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Figure 1: A linked visualization dashboard comprised of seven main components: The settings area (A), a line chart for tracking
the completion condition (B), an event log of previous interactions (C), document views for the adversarial text (D) and
original text (E), a scatterplot to suggest alternative word replacements (F), a text field for manual word substitution (G).

ABSTRACT

This paper presents a framework which enables a user to more easily
make corrections to adversarial texts. While attack algorithms have
been demonstrated to automatically build adversaries, changes made
by the algorithms can often have poor semantics or syntax. Our
framework is designed to facilitate human intervention by aiding
users in making corrections. The framework extends existing attack
algorithms to work within an evolutionary attack process paired with
a visual analytics loop. Using an interactive dashboard a user is able
to review the generation process in real time and receive suggestions
from the system for edits to be made. The adversaries can be used
to both diagnose robustness issues within a single classifier or to
compare various classifier options. With the weaknesses identified,
the framework can also be used as a first step in mitigating adversar-
ial threats. The framework can be used as part of further research
into defense methods in which the adversarial examples are used to
evaluate new countermeasures. We demonstrate the framework with
a word swapping attack for the task of sentiment classification.

Keywords: Adversarial machine learning, text classification

Index Terms: [Human-centered computing]—Visual analytics;
[Security and privacy]—Spoofing attacks

1 INTRODUCTION

With the increasing challenges of securing big data, machine learning
has become a popular tool for security applications. Adversarial

*e-mail: Brandon.Laughlin@uoit.net
†e-mail: Christopher.Collins@uoit.ca
‡e-mail: Karthik.Sankaranarayanan@uoit.ca
§e-mail: Khalil.El-Khatib@uoit.ca

machine learning is a threat to classifiers where malicious actors craft
inputs with nearly identical features to the original data while being
assigned a different output class. This work examines this threat
for text classification where many automated attacks algorithms
have been successfully demonstrated [40]. In recent years with
advances in techniques including deep neural networks and transfer
learning, performance of many natural language processing (NLP)
has been rapidly improving [3]. The methods used in these state-
of-the-art results however assume that the classifier input has not
been manipulated [24]. With adversarial machine learning there
is the potential for situations in which input data can be purposely
generated by an adversary that wishes to manipulate the results of
a classifier. By using data from outside the trained distribution,
malicious users can exploit the system by changing the assigned
output class without significantly changing the content.

Beginning with adversarial examples for computer vision [37],
the increasing popularity of deep learning has brought more attention
to the susceptibility of deep learning models to these attacks. While
adversarial environments have been studied for some time [8], it is
only recently with these increasingly complex classifiers that the
issue has become more prevalent. While the majority of works
have centered around computer vision [6], recently more works
have been considering NLP [40]. Generating adversaries for text
brings additional challenges not found in the continuous data space
of computer vision. For example, the common evasion technique
for computer vision is to slightly change each feature (pixel) by a
small amount. Each pixel can have its colours shifted very slightly
without being noticed by a human [6]. This is more challenging
for NLP as the data features are discrete. One cannot simply alter
a word slightly without being noticed. Either a misspelled word
or an entirely new word must be swapped with the original. This
means that instead of moving all words slightly one needs to choose
specific words that will be modified. While words can be converted
to vectors in a continuous space, a slight shift in the vector space is
unlikely to land on another word [40].
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Due to the large vocabulary space of languages, the same idea
can be expressed in many ways, providing the flexibility to construct
alternate phrasings. With this ability the goal of the adversary can
be to change a text so that the target class is changed but a human
would still obtain the same meaning as the original document. When
developing NLP applications, replacing a word to a word with a
very different meaning should alter the classification. However
with adversarial examples, score changes can occur even when
swapping semantically equivalent words [7]. While this can be done
entirely through an automated attack algorithm, we advocate semi-
automation where a human remains in the loop. This is important for
the generation of adversarial texts as semantics are largely context
dependent and therefore in need of manual user review.

