

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

A dynamic reconfiguration mechanism to increase

the reliability of GPGPUs

Josie E. Rodriguez Condia†, Pierpaolo Narducci*, M. Sonza Reorda‡, L. Sterpone§
Politecnico di Torino, Torino, Italy

*pierpaolo.narducci@studenti.polito.it, {†josie.rodriguez, ‡matteo.sonzareorda, §luca.sterpone}@polito.it

Abstract1— General Purpose Graphic Processing Units (GPGPUs)

are effective solutions for high-demanding data processing

applications. Recently, they started to be used even in safety-critical

applications, such as autonomous car driving systems. GPGPUs are

implemented using the latest semiconductor technologies, which are

more prone to faults arising during the lifetime operation. However,

until now fault mitigation solutions were not extensively included in

GPGPUs, due to the limited reliability requirements of the

applications they were originally intended for (e.g., gaming or

multimedia). This work proposes a dynamically configurable self-

repairing mechanism aimed at mitigating the impact of permanent

faults in the Scalar Processor (SP) cores in GPGPUs. The

mechanism is based on spare modules that can be used to replace

faulty SPs when a fault is detected. A configuration instruction

allows dynamically controlling in software the selection of the set of

active SPs in the SM. The method is extremely flexible since it does

not require any change in the application software. Experimental

results show that the solution introduces a moderate area overhead

while allowing continue working even in the case of any permanent

faults affecting the SPs.

Keywords— Fault mitigation, Fault tolerance, General Purpose

Graphics Processing Units (GPGPUs), Graphics Processors.

I. INTRODUCTION

In the last two decades, General Purpose Graphic Processing
Units (GPGPUs) have become effective solutions mainly
employed in data-intensive commercial applications, such as
multimedia, multi-signal analysis and high-performance
computing (HPC), thanks to their highly parallel architecture.
Actually, this technology is a promising solution in many
computationally-intensive applications requiring fast and real-
time signal processing.

In the automotive field, GPGPUs are already commonly
adopted in sensor-fusion systems and Advanced Driver-
Assistance Systems (ADAS)[1]. These devices are designed for
high-performance requirements and low power consumption.
Thus, it is common to employ for their manufacturing the latest
technology scaling approaches. Nevertheless, it is well-known
that these technologies are more prone to suffer from faults during
both production and lifetime operation, raising some concerns in
terms of reliability [2]. More in detail, the new devices may suffer
from critical effects, such as wear-out, causing the dropping in
long-term reliability of the device, and aging, increasing the
number of permanent faults in the device. In fact, these
technologies introduce new reliability challenges in the long-term,
where traditional end-of-production test approaches are not
enough [3].

1 This work has been partially supported by the European Commission

through the Horizon 2020 RESCUE-ETN project under grant 722325.

Most commercial GPGPUs include fault mitigation
mechanisms for memories based on Error Correcting Codes
(ECCs). In most industrial applications, these ECCs provide the
required reliability. In the worst case, when the GPGPU stops
working, it may be replaced.

A different scenario exists in the automotive industry. For this
kind of functional safety applications, the effects of a fault may
cause unacceptable operational failures. Thus, GPGPUs may
require complementary fault mitigation solutions to be applied
during real-time operation.

Traditional solutions to increase the reliability of digital
design are based on hardware, software, and hybrid approaches.
The hardware mechanisms are considered as feasible solutions in
applications with strong requirements in terms of functional
safety and reliability, such as the automotive one. In this case, an
additional cost can be justified by the improved features and
capabilities. Hardware solutions include Duplication with
Comparison (DWC), Double and Triple Modular Redundancy
(DMR, TMR), ECC and the hardening of selective logic gates [4].
The adoption of these solutions requires a careful evaluation of
the involved area and power consumption overhead. Moreover,
some of these techniques are mainly intended to mitigate the
effects of transient faults in a system. In contrast, mitigation of
permanent faults requires strategies, such as Built-In Self-Repair
(BISR), replacing a faulty block with a spare one.

In BISR, the granularity of the block depends on the target
module, and the complexity and criticality of the device [5]. In
the past, BISR has been successfully applied in the memory
blocks of processor-based systems by adding spare rows,
columns, and additional controller structures to correct faults
during the production phase and also during in-field execution [6,
7]. Other works [8-10] targeted data-path units, such as the
register file, and some internal components of the execution units
(EUs)[11]. Similarly, some works proposed reconfiguration
solutions targeting computational blocks in GPGPUs [12] or other
modules in the GPGPU, such as the memories [13], and
functional units [14], or combinations of both aligning the system
to the specific workload requirements [2, 15]. In [16], the author
proposes selective hardware redundancy to correct defective
blocks during the production stage. This method is intended to
increase the production yield during manufacturing.

