
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper is accepted at the 41th IEEE VLSI Test Symposium (VTS) 2023.

Special Session: Approximation and Fault Resiliency
of DNN Accelerators

Mohammad Hasan Ahmadilivani1, Mario Barbareschi2, Salvatore Barone2, Alberto Bosio3,
Masoud Daneshtalab4,1, Salvatore Della Torca2, Gabriele Gavarini5, Maksim Jenihhin1,

Jaan Raik1, Annachiara Ruospo5, Ernesto Sanchez5, and Mahdi Taheri1*

1Tallinn University of Technology, Tallinn, Estonia
2University of Naples Federico II, Naples, Italy

3Ecole Centrale de Lyon, Lyon, France
4Mälardalen University, Västerås, Sweden

5Politecnico di Torino, Torino, Italy

Abstract—Deep Learning, and in particular, Deep Neural Net-
work (DNN) is nowadays widely used in many scenarios, including
safety-critical applications such as autonomous driving. In this con-
text, besides energy efficiency and performance, reliability plays
a crucial role since a system failure can jeopardize human life.
As with any other device, the reliability of hardware architectures
running DNNs has to be evaluated, usually through costly fault
injection campaigns. This paper explores approximation and fault
resiliency of DNN accelerators. We propose to use approximate
(AxC) arithmetic circuits to agilely emulate errors in hardware
without performing fault injection on the DNN. To allow fast
evaluation of AxC DNN, we developed an efficient GPU-based
simulation framework. Further, we propose a fine-grain analysis
of fault resiliency by examining fault propagation and masking in
networks.

Index Terms—deep neural networks, approximate computing,
fault emulation, reliability, resiliency assessment

I. INTRODUCTION

Deep Neural Networks (DNNs) have evolved to be increas-
ingly applied to assist different aspects of human life, e.g.,
healthcare, transportation, security, IoT and edge applications
[1]. In this context, energy efficiency and performance are the
key constraints to be taken into account in designing DNN
accelerators. Approximate Computing (AxC) is an emerging
paradigm applied for improving their efficiency that produces
acceptable results despite inaccuracies in the computations [2],
[3].

Employing DNN accelerators in safety-critical applications
has raised hardware reliability concerns. In compliance with
ISO 26262 functional safety standard for road vehicles, the
FIT (Failures In Time) rate of particular hardware compo-
nents has to be 10 failures in 1 billion hours of operation
at maximum to meet the target safety integrity level, which
necessitates very circumspect design [4], [5]. The reliability
of DNN accelerators is boosted by their ability to function
correctly even in the presence of environment-related faults (soft
errors, electromagnetic effects, temperature variations) or faults
in the underlying hardware (manufacturing defects, process
variations, nanoelectronics aging effects) [6]. DNNs are known

*The authors are sorted in alphabetic order.

to be resilient to faults due to their numerous interconnected
layers and the ability to mask faults [7]. However, several
studies in recent years have shown that the accuracy of DNNs
may still drop significantly in the presence of faults [6], [8]–
[11]. These observations demonstrate that the reliability of DNN
accelerators must be considered alongside efficiency. Some
research works studied the reliability of approximated DNNs
to show the trade-off between reliability and efficiency [12],
[13].

The key challenge for DNN efficiency and reliability is the
exploration of the huge design space. As mentioned, employ-
ing AxC units in DNN accelerators is one of the eminent
approaches to gaining efficiency. However, the design space for
approximated DNNs is too large [14], and implementing differ-
ent AxC units to find an optimum efficiency is impracticable for
FPGA accelerators. Notably, Graphic Processing Units (GPUs)
that are widely applied for accelerating the DNN training can
be utilized to assist this process as well. To tackle the task
of exploiting AxC in DNNs, we present a GPU-accelerated
framework for DNN approximation exploration.

Addressing accelerators’ reliability issues starts with
architecture-level fault-resiliency evaluation. Fault Injection (FI)
is a conventional method for this purpose that has been vastly
applied for DNNs as well [15], [16]. The main approaches
for FI experiments are fault simulation in software and fault
emulation in hardware, both implying a huge fault space. Fast
fault emulation in accelerators (especially in FPGAs, which are
widely used for DNNs [17]) is still a challenge because of its
iterative procedure, including numerous extra memory accesses
as well as huge fault injection campaigns. To tackle this issue,
we leverage AxC units in DNNs as a non-conventional use
of both FI and AxC, to emulate errors in the accelerator
hardware. In this method, AxC units and their variants are a
substitution for FI targeting the fault resilience analysis of DNN
architectures.

Moreover, reducing fault space can also be done at the
software level. We have carried out an empirical study on the
inherent resilience to faults and errors of DNNs, with the aim
of investigating how they can mask a large portion of faults.
In line with this, we propose the adoption of three different
metrics to compute in advance (right after the injection of the

1

ar
X

iv
:2

30
6.

04
64

5v
1 

 [
cs

.L
G

] 
 3

1 
M

ay
 2

02
3



fault) the effect the fault will have on the output vector score.
In this way, it might be possible to both reduce the fault space
and lower the FI time.

The paper is organized as follows: Section II introduces the
GPU-accelerated framework for DNNs approximation explo-
ration, Section III presents a method for harnessing approxima-
tion for agile analysis of fault resiliency in DNN accelerators,
Section IV provides a fine-grain DNNs fault resiliency study
by examining fault propagation and masking in networks, and
Section V concludes the paper.

II. GPU ACCELERATED FRAMEWORK FOR CNN
APPROXIMATION

A. Motivations and Related Works

As stated in the introduction, the Approximate Computing
paradigm is widely used to improve the energy efficiency of
hardware accelerators for DNNs. In particular, one promising
solution is to use approximate arithmetic circuits [18]–[20].
However, quantifying the error introduced by these circuits
requires expensive hardware prototyping, and, as a result, a
software emulator of the DNN accelerator is often executed
on a CPU or General Purpose - Graphic Processing Unit (GP-
GPU) instead. Nevertheless, this emulation is typically much
slower than a software DNN implementation running on a
CPU or GP-GPU that uses the standard floating-point arithmetic
instructions and common DNN libraries because CPUs and
GP-GPUs lack hardware support for approximate arithmetic
operations; therefore, the latter operations must be emulated,
that is costly.