Trying to troubleshoot the reasons for a lack of model robustness
is complicated because of poor model interpretability. Deep learning
classifiers essentially act as a black box with seemingly random
reasoning as to the decision of the model [4]. Due to this it can be
hard to determine how a change to the input will influence the output.
Recently there has been a lot of attention on creating methods of
better explaining complex machine learning systems [28]. It has
become a popular research topic with initiatives such as Explainable
Artificial Intelligence (XAI) [16] that has the objective of exploring
methods for increasing transparency in AI systems.

We propose a framework that combines an attack algorithm and
a visual analytics dashboard for a human centered approach to gen-
erating adversarial texts. Starting with an automated evolutionary
attack process, the system builds an adversarial example over a set
of generations. After the algorithm has completed, the user can use
an interactive dashboard to make adjustments to the resulting text to
correct the semantics. The end objective is a more automated and
efficient way to craft adversarial examples while allowing the user to
adjust poor changes by the attack algorithm. Since the system uses
an approach that is both black box and model agnostic, it is flexible
and can be transferred to other classification tasks. The provided
example in this paper is classifying document sentiment.

From the perspective of an attacker, adversarial examples can be
used for tasks such as spamming, phishing attacks, online harass-
ment and the spread of misleading information. This framework
could be used as a way to combat such malicious activities through
several uses. First, the framework identifies adversarial weaknesses
for classifiers, by reviewing actual attack instances a user can bet-
ter diagnose vulnerabilities in their classifiers. Once threats have
been discovered users can correct any semantic inconsistencies in
the examples and test whether the threats persist. Another benefit
of crafting adversaries is using these semantically equivalent ad-
versaries for adversarial training [15] to strengthen the classifier.
When a user has multiple model options they can do attack testing to
compare the robustness of different models and choose the best one.
Building a set of semantically equivalent adversaries can help to
design more realistic and diverse threat models with varying levels
of difficulty. Lastly our work can be used by security researchers
in research on adversarial defense. Used as a means for building
high quality training sets, the resulting adversaries can be used in
research for new defense techniques.

Our contribution is as follows:

• A visual analytics framework which extends existing attack ap-
proaches to visualize specific attack instances in real time.

• Visualizations to support users in crafting semantically appropriate
adversaries. A document view highlighting semantic inconsisten-
cies is paired with a scatterplot that suggests word replacements.

• A risk management tool for testing different threat models. Using
different text manipulation methods a user can compare results
across different classifiers.

2 BACKGROUND AND RELATED WORKS

Our framework involves research into the robustness and inter-
pretability of machine learning models and the ways humans can be
involved to improve results. In this section we start with a review of
related works on adversarial machine learning, followed by research
on how visual analytics has been used to help address these issues.

2.1 Adversarial Machine Learning
There are two main forms of adversarial attacks: white box and
black box. White box attacks involve having access to information
about a classifier including the training data, the features, the scoring
function, the model weights and the hyper parameters [8]. Black box
attacks do not require any of this information and is the approach
our framework supports. The only feedback required is the classifier
score. Another distinction in attack types is the source from which
an adversary can inject samples. The two options available are
poisoning and evading [8]. Poisoning involves the ability to place
adversarial examples in the training data that then becomes part of
the data distribution the model is trained on. Evasion attacks only
have access to a model after training has been complete. Our work
deals with evasion as our task is to cause mistakes in classifiers that
would already be trained. In instances where the classifier is updated
over time on future iterations of data, some evasion samples may be
part of future training, in part achieving a poisoning attack.

The underlying issue that enables adversarial examples to pose
a threat to machine learning classifiers is a lack of robustness [24].
We define robustness as the degree to which a change in the input
of the classifier results in a change to the output score. A robust
model is more stable and therefore more predictable in the scores
it generates. A less robust model can have a drastically different
score for seemingly very similar inputs. It has been found that NLP
classifiers often provide unrealistic confidence estimates that result
in seemingly random inputs having high probability scores [13].
This was tested by using input reduction that involves iteratively
removing a word from a document until the classification score
changes greatly [13]. The authors found that all of the relevant
words can be removed while leaving seemingly random words to a
human observer. The solutions end up as several nonsensical words
unrelated to the original document. This demonstrates the risks
involved with model over-fitting (the loss of a model’s ability to
generalize).

