
2012 IEEE 30th VLSI Test Symposium (VTS)

Towards Spatial Fault Resilience in Array
Processors

Suraj Sindia∗ Vishwani D. Agrawal†
Department of Electrical and Computer Engineering

Auburn University, Alabama, AL 36849 USA
∗Email: szs0063@auburn.edu †Email: vagrawal@eng.auburn.edu

Abstract—Computing with large die-size graphical processors
(that need huge arrays of identical structures) in the late CMOS
era is abounding with challenges due to spatial non-idealities
arising from chip-to-chip and within-chip variation of MOSFET
threshold voltage. In this paper, we propose a machine learning
based software-framework for in-situ prediction and correction
of computation corrupted due to threshold voltage variation of
transistors. Based on semi-supervised training imparted to a
fully connected cascade feed-forward neural network (FCCFF-
NN), the NN makes an accurate prediction of the underlying
hardware, creating a spatial map of faulty processing elements
(PE). The faulty elements identified by the NN are avoided in
future computing. Further, any transient faults occurring over
and above these spatial faults are tracked, and corrected if
the number of PEs involved in a particle strike is above a
preset threshold. For the purposes of experimental validation,
we consider a 256 × 256 array of PE. Each PE is comprised
of a multiply-accumulate (MAC) block with three 8 bit registers
(two for inputs and one for storing the computed result). One
thousand instances of this processor array are created and PEs
in each instance are randomly perturbed with threshold voltage
variation. Common image processing operations such as low pass
filtering and edge enhancement are performed on each of these
1000 instances. A fraction of these images (about 10%) is used
to train the NN for spatial non-idealities. Based on this training,
the NN is able to accurately predict the spatial extremities in
95% of all the remaining 90% of the cases. The proposed NN
based error tolerance results in superior quality images whose
degradation is no longer visually perceptible.

I. INTRODUCTION

Scaling of MOS transistor dimensions (thanks to Moore’s
law) has led to a steady increase in functions offered by
microprocessor chips. Additionally, the performance (or speed)
offered by these scaled devices has also been exponentially
increasing. The unprecedented growth in performance of com-
puters, however, has come at a price of an exponential increase
in power density (power per unit area). After a point, roughly
starting from the later half of the last decade, manufacturers
have restrained from increasing the operating frequency of
microprocessor chips. This stalling in frequency has prompted
microprocessor industry to shift to an alternative computing
paradigm such as parallel computing, where individual com-
puters perform at a slower rate, but manage to accomplish
functional tasks concurrently to be counted as an individual
computer operating at a much faster rate (being roughly equal
to number of parallel processors × operating frequency of
individual processor).

Another possible route to mitigate the increase in power
density with successive generations of a microprocessor chip,
without stalling frequency scaling, is to downscale the supply
voltage. Such a scaling model is popularly referred to as
constant electric field scaling [5].

Regardless of the route taken to minimize power density
to keep up the performance gains, the semiconductor industry
is beginning to hit a road-block attributed to increased manu-
facturing process related variations. Reference [1] presents an
insightful discussion on the trends in frequency and voltage
scaling in the face of increased process variation in advanced
CMOS technology nodes. Table I (reproduced from [1]) shows
scaling trends in CMOS and its impact on energy, and speed in
the advanced CMOS nodes. It predicts variability in transistor
characteristics, both within-die and across dice as the single
most important impediment to performance gains in highly
scaled CMOS nodes. Variability in transistor characteristics
within the chip has led to a few gates (also referred to in
literature as “outliers”), located at spatially disjoint locations
to offer delays that are significantly higher, and in many cases,
these “outlier” gates lie on the critical path, or paths that
would nominally (without any process variation) have had
delays that are comparable to critical path delay. Presence
of an “outlier” on critical path or close to critical-path leads
to an abrupt increase in the delay offered by these paths,
consequently reducing the maximum operable frequency at
which functionality of the circuit is guaranteed to be correct.
However, if one can trade functionality for speed, that is,
under the assumption that only a few paths may have these
“outliers,” then we should still be able to operate the circuit
at its maximum speed (as if there were no process variation)
alibi with a few errors. The difficulty, however, is that with
the advancement of processor nodes, errors due to device
variability and transient failures in processing element (PE)
may increase to such an extent that for most applications,
including image processing where error tolerance techniques
have been studied [2], [3], [4], [10], the quality of results
obtained may not be satisfactory.