To address this issue, we propose Inspect-NN (I-NN), that
provides efficient emulation for approximate circuits to be
deployed in DNNs accelerator: approximate circuits are im-
plemented as look-up tables and accessed through the memory
mechanism of CUDA-capable GP-GPUs, reducing the inference
time of the emulated DNN accelerator by approximately 200
times compared to an optimized CPU version on complex
DNNs.

In the following, we present the I-NN framework in Sec-
tion II-B, while Section II-C discusses case studies concerning
the use of the mentioned framework to assess the accuracy loss
due to approximate multipliers in Artificial Neural Networks
(ANNs).

B. Proposed method

The main purpose of the I-NN framework is to investigate
the impact of erroneous components on Artificial Intelligence
(AI) applications. In particular, it allows investigating how the
accuracy of DNNs-based applications is affected by imprecise
components, i.e., those that do not meet their nominal behav-
ioral specifications either because of faults, or because they
have been specifically designed to differ in a controlled way
from that behavior, while pursuing performance advantages.
Examples are arithmetic components designed while exploiting
the Approximate Computing (AxC) design paradigm [21]. The
behavior of imprecise components are modeled at the behavioral
level by exploiting lookup tables, in which input operands
select the corresponding output of the component. I-NN exploits
parallelism allowed by GP-GPUs: the inference phase is split
in blocks, each assigned to a thread block on the GP-GPU and

TABLE I: Error characterization and hardware requirements for
approximate circuits taken from the EvoApproxLib-Lite library,
as reported in [22]

Circuit name MAE
(%)

AWCE
(%)

MRE
(%)

Power
(nW)

MAE
(µm2)

mul8s 1KV6 0.00 0.00 0.00 0.425 729.8
mul8s 1KV8 0.0018 0.0076 0.28 0.422 711.0
mul8s 1KV9 0.0064 0.026 0.90 0.410 685.2
mul8s 1KVA 0.019 0.075 2.53 0.391 641.1
mul8s 1KVM 0.049 0.20 2.40 0.369 652.8
mul8s 1KVP 0.051 0.21 2.73 0.363 635.0
mul8s 1KVQ 0.056 0.25 3.64 0.351 599.8
mul8s 1KX5 0.15 0.69 8.93 0.289 543.0
mul8s 1KXF 0.34 1.37 15.72 0.237 482.4
mul8s 1L2J 0.081 0.39 4.41 0.301 558.9
mul8s 1L2L 0.23 1.16 12.26 0.200 411.6
mul8s 1L2N 0.52 2.66 27.44 0.126 284.9
mul8s 1L12 3.08 12.30 135.77 0.052 172.2

executed independently and parallelly from the others. I-NN
does the latter computation through a kernel, i.e., a CUDA
function called by the CPU and executed on the GP-GPU:
operations within each layer are parallelized so that each thread
block execute a part of the overall operation; then, if needed, the
output is normalized to be represented using n bits, with n being
configurable. Data exchange between the CPU and the GP-GPU
are minimized: data is copied from the GP-GPU memory to
the CPU ones when strictly required; hence, if two consecutive
layers are working on the GP-GPU, the first one feeds the GP-
GPU memory address of the computed data to the next layer,
rather than coping them back and forth from/to the CPU.

C. Experimental Results

Case studies discussed in this Section concern the evaluation
of the accuracy loss due to the use of multipliers taken from
the EvoApproxLib-Lite [22] library of approximate circuits
while targeting several pre-trained DNNs. In particular, through
I-NN (i) we import the DNN to be analyzed directly from
the most common machine learning frameworks, such as Ten-
sorFlow, TensorFlow LITE, and (ii) we define which specific
approximate components have to be used, and (iii) we specify
whether the analysis has to be performed at either coarse or fine
grain. In coarse grain analysis, a single approximate component
is deployed in the whole network. Conversely, in fine-grain
analysis, each layer of the target DNN can use a different
imprecise component.

We deploy multipliers from [22] – whose error characteri-
zation and hardware overhead are reported in Table I, for the
reader convenience – to LeNet5 Convolutional Neural Network
(CNN) [23], to MinNet, and to ResNet-8 [24], that, although
trained using floating-point arithmetic, are all quantized to use
8-bit integer. The first CNN, i.e., LeNet5, has been trained to
classify images from the Modified National Institute of Stan-
dards and Technology (MNIST) benchmark [25], on which it
exhibits 99.07% accuracy. The MinNet CNN is a custom-made
CNN inspired by the LeNet5 architecture: as for the latter, it
consists of two Convolutional Layers (CLs), a Fully-Connected
Layers (FCLs) and one Pooling Layers (PLs) between each
CL, and it consists of approximately 160 thousand parame-
ters. Despite its small size w.r.t. state-of-the-art networks, it
exhibits 80.07% accuracy on the CIFAR-10 dataset [26]. Last,



TABLE II: Accuracy loss and computational time for approxi-
mate circuits taken from the EvoApproxLib-Lite library [22].