The most common adversarial attack method in NLP is the white
box scenario with this attack type more easily able to manipulate
examples [40]. Black box attacks are more challenging but have still
found success. As detailed further in Section 3.1, our framework is
designed to work with any black box attack. Examples below are
of different perturbation strategies that could be adapted to work
with our evolutionary attack system. While these works automati-
cally generate all of the adversaries, our framework is designed to
extend these strategies to work with human intervention in a visual
analytics dashboard. Attack types can be divided into two main
groups: character based and word based. Character level attacks
perform perturbations on individual characters within a word. Basic
examples include attacks that use insertion, deletion, swapping, and
substitution [23]. More advanced versions can use rare characters
such as from other languages that are similar visually to the original
character [11]. Word level attacks involve modifications at the level
of entire words, most often replacing it with a semantically similar
one. One example is replacement using neural machine transla-
tion [35]. The examples demonstrated in our work are based on a
technique that swaps words using a genetic algorithm [7].

2.2 Visual Analytics
There have been many works that involve the use of interactive
visualizations for the explanation of machine learning models [25].
However, visual analytics work on adversarial attacks are limited.
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Figure 2: Diagram of the framework architecture. The user interacts with the dashboard which sends commands to the server. The attack
algorithm will send samples to the target classifier for testing. The resulting scores are processed by the attack system and an update
is sent to the dashboard.

Related work pertaining to visualization of adversarial attacks is
Adversarial Playground [30] which specifically works with white
box attacks for computer vision. Our work evaluates the use of
adversarial examples in the discrete domain of NLP using black box
and model agnostic approaches. In the domain of NLP a tool has
been built to help users craft questions for a quiz game that trick
information retrieval models [39]. The tool shows evidence for or
against the right answer by highlighting influential words. Our work
differs as our tool is designed for any text classification task while
their tool works specifically for question answering algorithms. To
our knowledge there does not yet exist any visual analytics research
exploring the generation of adversaries for NLP classification.

Visual analytics systems have been designed to help users exam-
ine machine learning classifiers to help improve classifier perfor-
mance though methods such as explanatory debugging [21]. Provid-
ing explanations for classifier errors has been found to improve trust
in the predictions made by the model [10]. Our framework employs
similar techniques by explaining behaviour with scores built from
embedding distances and language models. In our task we have the
specific debugging objective of making semantic corrections to the
output by improving word swaps made by the attack algorithm.

Similar to our framework, other works have used visualizations
to explain the behavior of classifiers. To explain model decisions,
feature heat maps have been built that colour encode the words based
on their importance to the classifier score [13]. Other works have
visualized partial dependence plots [20] and provided instance-level
explanations [38]. Interpretability for a model can be defined as a
global or local process [29]. A global explanation would provide
details of how the system works as a whole to generate all of the
results. Local scope explanations provide context to specific subsets
or individual instances of the dataset, such as LIME [34]. Our frame-
work provides local explanations for individual word selections.
This means that the impact of word replacements are calculated
at that specific location with the surrounding context taken into
consideration with language models.

Most NLP classifiers represent the input using word embeddings
which are numeric representations of words in a high dimensional
vector space. Words with similar semantic meaning are positioned
more closely in this vector space compared to words representing
less related concepts. In order to visualize the relationship of words
we represent the embedding relations using the euclidean and cosine
distance between the word vectors. To help users more easily find
word replacements, we provide scatterplots to explore the word
embedding space. Related works have that have explored embedding
spaces include a tool for concept building [31] as well as comparing
word relationships and embedding spaces [17].

