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Abstract—Scenario-Based Modeling (SBM) exposes Specification 

Translation Errors (STE), which are not captured using 

traditional coverage-based test generation techniques that look at 

the code, not the specification.  We improve test generation by 

specifically exposing subtractive STE.   
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I.  INTRODUCTION 

While most metrics (such as line/statement coverage) focus 
on the structure of designs, Specification Translation Errors 
(STE), which are misunderstandings of design specifications, 
are an important set of problems that targets aspects associated 
directly with the specification.  About 54% of bugs analyzed by 
the Intel group for the Pentium® 4 processor design [15] were 
specification-level errors.  However, STE are often overlooked.  
Adding specification based analysis to code-based methods is 
argued to provide better error coverage and additionally 
improve code-based coverage numbers.  The modeling of 
designs at this level of abstraction is not what we are 
proposing, but rather we are proposing the automated process 
of creating testbenches at this level.   

Specification-related errors are typical of most errors found 
in real-life examples, primarily arising when dealing with large 
projects.  For instance, several designers that are part of a team 
or many teams of designers could be assigned to work on one 
specification but assigned to various parts or components of 
that specification.  One designer or team is involved with 
implementing a part of the specification that affects the 
behavior of another part of the specification implemented by 
another team or designer.  Because some intended or 
unintended dependencies defined by the specification exist in 
the design, it is possible to introduce errors due to 
miscommunication or incorrect implementation of the 
specification by one or both of the implementation designers or 
teams.  A dependency defined by the specification could be 
incorrectly added or subtracted within the code due to this 
misunderstanding of the specification.  Additionally, if the 
specification is long and detailed, designers typically will 
forget or miss certain aspects of the specification in the design.   

STE are significant and are not directly captured using 
traditional coverage-based test generation techniques.  
Traditional methods analyze the code, not the specification.  As 
a result, subtractive errors of omission (i.e. those which are not 

in the code) are overlooked and not detected.  A testbench 
based on the Hardware Description Language (HDL) does not 
always catch bugs showing inconsistencies between the design 
and specification.  With coverage-based metrics, the code 
corresponds directly with the metric, and the coverage is 
dependent on the code.  To detect these STE, a concrete 
method of describing the specification is needed.   

Scenarios [20, 21], like live sequence charts [19], describe 
“typical” behavior already present in the specification and can 
be derived from timing diagrams.  They show a sequence of 
events to cause a typical behavior to occur.  The only 
difference of information between scenarios and timing 
diagrams is that scenarios do not have real timing elements in 
it—it only contains sequences of events.  Using Scenario-
Based Modeling (SBM) techniques to create testbenches 
exposes errors missed by coverage-based techniques and so 
greatly enhances the error detection process by using both 
techniques together.  In this paper, we are focusing on using 
our SBM method of test generation to improve defect detection 
coverage for subtractive STE over traditional techniques which 
rely primarily on coverage metrics. 

After the previous and related works section, a system 
overview will be provided in III.  Section IV is a description of 
scenarios, which are used for creating SBM testbenches, and 
Section V steps through examples and implementation details 
of the SBM method.  Section VI explains STE in more detail, 
and Section VII describes the types of errors targeted.  Section 
VIII details the system, experiments and algorithms.  Section 
IX explains the testbench generation algorithm.  Finally, 
Sections X and XI conclude with experimental results and a 
concluding analysis. 

II. PREVIOUS AND RELATED WORKS 

A. Test Generation for Simulation-based Validation 

The focus of this paper is on the research of simulation-
based verification using test generation techniques evaluated 
with the test criterion of coverage metrics.  Input is generated 
to exercise the DUT (Device Under Test), and the output is 
evaluated in a response checker which compares observed and 
expected behavior [2].     

Traditionally, test generation in simulation was performed 
using random and directed test programs that target design-
based errors, those errors which are related to the design of the 
system/DUT and exercise the existing model of the circuit.  
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Some techniques involve a hybrid of these techniques with 
specialized algorithms such as [4] which uses a strategy to map 
high-level faults into logic-level faults, genetic [5] and b-
algebra [6] which provide a more directed approach.  Also, 
techniques in test generation have been proposed with 
formalize specifications [18].  This paper introduces Scenario-
Based Modeling (SBM) to create testbenches from the original 
natural language specification.   

