” statement is modified to be “UpdateWR =
0;”.

...
@(negedge WRCK)
...

Figure 11. Subtractive Error Injection Example.

Figure 11 is an example of a Verilog testbench excerpt
created to detect a particular subtractive error. The original
“UpdateWR = 1;” statement is subtracted from the Verilog.

5

The original scenarios were perturbed to create the
testbench. In these examples, we are concentrating on control
sequences (not data sequences). The data is randomly
generated.

VIII. SBM SYSTEM

Scenario-Based Modeling (SBM) techniques expose STE,
errors based on a mistranslation of specifications. The SBM
system consists of a scenario perturbation generator that
generates scenario tests and a Verilog generator that generates
the Verilog testbenches.

A. Scenario Perturbation Generator

In the example regarding the blackjack application, a
scenario for the rule would be as follows (see Figure 12):

handValue -> total_value;
total_value -> ((current_value > 10: ~ace_value) ||

(current value <= 10:ace_value)): current_value + ace_value;
card_ace = ace;
~card_ace = ~ace;
~ace_value = ACE_LO = 1;
ace_value = ACE_HI = 11;

Figure 12. Scenario Example.

Synonymous to the errors targeted are two types of
perturbations to the scenarios are as follows. Additive
perturbations will include adding variable assignments and
branches in a control path. This includes operation
perturbations will include changing comparator operations and
arithmetic operations. Signal perturbations change values of
the signals (high to low, negedge to posedge and visa versa) as
well as operations and control sequences. Subtractive
perturbations include taking away variable assignments and
branches in a control path.

B. Verilog Generator

Just as the PBS compiler of [1], the compiler has been
implemented in C code which compiles input specifications
containing scenarios (instead of productions in [1]) and outputs
testbenches in the form of Verilog code segments (instead of
VHDL in [1]). The scenarios are composed of symbols and
operators. The symbols are terminal and operators combine
sub-machines to create more complex machines. K”.

IX. TESTBENCH GENERATION ALGORITHM

Our goal is to create Verilog testbenches from scenarios
directly created from the specification of a design. If the
scenario is not complete, for example in the case when a signal
dependency was not written into the scenario by the
verification engineer, the designer should know what the
results should be.

A. Algorithm

The algorithm for creating the testbenches using SBM is as
follows (see Figure 13):

Input: Timing diagram and/or specification scenario description

1. Generate scenarios.

1.1. Start from high-level scenario of desired function/operation

1.2. In breadth-first search (BFS) traversal, build from lower level

hierarchy of nodes to higher level scenarios to create a scenario

graph.

1.3. Continue until leaf nodes (nodes which contain signal

assignments) are reached.

2. Inject scenarios with additive, modification and subtractive errors.

3. Translate scenarios into Verilog control logic portion of testbench.

4. Add translated scenarios to complete testbench.

5. Add header and footer to testbench.

Output: SBM testbench

Figure 13. Pseudo-code of Algorithm for Creating Testbench.

To create an SBM testbench, the designer starts with the
specification. A timing diagram and/or specification scenario
description at a high level is extracted from the complete
specification to create each scenario until all scenarios are
extracted from the complete specification.

For each scenario, the high-level scenario description is
derived. To reach a lower level of the scenario hierarchy, the
designer gets closer and closer to the leave nodes (which are
tokens as described in [1]). Once the leaf nodes have been
reached, the scenario graph is completely generated. (Figure 5
shows an excerpt example of this.)

Once the scenario graph is created, a textual representation
using the production algebra presented in [1] can be generated
for the scenario. Injected in this textual representation of the
scenario are the additive, modification and subtractive errors.
From this textual representation, an SBM testbench in Verilog
code is generated. The additive, modification and subtractive
errors should not be confused with those errors which may be
erroneously injected into the design by the designer. These
errors are translated into test sections for use in the creation of
the testbench.