3 FRAMEWORK DESCRIPTION

The framework is designed as a combination of a client facing web
dashboard and an attack server on the backend. The server contains
the attack algorithms, word embeddings and language model. The
user interacts with the server through the web dashboard which trans-
lates the interactions into commands for the server. The server then

attacks the target classifier using an attack configuration chosen by
the user. An overview of the framework can be seen in Figure 2. This
architecture design was chosen to easily facilitate communication
between the client and the attack process. The analytics can be done
on a powerful server that can deliver the results to a web browser on
any device. The web browser enables an interactive visualization
dashboard to present the results of the service to the user.

In order to support uses in a wide variety of environments and
use cases, flexibility was a central design goal. To support a flexible
approach, the framework is model-agnostic and supports any black
box attack. All parts of the architecture are delivered as a black box
where the user does not need to know the underlying details of any
component used as they are abstracted into the service. There are
many benefits to model-agnostic systems including model flexibility
and representation flexibility [33]. Model flexibility means that the
system must be able to work with any machine learning algorithm
and this ensures that our attack algorithm will work against any type
of classifier. As an example whether the target classifier being at-
tacked is a rule-based system, a neural network or any other classifier
the attack will work in the same way. The only requirement from the
classifier being attacked is that the assigned class needs to come with
a numerical score. Representation flexibility means that the system
supports many explanation methods. Having different explanations
can help the user adjust to different objectives and domains. Our
framework supports such flexibility by allowing the user to easily
switch in different word embeddings and language models.

3.1 Attack Selection
When generating adversarial texts there are many factors to consider
that impact the quality of the resulting examples. These constraints
can be described as the attacker’s action space and describe the set of
constraints the adversarial examples must meet [14]. They are some
of the considerations needed when defining how an attack should
operate. The following is a list of what we consider to be some of
the most important factors to consider when defining an attack:

• Content-preserving: The text must preserve the content of the
message. For example, if the text is about a particular named
entity, it must still be about that entity.

• Semantic-preserving: The attacker may make any perturbation
to the example they want, as long as the meaning is preserved.

• Syntax-preserving: The grammatical elements of the text should
be the same, the structure of the writing should remain unchanged.

• Suspicion: To what extent the text appears to be purposely manip-
ulated. An example would be replacing characters with alternative
symbols.

• Legibility: The text is in a form that can be read by humans.
For example, visually perturbing text such as through captcha
techniques would degrade legibility.

• Readability: The text can still be easily understood by a human.
For example, replacing text with words beyond the average per-
son’s lexicon would degrade readability.



The extent to which an attack matches the above criteria is often
a subjective question and therefore is likely to be placed somewhere
on a spectrum for each of these aspects. For example, spelling errors
or poor grammar might increase suspicion but how much is uncertain
as these could be considered legitimate mistakes. This could also
possibly impair syntax, semantics or readability. Depending on the
importance of the various constraints, different attack strategies need
to be implemented. The framework is designed to allow the user to
use many attacks types so that these constraints can be considered.

With all of these different constraints there might be multiple at-
tack options to decide between when choosing an attack strategy. An
attack agnostic framework makes comparing and switching between
options more easy. It may be difficult to compare the effectiveness
for two attacks such as a character-based versus word-based attack.
With our attack-agnostic system, both options can be fed into the
system and provided the same type of assessment. With the same
representation used, a direct comparison becomes more easy. Addi-
tionally the flexibilities afforded by an attack-agnostic system offers
the ability to switch between them more easily. During the same
attack a user could switch attack strategies. The demonstration in
this paper assumes that the resulting text must not be suspicious and
so we use a word swapping approach. Semantics, syntax and content
might be still be impaired; this is why the user is involved in making
appropriate adjustments with the dashboard.