One way of classifying test generation targeting a specific 
set of coverage metrics is by its abstraction levels of design.   
We focus on high abstraction levels of the design at the 
behavioral level.   While [4, 5, 6] focus on structural errors, 
they are also targeting the HDL (Hardware Description 
Language) design at the behavioral level.  Our proposed test 
generation algorithm utilizes high-level scenarios generated 
directly from the specification to target specification-based 
errors which are related to the specification utilizing functional 
validation rather than the relying on the design of the 
system/DUT to generate the testbench.  This provides high test 
quality with respect to finding bugs, errors or faults within the 
device with functionality based on the specification to generate 
special cases that excite intended and missed design features.  
Also, our technique automates the testbench creation process 
from these scenarios.   

B. Coverage Metrics 

Coverage metrics are used to determine the adequacy of a 
test and to assess how thoroughly a program is exercised 
(whether the test promotes high system activation).  It was first 
used in software testing to quantify the capacity of a given 
input stimulus to activate specific properties of the program 
code [7].  In hardware, the most common classifications of 
coverage metrics are as follows:  code coverage metrics, 
metrics based on circuit activity, metrics based on finite-state 
machines, functional coverage metrics, error- (or fault-) based 
coverage metrics, and coverage metrics based on observability 
[2].  Our test generation technique is measured against code 
coverage metrics.  We are targeting error detection (defect 
coverage) and traditional line (statement) coverage and 
comparing our approach to random test pattern generation for 
data. 

C. Specification-based Testing 

We assume that the interpretation by designers may be 
flawed.  This translates to erroneous code.  We are targeting 
this disconnect between the specification and design. [12, 13] 
are two software survey papers which highlight problems with 
requirements documents and specification.  [12, 13] show that 
designers often implement their code incorrectly.  [14] talks 
about the ambiguity inherent in specification and software 
problems associated with this.   

III. SYSTEM OVERVIEW 

We provide an HDL generator based on scenarios, which 
describe “typical” behavior already present in the specification 
and can be derived from timing diagrams, for testbench 
creation.  The output Verliog testbench is simulated to 
determine code coverage.  If there is a change in the 

specification, modifications to the scenarios can easily be 
made.  This allows customization of the output for direct 
testing using this proposed method.   

Figure 1 shows a general overview of the test generation 
system.  From the specification, a set of scenarios are created.  
From these scenarios, along with a set of random test vectors 
for data, a scenario testbench is generated with n copies of the 
original scenario generated testbench code.  Our test generation 
technique that utilizes a modified set of these scenarios (n 
modified or perturbed iterations) also uses a set of random test 
vectors for data to generate a scenario testbench from the 
Verilog generator.   

 

 
 
 

 

Figure 1.  Scenario-Based Modeling (SBM) System Model.  

IV. SCENARIOS 

Scenarios describe the behavior of the system and can be 
modeled in the same way UML scenarios are modeled.  
Scenarios essentially contain the same information as UML 
scenarios.  Scenarios describe the typical case or behavior that 
is present in the specification (i.e. not corner cases).  These 
“typical” cases are used to generate variants which model the 
types of errors we are targeting in our approach.  These original 
and variant cases are then used to generate tests. 

To generate tests from scenarios, a verification engineer 
should describe a sequence of events on all inputs.  In other 
words, this description of a class of input sequences becomes 
the set of tests for that specified design.  A mapping 
relationship exists between scenarios and functionality 
specified in the design specification.  A scenario describes the 
most important and common input sequences which map to a 
functionality within the specification.  Input assignment 
statements (e.g. ‘x = 1’ and ‘y = 0’) are atomic units that are 
assigned to token names (e.g. ‘x = 1’ is be assigned to ‘x_hi’ 
and ‘y = 0’ is be assigned to ‘y_lo’).  These eventually build 
more complex statements using composition operators to 
connect the tokens.   