Other works introduced functional tests [17, 18], fault
detection [19-22], and mitigation [23-25] strategies only based on
software mechanisms. These solutions are effective in detecting
most faults and tolerating a high percentage of them. Moreover,
the added area overhead is zero. Nevertheless, their cost in terms
of performance degradation and memory overhead may be
relevant due to these solutions are implemented by instrumenting
the application code with custom functions. Similarly, in [26], the

authors proposed a software-based redundant multithreading
mechanism multiplying the threads to be executed. However, the
performance overhead is directly dependent on the workload and
the behavior of the application. Moreover, it is required a program
translation and recompilation, thus limiting the in-field operation
for embedded systems. Considering the previous works, the
combination of software mechanisms and additional hardware
modules in a hybrid structure to achieve the same results may be
attractive.

In the present work, we propose a BISR strategy mainly
aiming at addressing problems related to permanent faults effects,
during the in-field operation, in the EUs (or Scalar Processor (SP)
cores) inside the Streaming Multiprocessor (SM) of a GPGPU.
This BISR strategy leverages on the high regularity of the SPs in
the GPGPU architecture. We leverage the techniques recently
described in [17], which allow the detection of permanent faults
in the SP cores of a GPGPU resorting to software self-test
procedures.

The basic idea behind our work lies in introducing a given
number of Spare SP (SSP) cores, which may substitute any faulty
SP as soon as a permanent fault affecting it is detected. In our
proposal, the reconfiguration can be activated via software with
an additional instruction (Config_SPs), which has been purposely
introduced in the GPGPU Instruction Set. Moreover, this
instruction is compatible with the original programming language
of the GPGPU. Apart from the execution of Config_SPs
instruction, the mechanism is completely transparent to the
programmer. The method only allows tolerating faults affecting
SP cores, which correspond to a significant fraction of the total
SM area.

The adapted BISR mechanism is intended to add as minimal
as possible structural changes into the existing hardware of the
GPGPU, and thus on its performance. Finally, the proposed
solution does not require any change in the application code. The
proposed BISR mechanism (together with the related test) can be
activated during power-on or at reset when timing constraints for
fault detection and hardware reconfiguration are not so relevant.

The proposed BISR solution has been implemented and
evaluated resorting to an extended version of the FlexGrip model,
which represents a simplified version of the NVIDIA GPU
architecture. Extensive experimental results showing its cost and
effectiveness have been gathered referring to that model.

Although the usage of spare units is a well-known solution in
dependable architectures, to the best of our knowledge this is the
first work proposing its adoption at the SP core level in a
GPGPU, and exploring in a comprehensive way the costs/benefits
of its integration in a hardware model representing a real GPGPU.

The paper is organized as follows. Section II provides an
overview of the open-source GPGPU model employed for our
work. Section III describes the proposed fault mitigation method,
as well as a summary of the software test mechanisms which can
be used to detect faults in the SP cores and how they can be
integrated in the proposed solution. Section IV describes the
implementation of the proposed method in the extended FlexGrip
model. Section V reports the experimental results and analysis,
and Section VI draws some conclusions.

II. THE FLEXGRIP GPGPU MODEL

FlexGrip is an open-source GPGPU model fully described in
VHDL. This model was initially developed by the University of
Massachusetts and optimized for Xilinx FPGAs [27]. FlexGrip
implements the Nvidia G80 micro-architecture, and it is also
compatible with the CUDA programming environment under
SM_1.0 compatibility.

The original FlexGrip version was substantially improved to
remove several functional limitations related to compiler
restrictions, structural bugs, and instruction format support.
Additional detail can be found in [28]. The improved FlexGrip
model fully supports 27 instructions in 64 formats.

The model accepts a set of configuration parameters, such as
the kernel parameters, including the Grid dimension, Block
dimension, Blocks per core, number of registers per thread, and
the number of blocks per SM core. Similarly, for simulation
purposes, the data memory (global) and the benchmark
instructions should be specified for the model.