LeNet5 MinNet ResNet8

Circuit Name
Acc.
Loss
(%)

GPU
Time

CPU
Time

Acc.
Loss
(%)

GPU
Time

Acc.
Loss
(%)

GPU
Time

mul8s 1KV6 0 13.23s ≈10h 0 13.0s 0 31.07s
mul8s 1KV8 0.07 13.19s ≈10h -0.3 13.6s -0.19 31.1s
mul8s 1KV9 0.15 13.27s ≈10h 0.3 13.6s -0.42 31.3s
mul8s 1KVA 0.51 13.22s ≈10h 2.5 13.5s -0.08 31.3s
mul8s 1KVM 0.16 13.23s ≈10h -0.4 13.5s 0.12 31.5s
mul8s 1KVP 0.27 13.17s ≈10h -0.8 13.7s -0.18 31.4s
mul8s 1KVQ 0.61 13.18s ≈10h 0.5 13.5s 0.09 31.4s
mul8s 1KX5 1.77 13.18s ≈10h 5.5 13.5s 5.48 31.3s
mul8s 1KXF 1.57 13.18s ≈10h -1.2 13.6s 8.45 31.2s
mul8s 1L2J 0.79 13.2s ≈10h 46.6 13.6s 74.61 31.5s
mul8s 1L2L 3.81 13.14s ≈10h 61.5 14.2s 73.73 31.8s
mul8s 1L2N 15.92 13.11s ≈10h 65.9 14.0 s 74.52 32.06s
mul8s 1L12 75.66 13.15s ≈10h 66.4 14.4s 74.49 33.6s

the ResNet-8 CNN, instead, has been trained while targeting
images taken from the CIFAR-10 dataset [26], which consists
of 60 thousand RGB images, each belonging to one among ten
classes. The network, that consists of more than 300 thousand
learned parameters, and it exhibits 84.31% accuracy on the
mentioned dataset. During the inference phase, these three
architectures require performing 400 thousand, 4 million and 40
million multiplications each, respectively; hence, they represent
a good test case for the evaluation of execution time.

To estimate the error introduced by the approximation, we
execute the approximate CNN to obtain its classification accu-
racy on the whole test data set, reporting the accuracy-loss and
computational time required for the inference phase in Table II.
The latter table also reports the error and hardware parameters
for each of the considered approximate multipliers. We per-
formed the inference phase on an NVIDIA RTX A5000 GP-
GPU, that is built on the NVIDIA Ampere architecture and
combines 256 Tensor Cores and 8192 CUDA cores with 24
GB of graphics memory. Furthermore, for comparison purpose,
the computational time of the inference phase while resorting
to a CPU-only implementation is reported in Table II. In this
case, we leverage two 3.20 GHz Intel Xeon Silver 4210 CPUs,
providing 20 cores / 40 threads computing power. We reported
CPU time only for the LeNet5 case. For the MinNet and
ResNet8, the CPU execution time was higher than 10 hours
and we were not able to complete the experiments.

As it is easy to foresee, the speed-up provided by the
GP-GPU is crucial: we can state that by exploiting the GP-
GPU through our look-up table implementation of approximate
multiplier allows for tremendous performance improvements,
even though we compared the execution time. Furthermore,
it can be noticed that the execution time increases as the
number of multiplications performed during the inference phase
increases, and it is independent of the particular approximate
multiplier being deployed, as it can be observed in Table II.

III. HARNESSING APPROXIMATION FOR FAULT INJECTION
IN DNN ACCELERATORS

A. Motivations and Related Works

A major consequence of single or multiple accumulated soft-
error-caused bitflips affecting the weights of a given layer is
their propagation as errors at the layer outputs (also known
as layer Output Feature Map) and further throughout the
subsequent layers, leading to incorrect DNN predictions. Fault

resilience is the ability to tolerate the impact of faults on the
output accuracy, and, in practice, it is one of the contributors to
the final DNN accelerators’ reliability. A relevant mitigation
strategy at the architecture level can be a hardening of the
DNN, e.g., by layer redesign or selective hardening of neurons,
such as hardened Processing Elements (PEs) or Triple Modular
Redundancy (TMR) variants [8]. These imply the assessment
of layers’ fault resiliency or identification of critical neurons in
a neural network that are the most vulnerable to faults [27]–
[29]. Fig. 1 presents a taxonomy for DNN reliability assessment
methods. Along with analytical and hybrid methods [29], Fault
Injection (FI) is a commonly used method for evaluating the
fault resilience of DNNs [11], [30], [31]. The industry often
employs fault injection by emulation in hardware, particularly
in FPGAs, as it allows for evaluating real-scale DNN accelerator
designs in significantly shorter run times than software-based
simulations [9].

Fiji-FIN [32] is a representative framework implemented on
the embedded Processing System for evaluating the resiliency
of DNNs by emulating FI on FPGA. It measures accuracy
degradation as a metric to study the impact of soft errors on
network parameters. Designing fault injection campaigns for
such frameworks requires significant effort, as each injection
halts inference execution to manipulate DNN parameters. This
interrupts classification time for a batch of inputs.

The state-of-the-art approaches for FI by emulation in FPGA
using the embedded Processing System often require itera-
tive procedures for each injected fault. In particular, such
an iterative approach breaks the pipeline execution of the
accelerator, requires a complex FI controller, and needs an
extra FI control interconnection to handle the injection [32]–
[34]. These procedures also involve multiple additional memory
accesses, resulting in time-consuming processes and complex
implementation.

Unlike the works mentioned above, our proposed method can
be classified as fault injection by emulation in Programmable
Logic. It leverages the functional approximation as a substitute
for the errors generated by FI to improve processing and
design time as well as the control complexity in the DNN fault
resiliency analysis process. This approach allows the inference
pipeline to be executed on a batch of inputs without interruption.
This agile method enables a fast and efficient exploration
of different options for network architecture, training, dataset
selection, and more, to study the fault resilience of DNNs.
Specifically, the introduced errors mimic single or multiple
accumulated faults in weights. The method allows for efficient
analysis of how subsequent layers in the network tolerate errors
in the Output Feature Map of an assumed compromised layer
are affected by faults in the weights of a compromised layer.

To the best of our knowledge, this is the first time that
AxC units are utilized to enhance the efficiency and reduce
the complexity of resilience analysis for DNNs.

B. Proposed method

AxC is commonly used to approximate hardware components
to improve compute efficiency while maintaining functional
accuracy. However, in practice, the errors induced by approxi-
mation can be used to mimic the errors caused by faults in logic
circuits. These errors affect the outputs of the corresponding



Fig. 1: A taxonomy of DNN reliability assessment methods

Fig. 2: Proposed method evaluation

units and propagate to subsequent layers, impacting their acti-
vations (Fig. 2). The proposed approach for evaluating DNN’s
fault resiliency using approximate computing (AxC) units is
presented in Fig. 2. To implement our proposed method, an
AxMult, or an AxMult + a bit suppression unit (AxMult+)
is implemented along with the exact implementation of the
multipliers (ExMult) in the network, depending on whether the
network is being run in functional or fault resilience assessment
mode. The golden inference for the validation dataset is run
only once, and the layer outputs are stored and compared with
a Comparator unit. The Bit Suppressor unit is meant to increase
the probability of more significant bits of the neuron being
impacted by faults. The less significant bits of the layer Output
Feature Map are already affected by the AxMult with proper
randomness depending on the data distribution in the network
and layers.