The objectives of this work are to–

• Evaluate the impact of such an “un-guaranteed perfor-
mance” when we operate circuits at a rate faster than
they assuredly can–on common applications in image
processing such as low pass filtering, and edge detection.

• Propose an error resilience mechanism based on neural
networks (NN) to identify faulty processing elements
(PE), and avoid these PE completely from computing all
future results if they are degraded beyond a pre-specified
threshold.

The paper is organized as follows. Section II describes the
recent efforts in literature where process variation noise in
hardware is considered and schemes for tolerance, resilience,
and/or mitigation of the same are proposed. Section III de-

Maui, HI, April 23-25, 2012 288 978-1-4673-1074-1/12/$31.00 c⃝2012 IEEE



TABLE I
TECHNOLOGY SCALING PREDICTIONS FOR THE END-OF-CMOS ERA [1].

MANUFACTURING PROCESS VARIATION IS PROJECTED AS THE SINGLE
BIGGEST IMPEDIMENT FOR PERFORMANCE AND ENERGY IMPROVEMENT

WITH DEVICE SCALING.

High Volume 2006 2008 2010 2012 2014 2016 2018
Manufacturing

Technology 65 45 32 22 16 11 8
node

Integration 4 8 16 32 64 128 256
capacity

Delay= CV
I ≈ 0.7 > 0.7 Delay scaling will

scaling slow down
Energy/Logic > 0.5 > 0.5 Energy scaling will

Op scaling slow down
Variability Medium High Very High

scribes the impact of process related threshold voltage vari-
ation on CMOS gate delay. Details of the signal processing
fabric built to model process variation and a numerical model
to capture functional violations due to process variation is
presented in Section IV. Section V presents a comparison of
image quality obtained by performing common image process-
ing tasks on this signal processing fabric–with, and without,
PV degradation. Section VI discusses the proposed neural
network based on-line error tolerance scheme for avoiding
PE that are degraded beyond a pre-specified threshold. We
conclude in Section VII.

II. RELATED WORK

As we saw in the previous section, manufacturing variations
in the device tends to slow down a circuit/gate. However, if we
choose to operate transistors at the same speed disregarding
the prevalent process variation, then the functionality of the
circuit in question is no longer guaranteed to be correct.
Seminal work on error tolerance under large scale defects and
process variation is presented in [2], where in error tolerance
techniques such as error-free operation without reconfiguration
for high volume applications, error-free operation for all
applications through reconfiguration, and error-free operation
with reconfiguration and/or degraded performance/capability
for high-volume applications are discussed. In [3], [4] authors
propose error tolerant design and test schemes for multimedia
applications such as image compression and motion estimation
is videos. “Soft DSP” techniques such as algorithmic noise
tolerance (ANT) [6], [10], which computes the result factoring
the prevalent noise, has been proposed to alleviate the impact
of degradation in results arising from process variations in
advanced CMOS technologies. Another model used for em-
ulating process variation induced or other defects in CMOS
circuits using a probabilistic switching framework is due to
Palem [7]. In a recent paper [9], we proposed the use of non-
linear median filters for off-line image restoration of images
degraded by processing on a PV degraded hardware.