The internal architecture of FlexGrip is based on the SIMT
(Single-Instruction Multiple-Thread) paradigm and exploits a
custom SM core with a five stages pipeline (Fetch, Decode, Read,
Execution/Control-flow and Write-back), as shown in Fig. 1. This
special-purpose parallel processor executes the same instruction
(warp instruction) for a set of threads. A warp is defined as a
group of 32 threads. Moreover, the SM employs a warp scheduler
controller (WSC) for thread management. In the SIMT paradigm,
one warp instruction is fetched, decoded, and distributed to be
processed on an independent SP within the SM. The Read and
Write-back stages load and store data operands from/to Register
Files, shared, global or constant memories. Fig. 1 shows a scheme
of the GPGPU detailing the interconnections affecting the SPs.
These input and output interconnections are static for each SP and
can be divided into data-path and control-path ones.

Every SP has three input data operands of 32 bits (SRC1,

SRC2, and SRC3), and predicate flags (4 bit-size) forming a data

channel. SRC1, SRC2, and SRC3 are selected depending on the

instruction type and are loaded during the Read stage. Moreover,

some control signals select and configure the SP during

execution. As output, the SP produces the result (DST) signals

and the changes in the predicate flags. The storing location for

DRT is determined in the Write-back stage. The input and output

data channels are independent for each SP. In contrast, the

control-path connections are shared among all SPs.

Fig 2. A general scheme of the internal architecture of the integer SP core

The SPs process signed and unsigned integer operands and
include hardware modules for addition/subtraction (ADD/SUB),
multiplication (ML), integer conversion (ICON), comparison
(COMP), shifting (SHF), and logic unit (LU) with basic logical
operations (AND, OR, XOR and NOT). As shown in Fig 2,
FlexGrip was designed to support configurations composed of 8,
16 and 32 SPs.

DST

Data Operands (SRC1, SRC2, SRC3) Control Lines

ADD/SUB ML SHF LU COMP ICON

Predicate flags

Fig. 1. A general scheme of the SM in FlexGrip detailing the composition and
interconnections of the SP in the execution/control-flow pipeline stage

III. PROPOSED FAULT MITIGATION TECHNIQUE

Given the complexity of a GPGPU, different mitigation
methods should be used addressing the different composing parts.
This work proposes a fault mitigation strategy targeting the SPs in
the Execution/Control-flow stage of a GPGPU. This method aims
at increasing the reliability of this stage by disabling an SP once it
has been labeled as faulty due to a permanent fault, and
substituting it with a Spare SP core (SSP). The solution is based
on a hybrid approach.

The hybrid approach combines some mechanism to detect
permanent faults in the SPs, based for example, on Design for
Testability (DfT) or Software-Based Self-Test (SBST) test
programs. For instance, in [21] we showed that suitable test
programs can detect a high percentage of permanent faults within
a single module. Once a faulty SP has been identified, a re-
configuration process is launched. This process executes an ad-
hoc instruction, which replaces the faulty SP by a spare one. For
the purpose of this paper, we do not focus on the fault detection
and localization phases but focus on the hardware changes to be
introduced to support the reconfiguration phase (see Fig 3). It is
worth noting that in this work, we did not consider fault
administration structures (FAS) to be activated after a device
shut-down and recover a previous configuration state in the
device. These FAS could be composed of flash memories and
controllers to store the state of SPs and SSPs in the device.

Fig 3. A general scheme of the detection, identification, and configuration

approaches for fault mitigation

A. Fault Mitigation Architecture

The BISR architecture is based on the addition of a given
number of SSP modules in parallel to the existing SPs. These
SSPs are cold stand-by modules, thus reducing the power
consumption during inactivity. Two switching modules are added
to control the data-path signals in the existing SP and SSPs. The
switching units are placed in the Execution/Control-flow stage of
the GPGPU following the circular switching scheme, see Fig. 4.
The switching units are based on meta-crossbar structures
targeting the control of the data-path input and output
interconnections in the SPs. A controller module is added to
control SPs and SSPs in the system. Fig. 4 shows the general
scheme of the configuration structure composed of n SP cores and
m SSPs added and connected to the SM. It is worth noting that
the number of input and output signals on each SPs is different.
Thus, the size of the input and output switches may differ.
Nevertheless, the same mechanism is employed to manage each
SP core.

In order to minimize the impact of the changes on the existing
architecture, we preserved the original memory hierarchy and
WSC modules. Thus, each input Thread Data Channel (ThDC) is
kept at the input of the execution stage.

The input switching unit includes, as outputs, the additional
SP-data channels (SPDCs) and also connects them to the SPs and
SSPs. In this way, each input ThDC is connected with one SPDC
in the configurable scheme. The output SPDCs, coming from the
SPs and SSPs, are connected with the output switch unit and the
original output ThDC of the execute pipeline stage.