The overall flow of the proposed method is illustrated in
Fig. 3. In Step 1, the user initializes the method by selecting
the compromised layer in the DNN structure, the validation
dataset (i.e., DNN inputs), and the application-specific target
fault rate assumed for the analysis. In Step 2, suitable AxC units
are selected for Approximate Processing Elements (AxPEs),
such as the AxC multipliers from a relevant library, e.g., the
EvoApproxLib [35], or their variants with bit suppression. In
Step 3, the selected AxMults started executing the compromised
layer by enabling corresponding AxPEs along with the Exact
Processing Elements (ExPE) in the DNN architecture. The DNN
inference is run while keeping the network pipeline intact, and
the resulting DNN output accuracy drop is recorded as the

primary metric for analyzing DNN fault resilience. A more
significant drop in accuracy with induced errors implies a
less fault-resilient DNN implementation. At the same time, the
outputs of the AxMults are compared with the ExMults outputs
to calculate the actual error at each neuron. The rest of the
inference is executed by ExMults for both erroneous and exact
outputs, and the comparison is performed for all the subsequent
neurons of the network.

Fig. 3: Methodology flow

The characteristics of the approximation-induced errors can
be evaluated using different metrics such as normalized error,
number of flipped bits, and impact on the neural network
classification accuracy drop. In this study, we rely on a simple
set of metrics that includes:

• Normalized error: the average error on the output of each
layer is calculated by subtracting the neurons’ outputs of
that layer from the golden output and dividing all the error
values by the maximum value.

• Network accuracy: calculated by executing the network
under different circumstances (faulty, AxMult, AxMult +
bit suppressor and bit suppressor) over the test set.

• Bitflips in subsequent layers: calculated by comparing all
bits in the next layers’ outputs with the golden model and
counting the bits that do not match as flipped bits.

1) Accelerator Model: Fig. 4 illustrates the accelerator
model to perform resilience analysis on FPGA. It consists of
two different systolic architecture designs based on the network
under test. The N×N systolic architecture is used based on the
convolution layers’ kernel size to perform the most optimum dot
matrix. At the same time, all designs have ExPE and AxPE to
perform the resilience analysis and benefits of a dual register to
store the results of both approximate systolic and exact systolic
for further comparisons. An Error Detector (ED) module is also
provided to compute the error generated at each neuron’s output
compared to the exact output and can be used for the neuron’s
vulnerability evaluation.



This implementation provides us following features:

(a) Understanding the vulnerability of neurons by computing
the error generated through the hardware and further layers
by comparing the exact and approximate systolic design
outputs;

(b) Increasing the controllability for enabling errors in each
layer individually and keeping the other layers correct;

(c) Eliminating the need for designing and deploying an extra
complex controller for the fault injection procedure. A
simple approximate unit enabling circuitry is employed
instead;

(d) The inference pipeline process executes a batch of inputs
with no need to break this process;

(e) The resilience assessment process is performed without an
extra interconnect for weight sampling;

(f) The proposed approach is not iterative for each potential
fault location (unlike the traditional fault injection). Thus,
the analysis complexity is vastly reduced.

Note that the features (c)-(f) are specific for FI emulation in
Programmable Logic and generally not available in Processing
Logic based methods such as Fiji-FIN.

Fig. 4: Proposed systolic architecture for our Resiliency assess-
ment DNN accelerator framework

C. Experimental Results

1) Evaluation methodology: To assess the feasibility of the
proposed method, we implemented the same flow as shown in
Fig. 2 with fault injection (FI). Using Table I, we narrowed
down the list of candidate approximate multipliers from the
EvoApproxLib library [35] based on several relevant metrics,
with a primary focus on two established features, namely, the
Variance of Error Distance (Var-ED) and Root Mean Square
(RMS-ED) presented in [36]. These metrics are crucial in de-
termining the approximation-induced errors that affect the per-
formance of an AxC unit in DNNs. We selected mul8s 1L2N
for the experiment based on these metrics and results achieved
from the high-level experiments on the network through the
proposed GPU accelerated framework for CNN approximation
in Section II.

For the reference part, we repeated the fault resiliency eval-
uation on the original network, which was instrumented with
a state-of-the-art FI method [32]. In this study, we considered
the injection of multiple bitflips at a random location in all
OFM’ bits of the compromised layer for every input in the
DNN validation test set. In this case, we assumed that 10% of
the weights’ bits were faulty.

To achieve a high FI confidence level using the statistical fault
injection approach [37], we repeated the experiment for each
fault model with 1000 random faults per image. The average
accuracy of all repetitions was then reported.

We evaluated the impact of AxMult, AxMult + Bit Sup-
pression (AXMult+), Bit Suppression alone, and fault injection,
along with normalized error and the number of flipped bits, on
the DNN accuracy. The results show a drop in DNN accuracy
due to these factors. We compared the normalized error and the
number of flipped bits for each scenario.

2) Experimental Setup: To evaluate the feasibility of the
proposed method, a case-study Convolutional Neural Network
(CNN) with two convolutional layers, two max-pooling, and
one Fully-Connected (FC) layer was implemented and trained.
The simulations were performed on an Intel® Core™ i7-
6800K CPU @ 3.40GHz × 12, and the proposed method
was implemented with Python 3. The hardware synthesis and
implementation results are produced by the Xilinx Vivado HLS
tool on a Xilinx Versal VCK190 FPGA (xcvc1902-vsva2197-
2MP-e-S) at 166 MHz operational frequency.