The work presented in this paper differs from the current
literature on two counts. First, while most of the prevalent
work on error-tolerance in image processing has targeted
applications where only the relative values of pixels are
important. For example, in motion estimation [4] the fact that
there is a difference among pixel values is more important than
the actual difference. We target image processing applications

where the actual difference is as important as the fact that
there exists a difference. For example, we consider low pass
filtering based on spatial convolution of pixel values with a
low pass filter mask (see Section V) where in convolution
of the image with the mask can accumulate errors over the
entire operation. Second, most of the error tolerance schemes
use some form of spatial redundancy of all the computing
elements, whereas in this work we propose error tolerance
with little redundant hardware by relying on “error avoidance”
by eliminating the use of faulty PE if they are degraded
beyond a pre-specified threshold, and re-using PE that are not
as degraded. Elements that are faulty beyond a threshold are
identified on-line and continuously by a neural network (NN),
thereby working equally well for transient errors due to a PE
failing for a brief period of time before recovering. The NN
itself can operate on a small footprint additional hardware that
can be degraded as the original circuit.

III. MODELING PROCESS VARIATION

A. MOSFET Threshold Voltage Variation
Process variation is a term used in the very large scale inte-

gration (VLSI) literature to refer to random local variation of
characteristics of two or more transistors that are on the same
die that are ideally expected to have identical characteristics.
Sources of random variation in an integrated circuit, include
(but are not limited to) fluctuation in the number of dopant
atoms in the channel of metal oxide semiconductor (MOS)
transistor, and edge roughness of the laser beam used in lithog-
raphy. These manufacturing process variations are effectively
captured at the MOS transistor device level as variation in
the threshold voltage (Vth) of the MOS transistors. Recent
research [14] has shown that the threshold voltage variation
can be modeled as a normal distribution, N

(
µV th, σ

2
V th

)
with

variance (σ2
V th), normalized with respect to its mean value is

given by
σV th

µV th
=

K√
WL

(1)

where K is a proportionality constant that depends on oxide
thickness and doping concentration and W and L are width
and length of MOS transistor. Plugging in typical numbers
for all quantities above, assuming 90nm technology, we have
K = 8.797× 10−9m, L = 32nm, W = 130nm, which results
in a normalized threshold voltage variance of σV th

µV th
= 13.5%.

B. Impact of Threshold Voltage Variation on Circuit Function-
ality and Performance

Delay td, offered by a logic gate constructed using MOS
transistors is related to threshold voltage of its constituent
transistors as follows

td =
VDD

(VDD − Vth)α
tD0 (2)

where tD0 is delay offered by a gate constructed using zero
threshold voltage transistors (ns)
VDD is supply voltage (volt)
Vth is threshold voltage of MOS transistor (volt)
α is MOS device parameter, value is between 1 and 2. For
more advanced technologies, this parameter is closer to 1.

If there is variation in threshold voltage, that can be modeled
by a Gaussian random variable as described in Section III-A,

289



Fig. 1. Histogram of threshold voltage and delay for channel lengths (A) L
= 45nm, and (B) L = 32nm.

then the distribution in td follows a distribution, that can be
obtained by using the random variable transformation specified
in equation (2). Plots in Figures 1 show the histogram of
threshold voltage (Vth) and maximum delay (td) offered by
1000 instances of an inverter built in L = 45nm and 32nm. It
can be noticed from these plots that the variation in delay
is progressively degrading as the technology is advancing.
This variation in threshold voltage and delay as a function
of technology is summarized in the plot shown in Figure 2.
With the passage of technology, variability in transistors is
consistently worsening the delay distribution of transistors.
That is to say a bigger fraction of transistors will fall outside
the acceptable margins of delay. This has a direct consequence
of increasing the critical path delays of circuits built in high
variability semiconductor processes. To ensure that the circuit
functions correctly, one has to reduce the maximum frequency
at which the circuit is operated. This leads to a loss in
performance/speed offered by the circuit.

20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 Technology, L(nm)

σ/
µ

 

 

delay, td
threshold voltage, Vth

Delay variation increasing at a higher rate 
than variation in threshold voltage with technology

Fig. 2. Variation of delay and threshold voltage as a function of MOS channel
length. Notice that as transistors get smaller, the normalized variability in
delay offered by a logic gate (here an inverter) is increasing.

Fig. 3. Block diagram showing the PDFs of different random variables as
we traverse different levels of abstraction, starting from transistors to software
(or algorithmic level).