X. EXPERIMENTAL RESULTS

We compared our Scenario-Based Modeling (SBM)
method with that of the random method of test generation of
data by using the IEEE 1500 specification [11] as our
benchmark design with a simple core. Figure 14 shows an
overview of the simulation and results comparison. Based on
the specification, we made scenario graphs which were
translated into behavioral/register transfer level (RTL) Verilog.
Our design (excluding the core that was tested within the
design) had 779 lines of code (LOC) from the original
specification that contained approximately 130 pages. We used
our SBM model to generate the SBM testbench using 4
scenario graphs, each containing approximately 30 nodes and
approximately 10 of which were leaf nodes. We compared our
SBM method with that of a standard random algorithm.

Figure 14. Simulation and results system.

Testbench

Testbench

SBM Algorithm

Random
Algorithm

Simulator

Line
Coverage

Defect

Coverage

6

A golden design was compared to 20 erroneous designs
(each with one subtractive STE injected into the golden
design). The erroneous designs modeled subtractive errors by
line deletions and branch deletions. We then computed line
(statement) coverage and defect coverage as shown in Table 1.
The “Erroneous Design” column of Table 1 lists all 20
wrapper versions with errors injected in the design. The next
columns compare the “Line Coverage” for both “SBM” and
“Random” methods of testing. The “Defect Detected?”
columns show a comparison of results found for “SBM” and
“Random” methods of testing with respect to whether a defect
or error was detected or not detected (a “Yes” in the column
denotes that an error was detected and a “No” that an error was
not detected).

The defect coverage results, displayed in Table I, were
significantly higher for the SBM method of test generation over
that of the random method. For defect coverage, the random
method resulted in about 10% coverage while SBM resulted in
about 70% coverage.

Contrary to the actual defect coverage results, the line
coverage results, also shown in Table I, were showing at least
99.99% for both SBM and random generation methods.

TABLE I. TABLE OF RANDOM VS. SBM TEST GENERATION LINE

COVERAGE AND DEFECTS DETECTED

Erroneous Design Line Coverage Defect Detected?

SBM Random SBM Random

1

100 100 Yes Yes

2 99.99 99.99 No No

3 100 99.99 Yes No

4 99.99 99.99 No No

5 100 100 Yes Yes

6 99.99 99.99 No No

7
100 99.99 Yes No

8 99.99 99.99 No No

9 100 99.99 Yes No

10 100 99.99 Yes No

11 100 99.99 Yes No

12 100 99.99 Yes No

13 100 99.99 Yes No

14
99.99 99.99 No No

15 99.99 99.99 No No

16 100 99.99 Yes No

17
100 99.99 Yes No

18 100 99.99 Yes No

19 100 99.99 Yes No

20 100 99.99 Yes No

Comparison of Random vs. SBM Line Coverage and Determination of Defects Detected Results

Figure 15 shows the number of errors detected over the
time taken to detect the errors (in simulation clock cycles). The
defect coverage (rate of error detection) was derived from the
fault coverage over time graphs generated for Figure 15. The
complete simulation time for non-detected errors was 179465
cycles (i.e. the length of the entire testbench run to
completion).

Figure 15. Defect coverage results.

Figure 15 shows the dramatic improvement of errors
detected by SBM over the random method of test generation
even with line coverage numbers showing 99.99% or above for
both methods of test generation.

XI. CONCLUSION

A model and an implementation for hardware verification
from scenarios are proposed in this paper. For many types of
complex behavior, SBM has advantages over procedural
methods which exclude specification analysis. This
specification technique can be useful for the hardware
verification engineering and joint co-validation techniques.

In this paper, we improved test generation by incorporating
traditional coverage targeting techniques with that of our
proposed SBM technique to specifically expose subtractive
STE. The comparison of actual defect coverage improvements
with those assumed using traditional coverage to gain
confidence in validation and verification efforts have resulted
in misleading information provided by relying solely on
coverage details to determine verification and validation
confidence in defect coverage. With SBM, subtractive STE
were detected at a much higher rate than relying on traditional
code based methods which focus on coverage metrics to
determine verification and validation confidence.

Future work will evaluate similar techniques used for
results checking.

ACKNOWLEDGMENT

We would like to thank the National ARCS Foundation,
Inc. and the Hulings Family for support of this work.