Additionally, [1] defines symbols, at the lowest level of 
abstraction (tokens), to describe atomic sets of external signal 
transitions, while those at higher levels describe arbitrarily 
complex sequences of these tokens.  Production-based 
specifications (PBS) [1] were described to be more concise and 
easier to debug and understand due to local nature of each 
production in the specification.  Each production is 
simultaneously active for all input transitions so that the 
designer need not worry about the explicit construction of the 
global control flow, which is necessary in designing a 
procedural specification.  In the same way, scenarios used in 
SBM are created from atomic tokens to create higher levels of 
complex sequences. 

This work was supported by the National ARCS (Achievement Rewards 

for College Scientists) Foundation, Inc. under the named Hulings Scholar 

Fellowship. 
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V. DETAILED SCENARIO EXAMPLE 

The IEEE 1500 specification [11] is used to expound 
further a scenario.  The IEEE 1500 specification describes a 
test wrapper component which consists of a Wrapper Bypass 
(WBY), Wrapper Instruction Register (WIR), and Wrapper 
Boundary Register (WBR).  Figure 6 shows an overview of the 
IEEE 1500 design.  Most system on a chips (SoCs) consist of 
multiple cores that must interact with one another, and the 
IEEE 1500 specification describes this system of interaction as 
well as each individual core’s wrapper behavior.  This design 
was implemented in eight modules.     

 
Figure 2.  IEEE 1500 Design. 

An example of a high-level scenario would be “placing an 
instruction into the Wrapper Instruction Register (WIR).”  To 
do this, first activate the WIR (using the “SelectWIR” signal).  
Then, an instruction is shifted in.  Finally, the WIR is updated 
with the instruction shifted in.   

 
Figure 3.  WSP Timing Diagram from IEEE 1500 Specification (with focus 

on Update). 

From the timing diagram in Figure 3, the three steps 
mentioned for placing an instruction into the WIR can be 
extrapolated.  The control signals are SelectWIR, ShiftWR, and 
UpdateWR.  Each of the three steps is a building block for the 
main high-level scenario.  To demonstrate what a part of the 

scenario may look like, the third step (update) will be further 
explained.    

  Section 14.1 of the IEEE 1500 Specification, Rule b reads 
as follows (see Figure 4): 

The UpdateWR signal shall be sampled on the falling edge of WRCK. 

Figure 4.  IEEE 1500 Specification Rule Example. 

This rule can be translated into a scenario graph.  Figure 5 
shows an example of an excerpt of a scenario graph from a 
mid-level assignment that is built from low-level assignments. 

 

 

 

 

Figure 5.  IEEE 1500 Specification Excerpt of Scenario Graph Example 

These scenarios are modeled using the production algebra 
presented in [1].  These are typical expressions in turn derived 
from standard compiler theory.  To derive a scenario from the 
timing diagram, we built a high-level scenario or event with 
lower level signal assignments which represent token events.  
From scenario graphs, such as that mentioned in Figure 5, a 
testbench is built.  Scenarios are built hierarchically from 
lower-level signal assignments.   

VI. SPECIFICATION TRANSLATION ERRORS 

Specification Translation Errors (STE) are 
misunderstandings of design specifications and are focused on 
aspects associated directly with the specification.  The 
sequence of behavior with changed events creates a test space 
around the behavior.  The motivation for changing the system 
with these changed events (i.e. the sequence of events are 
modified, deleted, or changed in order) models a possible 
misunderstanding within the neighboring behavior.  To model 
the variances of added or subtracted code due to these possible 
misunderstandings, the scenarios are modified in order to 
capture additional potential bugs and catch corner statement 
coverage which are not detected by utilizing correct scenarios 
developed from the specification directly.   

Three types of errors are modeled: 

• Additive 

• Modification 

• Subtractive 
  

An additive error is one in which the designer adds a 
dependency that is not specified in the design.  In the code, 
added possibilities in the form of extra code are again not in the 
specification.  

A modification error is one in which a set of signal 
modifications change the values of the signals (high to low, 
negedge to posedge and vice versa) as well as operations and 
control sequences.  In the code, these modifications are the 
product of a misunderstanding of the specification.  

SetUpdate -> UpdateHi&&NegEdge; 

 

UpdateHi -> “UpdateWR = 1”; 

 
NegEdge -> ClkHi, ClkLo; 

... 

 

... 
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A subtractive error is one in which the designer subtracts or 
leaves out a dependency that is in the specification of the 
design.  Subtractive errors are not present in the code and only 
present in the specification. 