IV. LESS THAN ACCURATE COMPUTING

A. Putting Together the Basic Building Blocks

Addition and multiplication are two basic operations needed
for most image processing tasks. For example, convolution,
which is a commonly used operation involves a series of
multiply-accumulate operations of its two inputs. We build 8
bit addition and multiplication units at a logic gate level, while
incorporating faulty behavior as illustrated in Figure 3. Each
bit location is computed through a cascaded chain of logic
gates. The delay of the gates in each of these logic chains is
sampled from Figure 1, depending on the technology used for
hardware emulation. Process variation noise added output, y,
can be related to its input, x, by a non-linear function f ,

y = f (x) (3)

where

x = b7 b6 b5 b4 b3 b2 b1 b0 y = b′7 b
′
6 b

′
5 b

′
4 b

′
3 b

′
2 b

′
1 b

′
0 (4)

and in general, for all i = 1 · · · 7

b′i =

{
bi for td ≤ td,th

0 or 1 for td > td,th with equal probability
(5)

where td is the actual delay offered by the bit line and td,th is
the threshold delay beyond which the bit line enters a meta-
stable state, and the final value that the line settles to, can
be either 0 or 1 with equal likelihood. The number chosen
for td,th is usually the delay offered by a gate that has its
threshold voltage at 3 times the σV th away from the mean
value Vtho given by

td,th = td|V th=V tho+3σV th
(6)

B. Software Emulation

We build a signal processing fabric to deal with images of
size 256×256 pixels. PV is captured in software as follows:
We emulate a 256 × 256 array of 8-bit add-store units.
Each add-store unit in turn consists of cascaded chain of 1
bit full adders to function as 8-bit adder with their outputs
connected to 8-bit register as shown in Figure 4. The full adder
consists of AND-OR logic gates, whose delays are sampled
from delay distribution described in Section IV-A. We use
these arrays of add-store units to perform eight bit arithmetic
operations such as addition and subtraction. Multiplication
is achieved by repeated addition. Further, if any arithmetic
operation results in a value in excess of 255, the add-store

290



Fig. 4. Synthesis of 256×256 MAC array, with PV noise added for software
emulation of PV degraded hardware.

elements are designed to saturate to 255, thus mimicking real-
world scenario where 8-bit gray scale images have a maximum
intensity level of 255. For simplicity, we do not use color
images and restrict ourselves to the use of gray scale images
in all our experiments, as we shall see in the sequel.

V. IMAGE DEGRADATION IN LOW PASS FILTERING AND
EDGE ENHANCEMENT

We conducted a low pass filter operation on two test images
“cameraman” and “baby face”. For both the test images, we
repeated the experiment with and without process variation.
For low pass filtering, we used the mask:

ξ = .25×
(

1 1
1 1

)
(7)

From both the images that we subjected to low pass fil-
tering on the processor with process variation noise added,
we find that the resulting images tend to have an increased
concentration of scattered white and black spots (similar to
salt and pepper noise). We also notice that the concentration
of white saturated points is more than black points. This can be
reasoned out as follows: Low pass filtering which is averaging
tends to increase the low level intensities. If there are any MSB
bit flips to zero (making the value smaller than what it should
be), in the early portions of the processing, their effect gets
alleviated over subsequent steps of filtering. However, if there
is a MSB bit flip to a 1, this effect tends to be cumulative,
often giving rise to an increased concentration of bright spots.

Edge enhancement is an image processing operation where
the spatial discontinuities in pixel values of an image are
computed, and they are then added to the original image to
emphasize these discontinuities; the resulting image is usually
a sharper-looking version of the original image. Figure 5
shows edge enhanced image obtained from processing without
and with process variation. The degree of sharpness itself
depends on the fraction of the edge information added to the
original image. Notice the pronounced accumulation of white
spots in the edge enhanced image due to the cumulative effect
of bits flipping to 1. For high pass (HP) filtering, which is an
intermediate step to find the edges in the original image, we
use the spatial HP filter mask:

Fig. 5. Comparison of “Camera-man” and “baby-face” image with
processing–low pass filtering with mask ξ on “Camera-man” and edge
enhancement with HP mask ψ on “baby-face”–carried out on hardware with,
and without process variation. Process variation noise added is equivalent to
the model developed for 32nm technology node (delay σ/µ = 13.5%).