The CNN under study is trained on a dataset of 2000 images
of animals (cats and dogs) and humans for binary classification.
The accuracy of the network over the test set (including 450
images of animals and humans) is 93.34%. Bit truncation
quantization is applied in network parameters during training,
and data precision is reduced to 8-bit.

3) Evaluation Results: We analyzed the similarity of the
fault resiliency analysis results obtained by fault emulation and
our proposed method using the metrics identified in Section
III-B.

Fig. 6 shows the distribution of normalized error in the output
of the second convolutional layer (Conv2) in the presence of
10% random faults in the first convolution layer (grey), errors
induced by AxMult (blue), and errors induced by AxMult +
bit suppressor (orange) enabled in the first convolution layer,
respectively. Fig. 5 reports the impact of applying FI and our
proposed method on the same convolutional layer and its effect
on the second pooling layer of the network. These results
demonstrate the similarity in error propagation trends between
the proposed and reference methods.

In practice, by analyzing these charts, users can set a crit-
icality threshold on the output error of the neurons based on
their application and determine the number and indices of
neurons to be used for any protection techniques. Generally,
if we set the threshold at some error value, all methods suggest
some neuron indices for mitigation techniques. As it can be
concluded, both AxMult + bit suppression and FI show very
similar behaviors. However, relying solely on the AxMult or bit
suppression techniques is quite inaccurate for high fault ratios
like this case study here.

For example, by setting the error threshold to 0.7, FI will
recommend the user to protect 50 out of 1024 neurons of the



Fig. 5: Normalized output error of Pool2: Applying Ax-
Mult, AxMult+ , Bit Suppression and FI on the Conv1

Fig. 6: Normalized output error of Conv2: Applying AxMult,
AxMult+ , Bit Suppression and FI on the Conv1

Fig. 7: Multiplication output error generated by AxMult,
AxMult+ and Bit Suppression

Fig. 8: Normalized Multiplication output error generated
by AxMult, AxMult+, and Bit Suppression

Conv2 network’s second CONV’s neurons, while AxMult + bit
suppression will recommend 53 out of 1024 neurons, including
all the critical neurons recognized by FI. Fig. 7 and Fig. 8
show the error distribution of the three different methods, i.e.,
AxMult, AxMult + bit suppressor, and bit suppressor on the
output of a multiplication operation with all the combinations
of two 8-bit inputs. From Fig. 7, it is evident that the error
values generated by AxMult + bit suppressor can almost cover
a vast range of different values, and Fig. 8 shows that the error
is evenly distributed on all different input combinations.

Table. III is reporting the number of bitflips and accuracy
drop in subsequent layers caused by the compromised first
convolution layer. These results also demonstrate the strong
similarity of the trends in error propagation by the AxMult and
its variants with the reference method. In case of accuracy drop,
AxMult + bit suppression shows a strong correlation with the
FI method and surpasses the other two methods.

Table IV reports details of the hardware accelerator imple-
mentation. Based on the results, the proposed implementation
can be executed on the FPGA at 166 MHz clock frequency,
and only by using ∼16% of the available LUTs on the board
all three mentioned systolic-array size architectures can be
implemented to improve the efficiency of the accelerator. The
timing comparison of the proposed method and the state-of-
the-art fault injection method are presented in Table. V. As
it can be concluded, by keeping an acceptable accuracy of
FI in identifying the critical neurons, we get thousands of
times speed-up in the resilience assessment of the DNNs.
(Specifically, it is 5417 times in this example). At the same
time, the proposed method does not need extra interconnects to

TABLE III: Bitflips and Accuracy drop induced by our proposed
method vs. the reference fault injection method by fault rate
10% in OFM of the first convolution layer

Measured Layer
Bitflips in subsequent layers

FI (reference)
[%]

AxMult
[%]

AxMult+
[%]

Bit suppressor
[%]

Conv1 10 10.30 10 10.20
Pool1 9.07 9.20 9.06 9.15
Conv2 16.76 16.80 16.77 16.83
Pool2 16.51 16.66 16.53 16.62

Accuracy drop [%]
16.73 9.33 18.33 24.73

TABLE IV: Hardware implementation of the proposed hardware
accelerator

Resource Utilization (%)
Conv2D

systolic size LUT FF BRAM Data Path
Delay

CLK
Frequency

3*3 0.03 0.00 0.83 Logic: ∼20%
Route: ∼80% 166 MHz5*5 0.09 0.00 0.83

32*32 15.30 0.91 0.85

manage the assessment process, and the original controller of
the accelerator can take care of the fault resiliency assessment
process.

TABLE V: Timing overheads of the proposed method vs. the
reference fault injection method (Conv1 layer)

Network Analysis Control
Circuitry Interconnects DNN execution

time in FPGA

Base CNN N/A
Data Exchange

Interconnect ∼120ms

Fault Resilience Assessment
CNN instrumented

with FI Complex FI Controller
(Data Exchange + FI)

Interconnect ∼650,000ms

CNN instrumented
with AxMult+

Accelerator
Controller

Data Exchange
Interconnect ∼120ms



IV. FAULT RESILIENCY IN DNNS

A. Motivations and Related Works

In the last few years, researchers have investigated the theory
behind brain-inspired computational models to build artificial
structures capable of addressing highly complex computational
problems. Today, DNNs are considered attractive solutions in
several fields due to their outstanding computational capabilities
as well as their human-level performance. The human brain is a
complex and fascinating system able to bear synapses or neuron
faults and still keep working properly, thanks to its plastic
ability to remodel, repair, and reorganize its neural functions.
Similarly, artificial neural networks possess in their structure a
certain degree of redundancy that leads to intrinsic robustness
and resilience against the occurrence of faults. This is caused by
two aspects: the first is related to their distributed and parallel
structure; the second to the redundancy resulting from the over-
provisioning [38]. Indeed, neural networks are furnished with a
quantity of artificial neurons higher than the minimal number
required to perform a computation. It means that they can bear
a bounded number of errors thanks to the excessive neuron
budget: once this number is exceeded, the precision degrades
gracefully as the number of errors increases [39].