#
 o

f
E

rr
o

rs
 D

e
te

c
te

d

Time (Clock Cycles)

7

REFERENCES

[1] A. Seawright and F. Brewer, “Clairvoyant: A synthesis system for
production-based specification.” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 2, no. 2, June 1994, pp. 172 –
185.

[2] D.K. Pradhan and I.G. Harris, eds., Practical Design Verification,
Cambridge University Press, 2009.

[3] M.L. Bushnell, V.D. Agrawal, Essentials of Electronic Testing for

Digital, Memory, and Mixed-signal VLSI Circuits, Kluwer Academic
Publishers, 2000.

[4] F. Fummi , C. Marconcini , G. Pravadelli. “Logic-level mapping of

high-level faults, Integration”, the VLSI Journal, v.38 n.3, p.467-490,
January 2005.

[5] P. Prinetto, M. Rebaudengo, M. Sonza Reorda, “An automatic test

pattern generator for large sequential circuits based on genetic
algorithms,” ITC94: IEEE International Test Conference, Washington

D. C. (USA), October 1994.

[6] C.H. Cho, J.R. Armstrong, “B-algorithm: A behavioral test generation
algorithm,” International Test Conference, 1994, pp. 968 - 979.

[7] J.B. Goodenough, S.L. Gerhart, “Toward a theory of testing: data

selection criteria,” In R.T. Yeh, ed., Current Trends in Programming

Methodology, vol. 2, pp. 44-79. Prentice-Hall, Englewood Cliffs, 1977.

[8] P. Mishra, N.D. Dutt, Functional Verification of Programmable

Embedded Architectures: A Top-Down Approach, Springer, 2005.

[9] M.P. Heimdahl, D. George, R. Weber, “Specification Test Coverage

Adequacy Criteria = Specification Test Generation Inadequacy
Criteria?” Proceedings of the Eight IEEE International Symposium on

High Assurance Systems Engineering (HASE), 2004.

[10] “Standard Testability Method for Embedded Core-based Integrated
Circuits,” IEEE 1500 International Standard Specification, IEC 62528,

Ed. 1.0, 2007-11.

[11] IEEE Std 1500, IEEE Standard for Embedded Core Test— IEEE Std.

1500-2004. New York: IEEE, 2004.

[12] V. Berzins, C. Martell, Luqui, and P. Adams, “Innovations in Natural

Language Document Processing for Requirements Engineering,”
Monterey Workshop 2007, LNCS 5320, pp. 125—146, 2008. Springer-

Verlag Berlin Heidelberg, 2008.

[13] E. Kamsties, D.M. Berry, B. Paech, “Detecting Ambiguities in

Requirements Documents Using Inspections”, June 2001

[14] D.L. Parnas, G.J.K Asmis, J. Madey, “Assessment of Safety-Critical
Software in Nuclear Power Plants,” Nuclear Safety 32(2), pp. 189-198,

April—June 1991.

[15] B. Bently, "Validating the Intel Pentium 4 microprocessor." In Design

Automation Converence, pp 244-248, 2001.

[16] A. Aho, R. Sethi, and J. Ullman. Compilers - Principles, Techniques and

Tools. Addison Wesley, 1988.

[17] A. Bunker, G. Gopalakrishnan, S. McKee. “Formal hardware
specification languages for protocol compliance verification” ACM

Transactions on Design Automation of Electronic Systems (TODAES),
Vol. 9, Issue 1, pp. 1 – 32, January 2004.

[18] K. Shimizu, D. Dill. “Deriving a Simulation Input Generator and a

Coverage Metric from a Formal Specification”, IEEE Design

Automation Conference (DAC), New Orleans, 2002.

[19] C. Plock, B. Goldberg, L. Zuck. “From requirements to
specifications*”, Proceedings of the 12th IEEE International Conference

and Workshops on the Engineering of Computer-Based Systems (ECBS),
2005.

[20] R. Plosch. Contracts, Scenarios and Prototypes – An Integrated

Approach to High Quality, Springer-Verlag Berlin Heidelberg New
York, 2004, ISBN 3-540-43486-0.

[21] T. A. Alspaugh. “Relationships between scenarios”, Technical Report

UCI-ISR-06-7, Institute for Software Research, University of California,
Irvine, May 2006.