ψ =

(
1 −1
−1 1

)
(8)

VI. ERROR TOLERANCE USING NEURAL NETWORK

Neural networks are known to be inherently resilient [8] to
faults in their basic computing elements–neurons. This served
as the motivation for the use of neural networks for identifying
faulty pixels, since the hardware used for building the NN is
also assumed to have the same level of process variation as
the PE. In the following sections, we shall describe the neural
network architecture used for on-line identification of faulty
pixel locations, data set and training of NN, and the validation
phase of the proposed neural network for different levels of
process variation noise and different sets of input images used.

A. Neural Network Architecture
The neural network serves to decide the pixel locations

that are faulty across a range of different input images and
levels of process variation noise in the underlying hardware.
In order to achieve such a pixel-fault identification, we use a
fully connected cascade feed-forward neural network (FCCFF-
NN) [12]. FCCFF-NN are known to solve hard problem
such as N−input odd parity problem with a maximum of
log2 (N + 1) neurons, while the conventional multilayer feed
forward network, with one hidden layer, without cascade,
requires as many as N neurons. The choice of FCCFF-NN was
critical for this application since we have a total of 8×8 = 256
inputs and an architecture that is efficient in the number of
neurons will allow an area efficient hardware implementation.
The neural network used is shown in Figure 6. It has 256
inputs, and 256 outputs. Each input to the NN is a PE output
from the most recently computed operation. The outputs of the
NN can take values in the range -1 through 1; with -1 implying
the computed value by PE is very likely to be incorrect and +1
if the computed value by the PE is very likely to be correct.
The neurons in the hidden layer (colored blue in Figure 6) are
all bipolar with hard activation function. The output neurons
(colored red in Figure 6) are weighted summing blocks of the
preceding hidden neurons and the inputs. We use 36 hidden

291



Fig. 6. Fully connected cascade feed-forward neural network. Bipolar
neurons with hard activation are used for hidden layer, while output neurons
are weighted summers of outputs from all the hidden neurons and inputs.

neurons connected as a fully connected cascade, in addition
to the 256 output summing blocks (alternately referred to as
output neurons in the paper). Transfer functions of both these
type of neurons is shown in Figure 6. We will next describe the
data sets used for training and the training procedure imparted
to the neural network for faulty pixel identification.

B. Content Rich Data Sets for Training
There are three control parameters that can be varied in

order to gather sufficiently content rich data for setting up
the NN training. First, the original input image that is to be
processed on the PE array. Second, the underlying hardware
used for processing the images. Finally, the operation to be
performed on this image-either low pass filtering or edge
enhancement.

As for the first control parameter, we used 10 images, two
of which are shown in Figure 5. For diversity in the second
control parameter, we created 1000 instances of the PE array
shown in Figure 4. Gates in each instance of the PE array
are assigned random delays sampled from the PDF of gate
delay distribution at the 32nm technology node (for example,
delay distribution of an inverter in 32nm node is shown in
Figure 1). Out of these 1000 instances, 100 instances are used
for processing images to generate sufficient data for training.
Finally, for the last control parameter, we use five of the ten
images for low pass filtering (we will refer to it as LP group),
and the rest for edge enhancement (referred to as EE group).
Each of the five images from LP and EE group are processed
on all 100 instances of the PE array. Thus we have a total
of 100 × (5 + 5) = 1000 images for training the NN. Next
to serve as a reference (ideal output from PE array) in the
training phase, we process each of the five images from both
the groups on a fault-free PE array resulting in 10 images.