In verifying that the behavior of a design matches the 
specification, SBM is needed to formalize the specification and 
help to provide a framework for modeling and generation of 
tests based on the specification rather than just focusing on the 
structure of a design.  SBM used in conjunction with structure-
based metrics will bolster error coverage because errors that do 
not fall within the rubric of those specific to the design’s 
structure but based on dependencies or specified non-
dependencies in the specification will additionally be 
identified.   

These are not errors in the specification but in the 
translation of the specification.  To explain the use of scenario-
based modeling for test generation to discover specification-
based errors, we propose simple application of the SBM 
technique to illustrate how scenarios assist in a deeper coverage 
of error detection for designs.  For instance, a blackjack 
application has a certain set of rules.   

One such rule is as follows (see Figure 6): 
An ace doubles as a 1 and an 11 (depending on which is most advantageous to 

the player). 

Figure 6.  Example of a rule in blackjack. 

Coded in its entirety, the rule is as follows (see Figure 7): 

int handValue (hand) { 
... 
if (card == ace) { 

// total_value is the computed card value total  
 if (total_value > 10) { 
  ace_value = 1; 
 } else { 
  ace_value = 11; 
 } 
 total_value = total_value + ace_value; 
} 
} 

Figure 7.  Coded example of a rule in blackjack. 

However, if the grayed out part of the specification happens 
to be left off or not caught by the designer (i.e. this is a missed 
part of the specification by the designer that may not have been 
implemented in the code, and it is not a problem with the 
specification itself), the rule and coding drastically change. 

If the designer omitted the part of the rule in the 
specification which stated that an ace could be an 11 (in 
addition to being a 1), a traditional test generation technique 
would not catch this omission by the designer in the code 
because it is an error caused by an omission (not incorrect 
implementation) of a rule.  Achieving 100% coverage will not 
necessarily reveal a bug such as this.  Because of this, 
generating tests based on scenarios is a good idea because the 
scenarios which are based on the specification (not code) 
would not miss this property. 

VII. TYPES OF TARGETED ERRORS 

We are targeting subtractive errors that can easily happen in 
designs with large specifications and that cannot be detected 

without information from the specification itself.  For instance, 
the IEEE 1500 specification is one of the smallest 
specifications available and is approximately 130 pages in 
length.  There is a lot of room for misunderstandings and 
mistakes.  Also, specifications often change (and so 
dependencies may be missed.  If parts of the specification are 
implemented by separate groups, this adds a further level of 
complexity.  It is easy for a designer to read a part of the 
specification out of context and add or leave out an important 
dependency.  Perturbation errors match those errors that one 
would make due to a misunderstanding of the specification.  
These errors would model the erroneous from the original 
because it is an implementation and model of the 
misunderstanding of the specification.  Statement coverage 
could not assist the verification engineer in identifying this type 
of error.  This motivates why scenario-based modeling will 
detect these scenario-based errors. 

Expanding on the scenario which was derived from the 
specification (Figure 4), a Verilog testbench (Figure 8) can be 
derived from the scenario (Figure 5). 

// Verilog Header 
// Additional signals 
... 
@(negedge WRCK) 
UpdateWR = 1; 
... 
// Verilog Footer 

Figure 8.  IEEE 1500 Specification Scenario to Verilog Testbench Example. 

Targeting the three errors which perturb the design in an 
undesirable way, the following are additive, modification and 
subtractive errors. 

... 
@(negedge WRCK) 
UpdateWR = 1; 
ShiftWR = 1; 
... 

Figure 9.  Additive Error Injection Example. 

Figure 9 is an example of a Verilog testbench excerpt 
created to detect a particular additive error.  The “ShiftWR = 
1;” statement is the added signal. 

... 
@(negedge WRCK) 
UpdateWR = 0; 
... 

Figure 10.  Modification Error Injection Example.  

 Figure 10 is an example of a Verilog testbench excerpt 
created to detect a particular modification error.  The original 
“UpdateWR = 1;” statement is modified to be “UpdateWR = 
0;”. 

... 
@(negedge WRCK) 
... 

Figure 11.  Subtractive Error Injection Example. 