This structural feature allows them to have an attractive
property known as masking ability, which corresponds to the
ability of DNNs to stop the propagation of some faults by
masking their effects. As an example, it has been shown that
the presence in DNNs of the Rectified Linear Unit (ReLU)
activation function halves the percentage of critical faults by
stopping the propagation of faults on negative weights [40].
Understanding how faults propagate through the neural network
is very important, as it may influence: the reliability assessment
procedure; efficient fault detection and mitigation strategies.

The analysis of fault propagation in DNNs has been con-
ducted in the literature by different perspectives. A prelim-
inary theory-driven analysis is proposed in [41], where the
authors explore inherent characteristics of fault propagations
in DNNs from the theoretical aspect. They propose a formula
to compute the perturbation caused by the i-th bit flip on a
weight represented in a 32-bit floating-point format. The authors
in [42] characterize the propagation of soft errors from the
hardware to the application software of DNN systems. Based on
this, they devise cost-effective solutions to mitigate Silent Data
Corruption (SDC) in software and hardware. Further studies on
faults propagations in DNNs are described in [43] and [44].

Nevertheless, it is important to underline that the major
effort in the above-mentioned research works consists in under-
standing how critical faults (i.e., those that lead to application
failures) propagate through the hardware-software system.

The intent of this section is twofold. On the one hand, it aims
to show how a critical fault spreads through a network. On the
other hand, this section tackles the problem from a different
angle, showing how a masked fault is propagated within the
system, analysing the role DNNs have in this process. The
investigation of this latter category of faults is important for
the following reasons:

• In a fault injection process, the identification of sets of
faults that are masked may reduce the fault space and, as a
consequence, lower the costs of the reliability assessment;

• In the design of DNN models, the knowledge of archi-
tectural elements that favour the masking ability of DNNs
can lead to the design of more robust models.

This section presents an analysis on masked faults with the goal
of identifying at what point in the computation their propagation
is stopped and if it is possible to know in advance their effects
on the output of the DNN.

B. Proposed Method

CNNs are a subset of DNNs composed of a set of convo-
lutional layers. The output of each layer is a multidimensional
tensor, often referred to as the Output Feature Map (OFM). In
the field of Image Classification, the output of the network is
represented by a vector called logit. A fault affecting a CNN
can be classified as:

• Critical, if it causes a change in the network prediction;
• Non-Critical, if it impacts the logit without changing the

prediction;
• Masked, if it does not modify the logit.

When a fault affects the parameters of a layer (i.e., weights), it
may change its OFM, as well as the one of all the following
layers. If the fault is masked, the difference between the golden
Output Feature Map (gOFM) and the faulty Output Feature
Map (fOFM) of the impacted layer should be small or zero.
Contrarily, it is logical to assume that a critical fault also
produces a fOFM that is radically different from the gOFM.

As a consequence of these two observations, it is possible
to predict the impact of a fault without needing to carry out a
complete inference. In fact, this section aims at showing that:

1) Masked faults, once triggered, rarely propagate for more
than one layer. Thus, the only different OFM is the one of
the layer directly affected by the fault;

2) Critical faults, can be immediately identified by performing
some early measures, using some metrics that can be
computed by comparing the fOFM and the gOFM of the
affected layer.

The OFM of a layer l can be interpreted as a collection of n
filtered images, where n is the number of filters applied in layer
l. Furthermore, the fOFM resulting from a fault in the network
parameters can be interpreted as the gOFM plus a Gaussian
noise. Therefore, it is possible to apply well-known objective
image quality metrics, such as the Peak signal-to-noise Ratio
(PSNR) and the Structural Similarity Index Metric (SSIM) [45].

This section proposes to use three different metrics to predict
the criticality of a fault, starting from the OFM of the affected
layer.

1) Max Difference: This first metric computes the maximum
distance between the gOFM and the fOFM. This metric is
presented as a baseline since, to the best of the authors’
knowledge, there are no metrics that correlate the criticality
of a fault with the changes in the OFM.

2) PSNR: This metric is directly proportional to the ratio
between the peak signal (i.e., the maximum element of the
gOFM) and the power of the corrupting noise, represented by
the mean square error between the gOFM and the fOFM. The
value can be computed as follows:

PSNR = 10 · log10
max(gOFM)2

MSE(gOFM, fOFM)
(1)



(a) LeNet5: Max. Difference (b) LeNet5: PSNR (c) LeNet5: SSIM

(d) ResNet20: Max. Difference (e) ResNet20: PSNR (f) ResNet20: SSIM

(g) DenseNet121: Max. Difference (h) DenseNet121: PSNR (i) DenseNet121: SSIM

Fig. 9: Metric probability distributions for the CNN under exam, observed in the layer where the fault is injected. Figures (a)-(c)
refer to LeNet-5, Figures (d)-(f) refer to ResNet20 and Figures (g)-(i) refer to DenseNet121.

Where max(gOFM) is the maximum value of the gOFM
and MSE is the Mean Square Error between the gOFM and
the fOFM.

3) SSIM: this metric improves the PSRN, by including the
concept of structural information, represented by the relation-
ship of a neuron with its neighbours. The formula is composed
by the product of three terms, the luminance, the contrast and
the structural term. In the context of the study of the OFM, the
simplified formula can be expressed as:

SSIM =
(2µfµg + C1)(2σfg + C2)

(µ2
f + µ2

g + C1)(σ2
f + σ2

g + C2)
(2)

Where µg, µf are the mean of the gOFM and of the fOFM,
σg, σf their standard deviation, σfg their cross-covariance. C1

and C2 are two regularization parameters.

C. Experimental Results

This section analyses three different CNNs used for Image
Classification to study how a fault can propagate. The networks
under analysis are: LeNet-5 with the MNIST dataset, ResNet20
with CIFAR-10 and Densenet-121 with ImageNet. For each
network, we performed a statistical FI as described in [46].
The tool used to carry out the FI campaign is SCI-FI [47], that
allows to speed up the FI process using the Fault Dropping and
the Delayed Start techniques. The faults injected are single bit-
flips in the network parameters, represented as 32-bit floating
points. Further details on the networks under exam and on the
FI campaigns are reported in Table VI.