The output switch reduces the total number of data-path
channels in order to keep the same pipeline interconnections. In
the adapted mechanism the input switch behaves as a data

channel de-multiplexer. Similarly, the output switch acts as a data
channel multiplexer.

The placement of the two switching modules at the input and
output of the SP cores contributes to maintaining the original
memory hierarchy for each thread execution without relevant
changes in the design. This is achieved considering that each
ThDC does not include information related to the direct
association of a ThDC to a specific SP core to perform operations.
Thus, each thread process uses the original registers and memory
locations, even when a spare core is active. Hence, the proposed
solution is entirely transparent to the software, which must not be
modified in any way.

The solution we followed does not impact the WSC existing
in the SM. The WSC traces the execution and the state of each
thread in a warp, but it does not include information related to the
SP core allocation, thus remaining without changes.

The switch controller manages the configuration of both
switching units using the same input control signals. The custom
Config_SPs instruction generates the input control signals and
activates the re-configuration of the SPs.

More in detail, the instruction selects one SP and one SSP core
and forces the GPGPU to substitute the former with the latter for
all the following activities. In the current version, the selected
configuration is not saved anywhere: hence a test and possible re-
configuration should be performed at each power-on or reset. The
introduction of a small Non Volatile Memory could allow storing
the configuration. The format of the instruction is selected
avoiding any overlapping with the original instruction set of the
GPGPU. The instruction format is divided into two parts. The
first part of the instruction picks and enables one of the available
SSPs in the system. The second part manages the switching units
by selecting the correct input and output data channels for each
SP and SSP core.

B. Fault detection, fault identification, and reconfiguration

For the purpose of this paper, we assume that the test and
possible reconfiguration steps are both performed during the
device power-on (or reset), so the fault detection and location
phases, as well as the reconfiguration one, can be executed
without any strict time and memory constraints.

For the sake of completeness, we summarize here how the
fault detection and location phases could be implemented. More
details about this solution can be found in [17]. However, other
solutions (e.g., based on DfT) could be used as well.

At the power-on, the BISR structure is inactive. Thus the SP
cores are initially connected with each ThDC and the SSP cores
remain in cold standby mode. Then, a set of test patterns is
applied to the SPs. These patterns are based on the execution of
well-defined operations to test in parallel each SP in the SM.

The strategy employed is based on targeting all sub-modules
in the SP cores and forcing them to execute suitable test patterns

Detection phase

Identification phase

Reconfiguration phase

End

Start Up

Fault location

no yes

Reconfiguration

Test Execution

Faults detected

Fig 4. A general scheme of the adopted circular switching method for SP core

configuration

using instructions. The partial thread results are stored in the
global memory for later analysis. As each thread executes the
same instructions on different SP cores, a Signature-per-Thread
(SpT) mechanism is used. Every SpT is compared with a set of
previously stored results, and depending on the comparison each
SP core can be labeled as faulty. This method allows for quick
identification of the faulty SP.

Assuming that n SPs and m SSPs are available, the test is then
repeated after reconfiguring the GPGPU so that m SP cores are
substituted with m available SSP cores. At the end of this phase, a
full map of the faulty and fault-free cores is available. Based on
this map, if at least n cores are available, the GPGPU can be
reconfigured accordingly and can continue working correctly.

For the sake of simplicity and to avoid reconfiguring the code,
we assume that the minimum number of cumulative fault-free SPs
and SSPs in the SM is n. This value is compared each time to
verify when the SM cannot operate anymore.

The above procedure assumes that the system does not include
any Non Volatile Memory (NVM). Hence, at each power-on, a
complete test is required to build the map of faulty / fault-free
cores. If an NVM is available, this map can be stored there and
used to reconfigure the GPGPU accordingly at each power-on.
The map is then updated with a given frequency, depending on
the reliability targets and scenario parameters.

IV. IMPLEMENTATION

The improved version of the FlexGrip model was used to
experimentally evaluate the performance of the proposed BISR
fault mitigation strategy. This mechanism is implemented in the
Execution/Control-flow pipeline stage of the GPGPU.
Nevertheless, additional changes were made in the Decode and
Read stages by the introduction of the configuration instruction.
The Decode stage was modified by adding new combinational
logic to decode the added instruction.