The attacks are implemented as a genetic algorithm which em-
ulates the process of natural selection. This is done by iteratively
building stronger generations of adversarial texts over time. The
solutions evolve through crossover from parent reproduction and mu-
tations of the text. The purpose of the mutations is to add diversity to
the documents to more effectively explore the search space. Repro-
duction is used to increase the propagation of favourable outcomes
and reduce the frequency of poor performing documents. The like-
lihood of each parent reproducing is determined by a fitness score.
The fitness score is based on the output score generated from the
target classifier we are attacking. The fitness score improves as the
output score gets closer to the target class. The specific conditions
for mutation and reproduction vary by attack strategy. The word
swap approach demonstrated in this work is detailed in the use case
section.

When an attack has been selected the user then chooses the evo-
lutionary parameters including the number of generations, the popu-
lation size and the word swap settings for how many nearest neigh-
bours to return and a cutoff threshold based on the distance in the
embedding space. With the attack chosen and parameters set the
last step is to define the completion conditions. The completion
conditions define at what point the system will stop attacking each
document. Once any of the defined conditions have been met the
evolutionary process will end and move on to the next document.
If no conditions are met then by default the attack will continue
until the maximum number of generations has been reached. The
following is a list of completion conditions that can be set:

• Classifier Score: In situations where the text needs to reach a
specific classification score such as passing through a filtering
system. When the score passes this threshold such as negative to
positive (above zero) the process will stop.

• Word Mover’s Distance [22]: Can be used as a way to roughly
approximate the overall extent of change between the current
adversary and the original document.

• Duration: Once the attack has continued past a specified amount
of time, end the attack after the next generation completes.

• Performance Acceleration: Once the rate of improvement in
classifier score between generations drops past a specified thresh-
old the attack ends.

Text

Evolutionary Attack
Algorithm

Word Replacement
Suggestions

Direct

Guided

Automated

Figure 3: The user can interact with the attack generation through
guided word replacement, through direct editing, or by
allowing the evolutionary attack to run automatically.

3.2 Interaction Methods
As the framework is built for black box evasion attacks, the attack
process involves repeatedly sending slightly perturbed inputs until
the target class is reached. For this reason an automated approach
is virtually essential as it would be extremely time consuming for a
human to repeatedly craft new inputs. Additionally, when humans
test subjects are given the task of creating adversarial texts they have
difficulty coming up with examples. When automated approaches
were tested they were found to be much better at this task [35].

However, while the algorithms are good at generating candidate
solutions, they are unable to always make the best decisions. While
humans cannot build examples easily they have a skillset comple-
mentary to the machine which is to easily select the best text among
several options [35]. Therefore, while some form of automation is
needed it is important to have the user involved in the process. The
combination of both human and machine can outperform just the
attack algorithm alone. Human intervention is also needed because
of the complexities of human language. At least some user feedback
is needed to guide the algorithms as context plays a large role in text
analysis. Since word similarity is very dependent on the context of
surrounding words we still need to rely on a human for final review.
Adjustments are needed in situations where the classifier has chosen
words that change the semantics of the text.

The assumption when working with word embeddings is that
the nearest neighbours of the words will be the ones that are the
most similar semantically. However this does not always ensure
that true synonyms will be the nearest neighbours. For example,
antonyms and hypernyms can be found close in the embedding
space as they are used in similar contexts as the original word. In
this work we prevent stop words from being swapped and filter
the results through WordNet [1] to check for antonyms close in
the embedding space. These additions, however, do not guarantee
nearest neighbours are truly similar. Even when words are proper
synonyms, other challenges such as words with multiple meanings
complicate the simple word swapping approach. It is for this reason
that the attack has been integrated with a human-centered visual
analytics dashboard to allow the user to make changes as needed.
The automation of the attack algorithm needs to be combined with
the subjective insights of a human user.