Firstly, to demonstrate that Masked faults only modify the
OFM of the layer affected by the fault, we report the percentage
of Masked faults that affect more than one layer. In particular,
for LeNet5, all the Masked faults do not modify any OFM

TABLE VI: The networks under analysis

Network Dataset Dataset
Size

Acc.
[%] Weights Injected

Faults
LeNet5 MNIST 10,000 98.85 61,706 2,212
ResNet20 CIFAR-10 10,000 91.72 269,722 15,675
DenseNet121 ImageNet 50,000 74.43 7,978,856 16,685

besides the one of the impacted layer. For ResNet20, 87.99%
of Masked faults show no effect in the OFM of the layer
immediately after the impacted one, while for DenseNet this
number rises to 99.17%.

To show that Critical faults have a strong impact early on,
we compute the metrics introduced in Section IV-B on the
OFM of the layer affected by the fault. Figure 9 reports the
metrics distributions for the Max Difference, the PSNR and the
SSIM. Each image shows, for each network, the distribution
of a metric computed for all the FI campaigns. In particular,
the distribution is further subdivided according to the impact of
the fault affecting the network when they were measured. This
means that the distribution labelled ’Critical’ reports only the
value measured when a Critical fault is affecting the network.
For a metric, the more separable the three distributions are, the
better the metric is at predicting the effect of a fault.

In particular, we can observe a stark contrast between the
metrics computed for LeNet5 and the other networks. This
can be imputed to the lack of batch-normalization layers, that
normalize the value of the weights (and of the OFM) between
[−1, 1]. Consequently, even a bit-flip in the mantissa bits of the
weight can have a large impact. Nonetheless, SSIM performs
sufficiently well, as it correctly separates Critical and Non-
Critical faults.

For the other two CNNs, we can notice that both the Max.
Difference and the PSNR separate Masked faults from Critical



and Non-Critical faults. However, for ResNet20, SSIM outper-
forms the other metrics, as it completely splits ups Critical
and Non-Critical faults while providing a good degree of
separation between Masked and Non-Critical faults. Contrarily,
for DenseNet-121, SSIM does not completely separate Masked
from Critical. For this latter network, the best solution is offered
by the PSNR.

Therefore, we observe how different metrics can correctly
predict Masked and Critical faults without the need for a
complete inference, by simply analysing the fOFM of the layer
affected by the fault.

As a final note, we want to highlight that the cost of the com-
putation of the metric is quite small, requiring only a portion
of the time required for the computation of a whole layer. On
average, the per-layer overhead added by the computation of
one of the metrics is 76.51% for LeNet5 74.28% for ResNet20
and 73.54% for DenseNet121.

V. CONCLUSIONS

This paper explored approximation and fault resiliency of
DNN accelerators. To allow fast evaluation of AxC DNN, an
efficient GPU-based simulation framework was developed. The
paper proposed a method for employing approximate (AxC)
arithmetic circuits to agilely emulate errors in hardware without
performing fault injection on the DNN. Finally, it presented
a fine-grain analysis of fault resiliency by examining fault
propagation and masking in networks.

ACKNOWLEDGMENTS

This work was supported in part by the European Union
through European Social Fund in the frames of the “Information
and Communication Technologies (ICT) programme” (“ITA-
IoIT” topic), by the Estonian Research Council grant PUT
PRG1467 “CRASHLES” and by Estonian-French PARROT
project “EnTrustED”.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[2] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel, “Hardware
approximate techniques for deep neural network accelerators: A survey,”
ACM Computing Surveys, vol. 55, no. 4, pp. 1–36, 2022.

[3] A. Bosio, D. Ménard, and O. Sentieys, Eds., Approximate Computing
Techniques. Springer International Publishing, 2022. [Online]. Available:
https://doi.org/10.1007/978-3-030-94705-7

[4] A. Nardi and A. Armato, “Functional safety methodologies for automotive
applications,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 970–975.

[5] M. Jenihhin, M. S. Reorda, A. Balakrishnan, and D. Alexandrescu,
“Challenges of reliability assessment and enhancement in autonomous
systems,” in 2019 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2019, pp. 1–6.

[6] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa,
and J. Choi, “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[7] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis
of a deep neural network,” in 2019 IEEE Latin American Test Symposium
(LATS). IEEE, 2019, pp. 1–6.

[8] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020.

[9] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam,
and G. Guo, “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[10] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

[11] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and dependability of
ai hardware: Survey, trends, challenges, and perspectives,” IEEE Design
& Test, 2023.

[12] L. M. Luza, D. Söderström, G. Tsiligiannis, H. Puchner, C. Cazzaniga,
E. Sanchez, A. Bosio, and L. Dilillo, “Investigating the impact of
radiation-induced soft errors on the reliability of approximate computing
systems,” in 2020 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2020, pp.
1–6.

[13] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Danesh-
talab, J. Raik, M. Sjõdin, and B. Lisper, “Deepaxe: A framework for
exploration of approximation and reliability trade-offs in dnn acceler-
ators,” in 24th International Symposium on Quality Electronic Design.
https://doi.org/10.48550/arXiv.2303.08226, 2023.

[14] M. Pinos, V. Mrazek, F. Vaverka, Z. Vasicek, and L. Sekanina, “Accelera-
tion techniques for automated design of approximate convolutional neural
networks,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, pp. 1–1, 2023.

[15] A. Ruospo, L. M. Luza, A. Bosio, M. Traiola, L. Dilillo, and E. Sanchez,
“Pros and cons of fault injection approaches for the reliability assessment
of deep neural networks,” in 2021 IEEE 22nd Latin American Test
Symposium (LATS). IEEE, 2021, pp. 1–5.

[16] A. Bosio, I. O’Connor, M. Traiola, J. Echavarria, J. Teich, M. A. Hanif,
M. Shafique, S. Hamdioui, B. Deveautour, P. Girard et al., “Emerging
computing devices: Challenges and opportunities for test and reliability,”
in 2021 IEEE European Test Symposium (ETS). IEEE, 2021, pp. 1–10.