The Read stage includes a bypass register to keep the pipeline
coherence during instruction execution and also to store the
configuration information for the SP cores. This information is
then decoded and employed in the Execution/Control-flow stage.
In the Execution/Control-flow stage, the description of the
switching structures is the same for the input and output switches:
both switching units were designed using the same basic
descriptions, i.e., multiplexer blocks and bypass register
structures (see Fig. 5). Moreover, an automatic generation
mechanism is described to interconnect the SPs and busses with
the input and output of the multiplexers in the same stage.
Additional decoding, concatenating and de-concatenating blocks
control the activation of the module and reduce the number of
multiplexers in the system. In this way, a big multiplexer module
is attached to each additional SSP. Similarly, the output switch
uses multiplexers to interconnect with the output ThDCs. The
ThDCs are selectable depending on the number of SPs in
FlexGrip (8, 16 or 32).

Both switches (input and output) are activated under the same
control condition, thus reusing the controller structure. This
switching controller includes additional registers, to store the
configuration information, and decoders to reduce the total
number of control bits. This controller information is used to
design the instruction op-code composed of eleven active bits
fields. Moreover, these registers maintain the inactive SSPs and
SPs in a cold standby mode, thus avoiding any unnecessary
switching activity and reducing the power consumption.

The management of the information flow (ThDCs and
SPDCs), allows the usage of the same registers and memory
locations employed by the SPs and the replacing SSPs, when

active. In this way, the memory is virtualized from the mitigation
modules. Instead of a restriction, this condition was exploited to
add the BISR infrastructures in the GPGPU by employing the
same memory hierarchy modules. The control-path lines on each
SP core are not considered as inputs in the switches due to these
interconnections are shared on all SP cores and can be directly
assigned on the SSPs.

The capabilities and flexibility of the FlexGrip model for
selecting the number of SPs in the SM are also employed in the
description of the mitigation modules. The same code style is
used to describe the BISR modules. These structures are
parametrically generated depending on the total number of SP and
SSP cores aiming to reduce the hardware overhead in the system
among configurations.

V. EXPERIMENTAL RESULTS

The FlexGrip model was configured in 3 modes (8, 16, and 32
SPs), so it is possible to analyze the benefits and limitations of the
proposed BISR strategy under different SPs in the device. We
implemented the proposed strategy in the model and ran extensive
simulations to validate its correctness. Moreover, we
quantitatively evaluated the cost and the benefits of the strategy.
For each considered case, the number of introduced SSPs ranged
from 0 to 7. The analyses were performed resorting to a gate-level
version of the FlexGrip model. The estimation of the hardware
overhead was done resorting to the Design Vision tool by
Synopsys using the ultra-compiler configuration. The NanGate
Open-cell library was employed for the experiments [29].

A. Hardware overhead

The modules modified for implementing the BISR strategy
are the Decode, Read, and Execution stages. These modules were
modified at the RT level. Then, the GPGPU model was
synthesized at gate level and compared in size with respect to the
original design. Table 1 reports the hardware overhead results: for
each configuration, we reported the required number of cells and
the percent of area overhead, computed concerning the
corresponding configuration in the original version of the model.

The hardware overhead introduced by the BISR strategy can
be split into two parts: from one side, there is the cost to
implement the instruction, the switching modules, and the
switching controller. The “0 SSPs” configuration is used to
quantify the hardware cost in the BISR structure. The hardware
overhead of these structures represents a low percentage of the
whole hardware: for all SP core configurations, the hardware cost
is in the range from 0.8% to 1.7%. From the other side, there is
the cost for the SSPs, which linearly grows with their number and
becomes largely dominant when the SSPs increase. In fact, the
addition of one SSP core (6,623 cells) introduces hardware
overhead greater than 3% in all SP configurations. Clearly, the
hardware overhead rate grows with more SSPs and is higher
when the SPs are lower. The optimum choice of both parameters
depends on the design requirements, e.g., connected to the
computation required by the application, by the probability of

Fig. 5. A general scheme of the implemented structure in the FlexGrip model

faults (given by the operating environment and by the
semiconductor technology), by the target reliability and by the
duration of the mission. In any case, it is worth noting that the
hardware overhead remains below 20% for all the considered
GPGPU configurations.

The last two columns in Table 1 report some figures allowing

the evaluation of the relative size of the SPs with respect to the

total size of the FlexGrip model. From the results, it is shown

that the percent area of the whole SM that can be protected

resorting to the BISR strategy ranges from about 25%, in the 8

SPs configuration, to about 55% with 32 SPs. It is worth noting

that the adopted BISR mechanism was aimed to mitigate faults in

the SP cores, only. Other solutions can be used to mitigate faults

in other modules.