C. Training the Neural Network
From the outputs of the original PE array of size 256×256,

blocks of size 8×8 are used as input to the NN. Each output of
the NN has a possible range of [-1,1]. The outputs of the NN
are trained to take values of -1 if there is a difference beyond a
threshold τ between PV degraded output and the ideal output,
and are trained to take the value 1 if the difference is less than

0 200 400 600 800 1000
90

92

94

96

98

100

 Index of PE array instance

 A
cc

ur
ac

y 
of

 d
et

ec
tio

n 
(A

D
)

 

 

τ =50
τ = 20

Fig. 7. Accuracy of detection of faulty pixels in different instances (1–900)
by the neural network for a threshold τ = 20 and τ = 50.

this threshold τ . The value τ can be set any value between a
minimum 1 and a maximum of 255. Setting a value of τ = 1
would imply the margin for error is tight, and that any PE
whose computation leads to even one intensity level different
from the ideal value will be considered faulty. Conversely, if
τ is set to a higher value then PE whose computed results
are within τ intensity levels of the ideal value are considered
fault-free.

We use neuron by neuron (NBN) training algorithm [13],
which has significantly improved convergence when compared
to the conventional error back propagation training for FCCFF-
NN. The NBN training kit is available online at [11].

D. Validation of Neural Network Training
The NN training imparted is now validated on a new data

set. This is drawn as follows: A fresh set of 10 images not
used in the training phase is chosen. These are split again into
LP group and EE group. Each of the five images from both the
groups are processed on the remaining 900 instances of the
PE array that was created earlier. This amounts to every array
instance being tested with 10 image processing operations–five
for LP filtering and the rest for edge enhancement.

We now characterize performance of the NN with two
figures of merit: 1) accuracy of detection (AD) and 2) mis-
prediction (MP ). For a given array instance, if Nact is the
number of PE that are faulty, that is PE whose computed value
is different from the desired value by more than threshold τ
(We used τ = 20 for all instances); and Ndetect is the number
of PE that was found by the NN to be faulty accurately, then
we define, accuracy of detection (AD) to be

AD =
Ndetect

Nact
. (9)

We define mis-prediction (MP ) to be the ratio of number
of PE, Nmis−pred, that were found to be faulty incorrectly by
the NN to the total number of PE that are actually fault free.
We therefore have

MP =
Nmis−pred

Ntot −Nact
, (10)

where Ntot is the total number of PE in the array. In our
experiments, we have Ntot = 65536.

Figure 7 shows bar graph of the accuracy with which
individual PE were identified as faulty by the NN for each

292



0 200 400 600 800 1000
0

1

2

3

4

5

 Index of PE array instance

 M
is

pr
ed

ic
tio

n 
(M

P
) 

%

 

 

τ = 50
τ = 20

Fig. 8. Rate of mis-prediction (in %) by NN for threshold τ = 20 and
τ = 50 for all instances. The means are 0.5% and 0.3% for τ = 20 and
τ = 50, respectively.

instance (plotted along the x-axis). Mean accuracy is 95%.
We repeat the experiment with another value of τ = 50,
and find that the performance of the NN improves to a mean
accuracy of 97%. This can be reasoned as follows: difference
between actual and desired PE values become discernible as
the difference increases; neurons in the neural network, similar
to the human eye, can perceive differences better when it
is greater. Figure 8 shows a bar graph of mis-prediction for
different array instances by the NN. Again, higher threshold
τ = 50 results in much smaller mis-prediction. We next look
at an on-line error tolerance scheme using this trained NN.

E. On-Line Error Tolerance
PE identified to have been faulty by the NN is precluded

from future computation, instead re-using PE whose perfor-
mance is acceptable. Such a scheme while requires additional
time due to PE re-use, it offers significant benefits in the
quality of images perceived. Figure 9 shows a test image
“Lena” processed (LP filtered) on a PE array with and without
precluding faulty elements as predicted by NN. We see signif-
icant improvement in visual quality when NN based decision
is used for excluding PE that are faulty and re-using PE’s
that are deemed to be good by NN. Further NN monitors PE
outputs after each operation, and continuously updates list of
PE that are faulty, which allows the scheme to be resilient
against transient errors.