Figure 11 is an example of a Verilog testbench excerpt 
created to detect a particular subtractive error.  The original 
“UpdateWR = 1;” statement is subtracted from the Verilog. 
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The original scenarios were perturbed to create the 
testbench.  In these examples, we are concentrating on control 
sequences (not data sequences).  The data is randomly 
generated. 

VIII. SBM SYSTEM 

Scenario-Based Modeling (SBM) techniques expose STE, 
errors based on a mistranslation of specifications.  The SBM 
system consists of a scenario perturbation generator that 
generates scenario tests and a Verilog generator that generates 
the Verilog testbenches.   

A. Scenario Perturbation Generator 

In the example regarding the blackjack application, a 
scenario for the rule would be as follows (see Figure 12): 

handValue -> total_value; 
total_value -> ((current_value > 10: ~ace_value) ||  

(current value <= 10:ace_value)): current_value + ace_value; 
card_ace = ace; 
~card_ace = ~ace; 
~ace_value = ACE_LO = 1; 
ace_value = ACE_HI = 11; 

Figure 12.  Scenario Example. 

Synonymous to the errors targeted are two types of 
perturbations to the scenarios are as follows.  Additive 
perturbations will include adding variable assignments and 
branches in a control path.  This includes operation 
perturbations will include changing comparator operations and 
arithmetic operations.  Signal perturbations change values of 
the signals (high to low, negedge to posedge and visa versa) as 
well as operations and control sequences.  Subtractive 
perturbations include taking away variable assignments and 
branches in a control path.   

B. Verilog Generator 

Just as the PBS compiler of [1], the compiler has been 
implemented in C code which compiles input specifications 
containing scenarios (instead of productions in [1]) and outputs 
testbenches in the form of Verilog code segments (instead of 
VHDL in [1]).  The scenarios are composed of symbols and 
operators.  The symbols are terminal and operators combine 
sub-machines to create more complex machines. K”. 

IX. TESTBENCH GENERATION ALGORITHM 

Our goal is to create Verilog testbenches from scenarios 
directly created from the specification of a design.  If the 
scenario is not complete, for example in the case when a signal 
dependency was not written into the scenario by the 
verification engineer, the designer should know what the 
results should be.   

A. Algorithm 

The algorithm for creating the testbenches using SBM is as 
follows (see Figure 13): 

Input:  Timing diagram and/or specification scenario description 

 

1.  Generate scenarios. 

1.1.  Start from high-level scenario of desired function/operation 

1.2.  In breadth-first search (BFS) traversal, build from lower level 

hierarchy of nodes to higher level scenarios to create a scenario 

graph. 

1.3.  Continue until leaf nodes (nodes which contain signal 

assignments) are reached. 

2.  Inject scenarios with additive, modification and subtractive errors. 

3.  Translate scenarios into Verilog control logic portion of testbench. 

4.  Add translated scenarios to complete testbench. 

5.  Add header and footer to testbench. 

 

Output:  SBM testbench 

Figure 13.  Pseudo-code of Algorithm for Creating Testbench. 

To create an SBM testbench, the designer starts with the 
specification.  A timing diagram and/or specification scenario 
description at a high level is extracted from the complete 
specification to create each scenario until all scenarios are 
extracted from the complete specification.   

For each scenario, the high-level scenario description is 
derived.  To reach a lower level of the scenario hierarchy, the 
designer gets closer and closer to the leave nodes (which are 
tokens as described in [1]).  Once the leaf nodes have been 
reached, the scenario graph is completely generated.  (Figure 5 
shows an excerpt example of this.)   

Once the scenario graph is created, a textual representation 
using the production algebra presented in [1] can be generated 
for the scenario.  Injected in this textual representation of the 
scenario are the additive, modification and subtractive errors.  
From this textual representation, an SBM testbench in Verilog 
code is generated.  The additive, modification and subtractive 
errors should not be confused with those errors which may be 
erroneously injected into the design by the designer.  These 
errors are translated into test sections for use in the creation of 
the testbench. 