TABLE 1. HARDWARE OVERHEAD OF THE BISR STRATEGY FOR MULTIPLE

CONFIGURATIONS OF THE GPGPU

Version
SP

cores
SSPs

Total Cells in

design

Area overhead

(%)

Total SP cells

in the design

SP/SSP cores

cells (%)

Original

8 0 229,515 - 52,984 23.08

16 0 280,132 - 105,968 37.82

32 0 386,100 - 211,936 54.89

Fault

Tolerant

8

0 231,343 0.8 52,984 22.90

1 237,279 3.4 59,607 25.12

2 243,063 5.9 66,230 27.24

4 254,692 11.0 79,476 31.20

6 266,182 16.0 92,722 34.83

7 271,757 18.4 99,345 36.55

16

0 283,160 1.1 105,968 37.42

1 290,034 3.5 112,591 38.81

2 296,164 5.7 119,214 40.25

4 309,318 10.4 132,460 42.82

6 321,529 14.8 145,706 45.31

7 335,139 19.6 152,329 45.45

32

0 392,476 1.7 211,936 53.99

1 400,902 3.8 218,559 54.51

2 410,280 6.3 225,182 54.88

4 425,172 10.1 238,428 54.07

6 440,576 14.1 251,674 57.12

7 460,372 19.2 258,297 56.10

B. Performance and power overhead

Since the BISR strategy requires the introduction of some
complex switching modules to flexibly interconnect all the SPs
and SSPs with the rest of the system, it clearly impacts the
GPGPU overall performance. We performed an experimental
analysis of this phenomenon resorting to the data produced by the
synthesis tool. In particular, the impact on the performance of the
adapted BISR strategy has been evaluated by analyzing the
changes in the critical path delay for all configurations.

Results showed that for a large number of SSPs (6 or 7), the
performance degradation reaches up to 20%. This is mainly
caused by the logic included in the input and output switches and
inside the switch controller. More in detail, for one SSP, the
timing degradation is up to 15% and up to 16% for 2 SSPs.
Clearly, it should be noted that the reported results have been
obtained without executing any specific optimization to reduce
such a performance overhead.

The power overhead can be neglected for this BISR strategy
by considering that all inactive SSPs and SPs act as cold standby
modules. Moreover, other structures remain in a configuration
state. Thus, only static power by leakage current is consumed
during operation. In a real implementation of the strategy, the
transistor technology (i.e., 12 or 7nm) presents leakage currents in
the order of 10nA/µm to 12nA/µm. Thus, the final power
overhead of the BISR strategy is negligible in comparison with
the dynamic power consumption produced in the GPGPU.

C. Reliability advantages

The goal of the adapted BISR strategy is to allow a GPGPU-
based system to continue working even after one or more faults
arose within the SPs. This strategy is independent of the

considered fault model, provided that a suitable technique to
detect it and identify the affected SP core is available.

Fig. 6. Improvement in the reliability of the BISR structure for multiple
probabilities of correct execution under multiple configurations of the SSPs (m).

Fig. 7. Improvement in the reliability of the system RBISR with respect to the

probability of correct execution for various values of SSPs (m).

The reliability estimation of this strategy is based on the
probability of correct operation of the system after a time t.
Considering a GPGPU composed of n SPs and m SSPs, the
execution of the system is correct if all thread instructions are
operated without failures in the available execution units of an
SM. Moreover, the probability of proper operation in the GPGPU
can be described as the probability of GPGPU failure (when at
most (m+1) SPs or SSPs fail). Both units (SPs and SSPs) are
identical and operate independently among them, hence the
probability of correct operation at time t in the SPs (PSP(t)) and the
SSPs is equal. In this way, the probability of proper execution,
using the BISR mechanism (RBISR), follows a cumulative
distribution function as reported in equation 1.

 ∑ (

)

 []

[]

Extracting terms from equation 1 (see equation 2), the first

one at right represents the probability of correct operation in the

original GPGPU (PGPU(t)) corresponding to the case where m=0,

so tolerating a single faulty unit. On the other hand, the second

term at right represents the added probability of a correct

operation using the BISR strategy.

 ∑(

)

 []

[]

 ∑ (

)

 []

[]

[][]

 ∑ (

)

 []

[]

[][]

with:
 [] []

As PGPU(t) is a component of the probability for the BISR
mechanism, it proves that . Thus, the GPGPU

improves reliability according to the second term in equation 2.
This term also includes the probability of the correct operation of
the switching structures Psw(t) and in the controller Pc(t). The
dominant factor is the total number of SSP units (m) added in the
BISR structure. Moreover, there is a direct relationship between
the number of SSPs (m) and RBISR. However, the BISR strategy
may be feasible when considering a balance among overhead,
cost, and reliability. In principle, m cannot be higher than n.