For these reasons the framework supports three methods of inter-



action: using the evolutionary attack algorithm (automated), with
nearest neighbour exploration (guided) and manually through the
text form view (direct). These options can be seen in Figure 3. The
suggested interaction order is to first run an automated evolutionary
attack followed by guided scatterplot suggestions. If there are still
issues with the text then the user can directly edit the text. The user
is free to use any combination of these methods and in any order.
The manual and guided interactions offer direct manipulation of
the system without having to launch an entire attack. This can be
useful to test a quick hypothesis or troubleshoot the system. The
user can also begin another automated stage using the evolutionary
attack using the current edits as a new starting position. To prevent
the algorithm from simply switching back the words the user has
changed, any words edited by the user are automatically locked.
This lock prevents the algorithm from making any further changes
to these words.

4 DASHBOARD DESCRIPTION

The combination of an automated algorithm working together with
a human analyst provides a good opportunity to use visual analytics
to more easily integrate together the two parts. As seen in Figure 1
the dashboard is organized into seven parts. All of these components
are connected together in a single linked visualization dashboard.
Across the top is the attack configuration settings (A). Below this
the line chart (B) tracks the score of the classifier or any other com-
pletion condition. Below this an interactive table logs progress and
enables the loading of previous snapshots (C). The center displays
the adversarial (D) and original (E) documents. On the right is the
scatterplot view (F) for selecting word replacements. Manual word
replacements can be done with the input field (G). When an attack
has been started, the algorithm iterates through all of the generations
and provides an update after each generation is complete. The best
example from each generation is known as the elite and is used to
represent the progress of the attack. The server updates the dash-
board with this elite. The document view, the linechart and the
event log are updated for each generation in real time as the attack
progresses.

4.1 Document View
The document view shows the current state of the adversarial ex-
ample (Figure 1D) as well as the original text (Figure 1E). While
the attack algorithm is running, this view is updated to display the
best example (elite) from each generation. Once the attack algo-
rithm has been completed, the final adversary is presented to the
user. The words within the adversarial document can be visually
encoded according to several objectives: classifier score influence,
word selection probability or semantic quality.

The words that have been changed between the original and
adversary are coloured blue in the original document for quick
identification. An older design also coloured the swapped words in
the adversary text. This however would add an additional colour
element to the adversary document encodings described below which
would likely be overwhelming for a user. For this reason we decided
to have the same position for each word within the adversarial and
original texts linked together. When the user hovers over each word,
both words in that same position are highlighted. This allows the
user to easily orient themselves with the same word position in both
texts at once

The score encoding shows the impact the words have on the
classifier score. The score is calculated for every word by replacing
each word with the word’s nearest neighbour in the embedding space.
The document is scored before and after the word has been swapped.
The final score is the difference in score from the first word and
the new swapped word. For example, if the current word is ‘bad’,
the nearest neighbour ‘terrible’ is put in that position instead. Two
instances of the document are then scored, one for ’bad’ and once

(A) Classifier score importance as text opacity.

(B) Word selection probability as background color.

(C) Language model score as text color.

(D) Original document with swapped words colored blue.

Figure 4: Document view encoding options. The scoring options
(A-C) can be paired with the original document (D).

as ‘terrible’. The difference in scores is kept and are represented as
the opacity of the original word. This comparison provides a rough
approximation as to the importance of each word and lets the user
easily spot good candidates for score improvements. If the swap
improved the score it would be given a higher opacity and a reduced
score would have a lower opacity. As seen Figure 4A, words such as
‘Clearly’ and ‘certainly’ would be good candidates whereas words
such as ‘acting’ and ‘story’ would not.

The word selection encoding represents the probability of each
word being chosen by the attack algorithm. This is based on a count
of how many nearest neighbours each word has. This is calculated
as the number of words nearby in the embedding space within the
threshold specified by the user. The number of nearby words is
converted to a probability based on the relative word counts of the
other words in the document. Words that share a similar meaning to
many other words are likely to have a much higher count than more
unusual words. This view can enable a user to quickly see which
words are more likely to have suitable replacement suggestions
available by the system without having to load the scatterplot for
each word. The background colour of the text is used to represent
the probability using the Viridis blue-yellow color scale. Words with
a higher probability are given a more yellow (brighter) background
colour. As seen in Figure 4B, ‘very’ has many options, ‘recommend’
has some options and ‘acting’ has very few.