X. EXPERIMENTAL RESULTS 

We compared our Scenario-Based Modeling (SBM) 
method with that of the random method of test generation of 
data by using the IEEE 1500 specification [11] as our 
benchmark design with a simple core.    Figure 14 shows an 
overview of the simulation and results comparison.  Based on 
the specification, we made scenario graphs which were 
translated into behavioral/register transfer level (RTL) Verilog.  
Our design (excluding the core that was tested within the 
design) had 779 lines of code (LOC) from the original 
specification that contained approximately 130 pages.  We used 
our SBM model to generate the SBM testbench using 4 
scenario graphs, each containing approximately 30 nodes and 
approximately 10 of which were leaf nodes.  We compared our 
SBM method with that of a standard random algorithm.       

 

 

 

 

Figure 14.  Simulation and results system. 
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A golden design was compared to 20 erroneous designs 
(each with one subtractive STE injected into the golden 
design).  The erroneous designs modeled subtractive errors by 
line deletions and branch deletions.  We then computed line 
(statement) coverage and defect coverage as shown in Table 1.  
The “Erroneous Design” column of Table 1 lists all 20 
wrapper versions with errors injected in the design.  The next 
columns compare the “Line Coverage” for both “SBM” and 
“Random” methods of testing.  The “Defect Detected?” 
columns show a comparison of results found for “SBM” and 
“Random” methods of testing with respect to whether a defect 
or error was detected or not detected (a “Yes” in the column 
denotes that an error was detected and a “No” that an error was 
not detected).   

The defect coverage results, displayed in Table I, were 
significantly higher for the SBM method of test generation over 
that of the random method.  For defect coverage, the random 
method resulted in about 10% coverage while SBM resulted in 
about 70% coverage. 

Contrary to the actual defect coverage results, the line 
coverage results, also shown in Table I, were showing at least 
99.99% for both SBM and random generation methods.   

TABLE I.  TABLE OF RANDOM VS. SBM TEST GENERATION LINE 

COVERAGE AND DEFECTS DETECTED 

Erroneous Design  Line Coverage Defect Detected? 

SBM Random SBM Random 

1 

 
100 100 Yes Yes 

2 99.99 99.99 No No 

3 100 99.99 Yes No 

4 99.99 99.99 No No 

5 100 100 Yes Yes 

6 99.99 99.99 No No 

7 
100 99.99 Yes No 

8 99.99 99.99 No No 

9 100 99.99 Yes No 

10 100 99.99 Yes No 

11 100 99.99 Yes No 

12 100 99.99 Yes No 

13 100 99.99 Yes No 

14 
99.99 99.99 No No 

15 99.99 99.99 No No 

16 100 99.99 Yes No 

17 
100 99.99 Yes No 

18 100 99.99 Yes No 

19 100 99.99 Yes No 

20 100 99.99 Yes No 

Comparison of Random vs. SBM Line Coverage and Determination of Defects Detected Results 

 

Figure 15 shows the number of errors detected over the 
time taken to detect the errors (in simulation clock cycles).  The 
defect coverage (rate of error detection) was derived from the 
fault coverage over time graphs generated for Figure 15.  The 
complete simulation time for non-detected errors was 179465 
cycles (i.e. the length of the entire testbench run to 
completion).     

 

Figure 15.  Defect coverage results. 

Figure 15 shows the dramatic improvement of errors 
detected by SBM over the random method of test generation 
even with line coverage numbers showing 99.99% or above for 
both methods of test generation.   

XI. CONCLUSION 

A model and an implementation for hardware verification 
from scenarios are proposed in this paper.  For many types of 
complex behavior, SBM has advantages over procedural 
methods which exclude specification analysis.  This 
specification technique can be useful for the hardware 
verification engineering and joint co-validation techniques.   

In this paper, we improved test generation by incorporating 
traditional coverage targeting techniques with that of our 
proposed SBM technique to specifically expose subtractive 
STE.  The comparison of actual defect coverage improvements 
with those assumed using traditional coverage to gain 
confidence in validation and verification efforts have resulted 
in misleading information provided by relying solely on 
coverage details to determine verification and validation 
confidence in defect coverage.  With SBM, subtractive STE 
were detected at a much higher rate than relying on traditional 
code based methods which focus on coverage metrics to 
determine verification and validation confidence.   

Future work will evaluate similar techniques used for 
results checking. 
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