Fig. 6 represents the increment of the reliability of the BISR
version (RBISR) with respect to the original version for multiple
values of PST(t) and SSPs (m). From the graph, it can be noted that
RBISR is strongly dependent on the values of m and PST. In fact,
RBISR presents a maximum reliability peak whose position varies
for each combination of PST and m. This peak value can be used to

0 5 10 15 20 25 30 32
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

In
c
re

a
s
e

 i
n

 R
B

IS
R

m

P
SP

=0.6 P
SP

=0.7 P
SP

=0.8 P
SP

=0.9 P
SP

=1.0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.48

In
c
re

m
e

n
t

in
 R

B
IS

R

Probability of correct operation
(P(SP))

m=10 m=8 m=6 m=4 m=2

select the number of SSPs in the GPGPU considering a target
probability of correct execution in the system. After this value,
the effectiveness of the strategy drops down.

The graph in Fig. 7 describes the relation among PST(t) and the
increment of RBISR for multiple values of m. This graph represents
the gained benefits in terms of reliability for multiple BISR
configurations. As expected, the increase in the number of SSPs
(m) has a proportional positive impact on the reliability of the
target structure. As can be seen from the graph, the BISR
mechanism provides almost 10% of increased reliability, even
when the probability of correct execution is dropped by up to
20%. Figures 6 and 7 can be employed to select the best trade-off
among the parameters to reach a given target reliability.

D. Comparison with other techniques

A comparison with other well-known strategies such as lock-
step and TMR can be performed. In principle, a TMR mechanism
is highly reliable. However, this is not feasible to be used in the
SPs due to the excessive hardware and dynamic power overhead.
The lock-step strategy provides a high percentage of fault
tolerance for most modules in a GPGPU. Nevertheless, it requires
the duplication of each module. Thus, the hardware overhead is
equal to or greater than 100%. A similar situation can be found in
terms of power consumption. In contrast, the adapted BISR
strategy takes advantage of the regularity of the SPs to reduce the
hardware overhead to less than 20% even in the worst case.
Moreover, the inactive SPs remain in cold stand-by mode
reducing the power consumption of the mitigation strategy.

It must be also underlined that the proposed BISR strategy,
based on dynamic reconfiguration, is particularly well suited for
long-term missions (which are common for example in the
automotive domain) since it allows avoiding the issues created by
fault accumulation.

VI. CONCLUSIONS

A dynamic Built-In Self-Repair strategy was devised and
evaluated targeting the mitigation of permanent faults possibly
affecting the execution units (SPs) in the SM of a GPGPU. The
BISR strategy is based on the introduction of a new instruction,
which allows removing a faulty SP from the set of active ones,
substituting it with one of the available spare SP cores. Results
show that the structures required to implement the proposed
technique introduce a relatively low hardware overhead (<4%
with a single spare core). Moreover, we showed that the area of
the modules where faults can be tolerated with the BISR structure
can achieve about 55% of the total SM area.

The strategy seems particularly suitable for long-term
missions since it allows mitigating the effects of fault
accumulation in the SP cores. Although the experiments were
performed on a specific NVIDIA-based GPU architecture, we
claim that the proposed solution can be easily extended to other
architectures as well. As future work, we plan to extend and
combine mitigation approaches for permanent and transient faults
in different modules of a GPGPU.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware

implementation for visual perception system in autonomous vehicle: A

survey," Integration, vol. 59, pp. 148-156, 2017/09/01/ 2017.
[2] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang, S.

Gurumurthi, et al., "GPGPUs: How to combine high computational power

with high reliability," in 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2014, pp. 1-9.

[3] S. Hamdioui, et al., "Reliability challenges of real-time systems in

forthcoming technology nodes," in 2013 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2013, pp. 129-134.

[4] I. Polian and J. P. Hayes, "Selective Hardening: Toward Cost-Effective
Error Tolerance," IEEE Design & Test of Computers, vol. 28, pp. 54-63,

2011.

[5] T. Koal and H. T. Vierhaus, "Logic self repair based on regular building
blocks," in 22th International Conference on Architecture of Computing

Systems 2009, 2009, pp. 1-6.

[6] C.-L. Su, Y.-T. Yeh, and C.-W. Wu, "An integrated ECC and redundancy
repair scheme for memory reliability enhancement," in 20th IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems

(DFT'05), 2005, pp. 81-89.
[7] C.-L. Su, R.-F. Huang, and C.-W. Wu, "A processor-based built-in self-

repair design for embedded memories," in 2003 Test Symposium, 2003, pp.