[17] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal, “A systematic literature
review on hardware implementation of artificial intelligence algorithms,”
The Journal of Supercomputing, vol. 77, pp. 1897–1938, 2021.

[18] M. Barbareschi, S. Barone, and N. Mazzocca, “Advancing synthesis
of decision tree-based multiple classifier systems: an approximate
computing case study,” Knowledge and Information Systems, pp.
1–20, Apr. 2021, company: Springer Distributor: Springer Institution:
Springer Label: Springer Publisher: Springer London. [Online]. Available:
https://link.springer.com/article/10.1007/s10115-021-01565-5

[19] M. Barbareschi, S. Barone, A. Bosio, J. Han, and M. Traiola, “A
Genetic-algorithm-based Approach to the Design of DCT Hardware
Accelerators,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 18, no. 3, pp. 1–25, Jul. 2022. [Online]. Available:
https://dl.acm.org/doi/10.1145/3501772

[20] M. Barbareschi, S. Barone, N. Mazzocca, and A. Moriconi, “A Catalog-
based AIG-Rewriting Approach to the Design of Approximate Compo-
nents,” IEEE Transactions on Emerging Topics in Computing, 2022.

[21] A. Bosio, D. Ménard, and O. Sentieys, Eds., Approximate Computing
Techniques: From Component- to Application-Level. Cham: Springer
International Publishing, 2022. [Online]. Available: https://link.springer.
com/10.1007/978-3-030-94705-7

[22] V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, and J. Han, “Scalable Con-
struction of Approximate Multipliers With Formally Guaranteed Worst
Case Error,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 11, pp. 2572–2576, Nov. 2018, conference Name:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998, conference Name: Proceedings of
the IEEE.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 770–
778. [Online]. Available: http://ieeexplore.ieee.org/document/7780459/

[25] Y. LeCun, C. Cortes, and C. Burges, “MNIST Handwritten digit
database,” 1998. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[26] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (canadian
institute for advanced research),” 2010. [Online]. Available: https:
//www.cs.toronto.edu/∼kriz/cifar.html

[27] C. Schorn et al., “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[28] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[29] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Deepvigor: Vulnerability value ranges and factors for dnns’ reliability
assessment,” arXiv preprint arXiv:2303.06931, 2023.

https://doi.org/10.1007/978-3-030-94705-7
https://link.springer.com/article/10.1007/s10115-021-01565-5
https://dl.acm.org/doi/10.1145/3501772
https://link.springer.com/10.1007/978-3-030-94705-7
https://link.springer.com/10.1007/978-3-030-94705-7
http://ieeexplore.ieee.org/document/7780459/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


[30] A. Ruospo, E. Sanchez, L. M. Luza, L. Dilillo, M. Traiola, and A. Bo-
sio, “A survey on deep learning resilience assessment methodologies,”
Computer, vol. 56, no. 2, pp. 57–66, 2023.

[31] M. Taheri, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, and J. Raik,
“Appraiser: Dnn fault resilience analysis employing approximation errors,”
in 26th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems. In press, 2023.

[32] N. Khoshavi, C. Broyles, Y. Bi, and A. Roohi, “Fiji-fin: A fault injection
framework on quantized neural network inference accelerator,” in 2020
19th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA). IEEE, 2020, pp. 1139–1144.

[33] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[34] N. Khoshavi, A. Roohi, C. Broyles, S. Sargolzaei, Y. Bi, and D. Z. Pan,
“Shieldenn: Online accelerated framework for fault-tolerant deep neural
network architectures,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[35] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, March 2017, pp. 258–261.

[36] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 317–328, 2019.

[37] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

[38] V. Piuri, “Analysis of fault tolerance in artificial neural networks,” Journal
of Parallel and Distributed Computing, vol. 61, no. 1, pp. 18 – 48, 2001.

[39] E. M. El Mhamdi and R. Guerraoui, “When neurons fail,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2017, pp. 1028–1037.

[40] F. Angione et al., “Test, reliability and functional safety trends for
automotive system-on-chip,” in 2022 IEEE European Test Symposium
(ETS), 2022, pp. 1–10.

[41] R. Sun, J. Zhan, and W. Jiang, “An insight into fault propagation in deep
neural networks: Work-in-progress,” in 2020 International Conference on
Embedded Software (EMSOFT), 2020, pp. 20–21.

[42] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in SC17: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1–12.

[43] J. E. R. Condia, J.-D. Guerrero-Balaguera, F. F. Dos Santos, M. S. Reorda,
and P. Rech, “A multi-level approach to evaluate the impact of gpu
permanent faults on cnn’s reliability,” in 2022 IEEE International Test
Conference (ITC), 2022, pp. 278–287.

[44] F. F. Dos Santos, P. Rech, A. Kritikakou, and O. Sentieys, “Evaluating the
impact of mixed-precision on fault propagation for deep neural networks
on gpus,” in 2022 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2022, pp. 327–327.

[45] A. Horé and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th
International Conference on Pattern Recognition, 2010, pp. 2366–2369.

[46] A. Ruospo, G. Gavarini, C. D. Sio, J. Guerrero, L. Sterpone, M. S. Reorda,
E. Sanchez, R. Mariani, J. Aribido, and J. Athavale, “Assessing convolu-
tional neural networks reliability through statistical fault injections,” in
2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2023, [In press].

[47] G. Gavarini, A. Ruospo, and E. Sanchez, “Sci-fi: a smart, accurate and
unintrusive fault-injector for deep neural networks,” in 2023 European
Test Symposium, 2023, In press.


	Introduction
	GPU Accelerated Framework for CNN Approximation
	Motivations and Related Works
	Proposed method
	Experimental Results

	Harnessing Approximation for Fault Injection in DNN Accelerators
	Motivations and Related Works
	Proposed method
	Accelerator Model

	Experimental Results
	Evaluation methodology
	Experimental Setup
	Evaluation Results


	Fault resiliency in DNNs
	Motivations and Related Works
	Proposed Method
	Max Difference
	PSNR
	SSIM

	Experimental Results

	Conclusions
	References