The last document view option is the semantic perspective that
visually encodes the words according to their probability score from
a language model. This view can be used when the user wants to
improve the semantics of the text. Each word is processed by the
language model with its surrounding context to determine a proba-
bility score that reflects how appropriate each word is in that spot.



This view can help a user identify words that are not appropriate
for the sentence and that need to be changed. The brightness of
the text colour is used to represent the semantic score. Here, lower
semantic score is more blue, which through luminance contrast with
the background drives attention to words that are better candidates
for editing. As seen in Figure 4C, the majority of the words have an
average score and the word ‘abysmal’ is one of the least appropriate.

The user can choose to represent one or any combination of
these encodings at any time. Once the word encodings have been
calculated the user can begin to select individual words to swap. The
user can activate any word from the text by clicking on it. This word
now appears in the top right corner of the dashboard and the word
replacement view is activated with this word which is described
further in the next subsection. To help the user easily identify the
selected word within the text, the selected word is given a dark
background within the document text. Whenever the user swaps a
word the document view is updated. Each word in the text is again
scored by the classifier and then the encodings are updated.

4.2 Word Replacements

The word replacement section is the right side of the dashboard
and is where the user can choose word replacements with either the
scatterplot suggestions (Figure 1F) or manually with the text field
(Figure 1G). The scatterplot view is used as a guided interaction
to help users more easily identify suitable word replacements. The
purpose of the scatterplot is to see what would happen if any of the
nearest neighbour candidates was chosen to replace the current word
in the adversarial text instead. This enables the user to quickly find
any appropriate replacements for the current word selected.

When a user selects a word the attack server retrieves all of
the nearest neighbours of that word within the defined distance
threshold by using the word embedding space. For each of the
nearest neighbours three scores are computed: a classifier score
from the model we are attacking, a probability from our language
model and a similarity score. The classifier score is calculated as
the difference in score between this word and the original word
(the word that was clicked on). These score encodings function the
same way as classifier scores in the document view. That is, each
word is compared to the current word in the text by replacing it in
the document and running it through the classifier. The embedding
space similarity score for each candidate word is computed based
on the embedding distance to the current word in the text. The
similarity scores range from 0 to 1 and our implementation is based
on the Euclidean distance in the Google News corpus word2vec
embedding [27]. Larger numbers indicate more similarity between
this word and the current word. The language model probability
scores are compared between all the replacement candidates. For
the language model we use the Google 1 billion words model [9].
Words that fit most appropriately in the surrounding context will
have larger scores than those that do not. The scores are normalized
between the range of 0 and 1.

Once all of the words have been retrieved and their scores com-
puted, they are placed on the scatterplot. The x-axis plots the sim-
ilarity score and the y-axis plots the language model probabilities.
The axis for both of the scatterplot features starts at zero and in-
creases towards one. This means words near the origin are the least
desirable for both features. Farther out upwards and towards the
right improves the semantic score and the similarity of the words
respectively. The colour brightness of the words is encoded with the
classifier scores using the d3 plasma blue to yellow color scale. With
all three features considered, a user would ideally find bright words
in the top right corner indicating similar words that fit the context
and that also boost classifier performance. When a suitable word
is found the user can click on that word to use it as a replacement.
The new selected word now takes the place of the old one and the
document view updates.

An alternative design considered was giving the user the flexi-
bility to choose which features to plot on the scatterplot axes. For
example, the change to the model score could be combined with one
of the other semantic features. We choose to keep the model scores
as colour only to keep the design and use of the interface simple.
Since the primary objective of the user is to improve semantics we
believe that this extra option was not worth the increased complex-
ity. Additionally, keeping both positional encodings focused on
semantics provides a clear distinction between the choice impact on
semantics versus adversarial performance.