366-371.
[8] M. Schölzel, T. Koal, S. Müller, S. Scharoba, S. Röder, and H. T.

Vierhaus, "A comprehensive software-based self-test and self-repair

method for statically scheduled superscalar processors," in 2016 17th
Latin-American Test Symposium (LATS), 2016, pp. 33-38.

[9] T. Koal and H. T. Vierhaus, "A software-based self-test and hardware

reconfiguration solution for VLIW processors," in 13th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems, 2010.

[10] R. S. Ferreira and J. Nolte, "Low latency reconfiguration mechanism for

fine-grained processor internal functional units," in 2019 IEEE Latin
American Test Symposium (LATS), 2019, pp. 1-6.

[11] D. J. Palframan, N. S. Kim, and M. H. Lipasti, "Precision-aware soft error

protection for GPUs," in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), 2014, pp. 49-59.

[12] K. Kwon, et al., "Mobile GPU shader processor based on non-blocking

Coarse Grained Reconfigurable Arrays architecture," in 2013 International
Conference on Field-Programmable Technology (FPT), 2013.

[13] J. Zhao, G. Sun, G. H. Loh, and Y. Xie, "Energy-efficient GPU design

with reconfigurable in-package graphics memory," in Proceedings of the
2012 ACM/IEEE international symposium on Low power electronics and

design, 2012, pp. 403-408.

[14] W.-J. Lee, et al., "A scalable GPU architecture based on dynamically
reconfigurable embedded processor," High Performance Graphics, pp. 5-

7, 2011.

[15] A. Dhar and D. Chen, "Efficient GPGPU Computing with Cross-Core
Resource Sharing and Core Reconfiguration," in 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2017, pp. 48-55.
[16] J. R. Nickolls, "EFECT TOLERANT REDUNDANCY," Nvidia Corp.,

2009.

[17] S. Di Carlo, et al., "A software-based self test of CUDA Fermi GPUs," in

2013 18th IEEE European Test Symposium (ETS), 2013, pp. 1-6.

[18] D. Sabena, M. Sonza Reorda, L. Sterpone, P. Rech, and L. Carro, "On the

evaluation of soft-errors detection techniques for GPGPUs," in 2013 8th
IEEE Design and Test Symposium, 2013, pp. 1-6.

[19] B. Du, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone, "About the

functional test of the GPGPU scheduler," in On-Line Testing Symposium
(IOLTS) 2018 IEEE 24th International, 2018.

[20] S. Di Carlo, J. E. R. Condia, and M. Sonza Reorda, "On the in-field test of

the GPGPU scheduler memory," in 22nd International Symposium on
Design and Diagnostics of Electronic Circuits and Systems (DDECS

2019), 2019.
[21] J. E. R. Condia and M. Sonza Reorda, "Testing permanent faults in

pipeline registers of GPGPUs: A multi-kernel approach," in 25th IEEE

International Symposium on On-Line Testing and Robust System Design
(IOLTS), 2019.

[22] S. D. Carlo, J. E. R. Condia, and M. S. Reorda, "An On-Line Testing

Technique for the Scheduler Memory of a GPGPU," IEEE Access, vol. 8,
pp. 16893-16912, 2020.

[23] M. Gonçalves, M. Saquetti, F. Kastensmidt, and J. R. Azambuja, "A low-

level software-based fault tolerance approach to detect SEUs in GPUs'
register files," Microelectronics Reliability, vol. 76, pp. 665-669, 2017.

[24] S. Di Carlo, et al., "Increasing the robustness of CUDA Fermi GPU-based

systems," in On-Line Testing Symposium (IOLTS), 2013 IEEE 19th
International, 2013, pp. 234-235.

[25] S. Di Carlo, et al., "Fault mitigation strategies for CUDA GPUs," in Test

Conference (ITC), 2013 IEEE International, 2013, pp. 1-8.
[26] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron,

"Real-world design and evaluation of compiler-managed GPU redundant

multithreading," ACM SIGARCH Computer Architecture News, vol. 42,
pp. 73-84, 2014.

[27] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for

FPGAs," in 2013 International Conference on Field-Programmable
Technology (FPT), 2013, pp. 230-237.

[28] B. Du, J. E. R. Condia, and M. Sonza Reorda, "An extended model to

support detailed GPGPU reliability analysis," in 14th IEEE International
Conference on Design & Technology of Integrated Systems in Nanoscale

Era (DTIS), 2019.

[29] J. Knudsen, "Nangate 45nm Open Cell Library," CDNLive, EMEA, 2008.