VII. CONCLUSION AND FUTURE WORK

A neural network based on-line error tolerance scheme for
countering process variation related degradation in array pro-
cessors was proposed. The key take-away from this work is the
demonstration of spatial tolerance without having to increase
redundancy in the processing elements. Instead, we use an
intermediate layer of intelligence such as neural network to
identify which computation is good enough and which is not.
While neural networks can serve to identify the faulty elements
in array processors, greater investigation is required on the
possibility of using NN itself as PE [2] in the array so that one
can leverage the error resilient properties of neural network.

REFERENCES

[1] S. Borkar, “Design Perspectives on 22nm CMOS and Beyond,”
in Proc. 46th ACM/IEEE Design Automation Conf., July 2009,
pp. 93–94.

[2] M. A. Breuer, S. K. Gupta, and T. M. Mak, “Defect and Error
Tolerance in the Presence of Massive Numbers of Defects,”
IEEE Design & Test of Computers, vol. 21, no. 3, pp. 216–227,
May-June 2004.

Fig. 9. A test image “Lena” illustrating improved visual quality with achieved
with the NN based error tolerance. Notice the increased white spots in the PV
degraded image (right top) due to the accumulated effect of MSBs flipping.

[3] I. S. Chong and A. Ortega, “Hardware Testing for Error Tolerant
Multimedia Compression Based on Linear Transforms,” in Proc.
20th IEEE Int. Symp. Defect and Fault Tolerance in VLSI
Systems, Oct. 2005, pp. 523–531.

[4] H. Chung and A. Ortega, “Analysis and Testing for Error
Tolerant Motion Estimation,” in Proc. 20th IEEE Int. Symp.
Defect and Fault Tolerance in VLSI Systems, Oct. 2005, pp.
514–522.

[5] B. Davari, R. H. Dennard, and G. G. Shahidi, “CMOS Scaling
for High Performance and Low Power - the Next Ten Years,”
Proc. IEEE, vol. 83, no. 4, pp. 595–606, Apr. 1995.

[6] R. Hegde and N. R. Shanbhag, “Energy-Efficient Signal Pro-
cessing via Algorithmic Noise-Tolerance,” in Proc. International
Symp. Low Power Electronics and Design, 1999, pp. 30–35.

[7] K. V. Palem, “Energy Aware Computing Through Probabilistic
Switching: A Study of Limits,” IEEE Trans. Computers,, vol. 54,
no. 9, pp. 1123–1137, Sept. 2005.

[8] M. N. O. Sadiku and M. Mazzara, “Computing with Neural
Networks,” IEEE Potentials, vol. 12, no. 3, pp. 14–16, Oct. 1993.

[9] S. Sindia, F. F. Dai, V. D. Agrawal, and V. Singh, “Impact of
Process Variations on Computers used for Image Processing,”
in Proc. IEEE Int. Symp. Circuits and Systems, May 2012.

[10] G. V. Varatkar and N. R. Shanbhag, “Error-Resilient Motion
Estimation Architecture,” IEEE Trans. Very Large Scale Inte-
gration Systems, vol. 16, no. 10, pp. 1399–1412, Oct. 2008.

[11] B. M. Wilamowski, “Neuron by Neuron Trainer 2.0.”
http://131.204.128.91/NNTrainer/index.php, accessed on Oct.
10, 2011.

[12] B. M. Wilamowski, D. Hunter, and A. Malinowski, “Solving
Parity-N Problems With Feedforward Neural Networks,” in
Proc. International Joint Conf. Neural Networks, volume 4, July
2003, pp. 2546–2551.

[13] B. M. Wilamowski and H. Yu, “Neural Network Learning With-
out Backpropagation,” IEEE Trans. Neural Networks, vol. 21,
no. 11, pp. 1793–1803, Nov. 2010.

[14] X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib,
D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H.
Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim,
“Transistor Mismatch Properties in Deep-Submicrometer CMOS
Technologies,” IEEE Trans. Electron Devices, vol. 58, no. 2, pp.
335–342, Feb. 2011.

293