Examples of scatterplots can be seen in Figure 5. For ‘awful’
(5-left) both the words ‘terrible’ and ‘horrible’ would be decent
replacement options. They do however, reduce the classifier score
which may render the options unusable if the classifier score is near
the decision boundary. The options for ‘disappointment’ (5-right)
are more disappointing as there are no clear winning candidates
within the top right quadrant.

The other human intervention method is to manually edit the
text directly by using the text form that allows the user to edit the
underlying text directly. The user may want to make manual edits
if the word they want to use as a replacement is not suggested in
the scatterplot. Even if a word is in the scatterplot the exact version
may not be appropriate and they may want to take a word and make
some small adjustments such as editing the prefix or suffix of a word
to more appropriately match the surrounding text. For instance the
use may wish to make adjustments for issues such as proper word
tense or switching between singular and plural versions of a word.
In these situations the user types in the desired word replacement
into the text box and clicks the swap word button. This achieves the
same end as clicking a word in the scatterplot.

4.3 Event Log
The event log (Figure 1C) is an interactive data table that records
every action made by both the user and the attack algorithm. For the
algorithm, an update is sent after every evolutionary generation has
completed. For the user, any word replacements either by manual
text edits or word swaps with the scatterplot view are added to the
table. For each action the following are recorded and stored in the
table: a timestamp, an event description, the total swap count, the
word mover’s distance (WMD) [22] relative to the original document,
and the score from the classifier. Each table column can be sorted
by clicking on the column header. The event log enables the user to
review the impact on the document by sorting over time, interaction
type or changes on the text (swaps, WMD, score).

When using non-linear classifiers, the user may wish to step
through several interactions in a sequence to see if subsequent
choices impact past decisions. If a user wishes to revert any changes
done they can do so through the data table log. By clicking on any en-
try in the table they can return to this snapshot. This allows users to
easily revert back to previous decisions, allowing for non-permanent
interactions. This can more easily facilitate what if analysis by the
user where they may wish to explore different options.

5 USE CASES

In this section we demonstrate an implementation of the attack
algorithm and the process involved in adjusting an adversarial text
using the dashboard. The end objective of the attack is to take a
document which in this case is a negative movie review and convert
this to a positive review without changing the semantics of the
text. Since the review was originally negative, a human reading
the review should still believe the review is negative even after it
becomes classified positive by the machine learning model. The
attack algorithm implemented in this work is based on an existing
word swapping attack [7]. For our evolutionary attack algorithm
the mutations occur as words swaps for semantically similar words
based on a word2vec embedding from the Google News corpus [27].



Figure 5: Two example scatterplots of word replacement options. Y-axis plots probability from a language model, x-axis plots similarity score
based on word embedding distance, and hue encodes change in classifier score. Left: replacement suggestions for the word ‘awful’.
Right: replacement suggestions for the word ‘disappointment’.

Nearest neighbour lists are built for each word in the document with
a cut off over a specified distance in the embedding space. The more
neighbours a word has under the specified threshold the more likely
it will be chosen as the mutation. Reproduction is implemented as
crossovers involving two parents with a child randomly receiving
half of the words from each parent.

5.1 Adversarial Dataset Building
In this example the user wishes to construct adversarial examples in
order to experiment with adversarial training [15]. With adversarial
training the classifier is trained on adversarial examples in order
to increase robustness against them. By using the attack algorithm
alone the user might be training the model on adversaries that were
actually not semantically similar to the original. This would mean
training would be done on improper adversarial examples so the
results would not be as effective. By making corrections to the
texts with poor semantics, the training set quality for the adversarial
training can be improved.

To start the user selects the classifier score threshold as the com-
pletion constraint. For our scenario the objective is to achieve a score
of at least 0 (neutral). The user then generates many adversarial ex-
amples using different documents as the starting point, thus building
a diverse set of adversarial examples. With an adversarial dataset
built, the user needs to select which data records to investigate.

Figure 6 shows an example of a data table which lists all the
generated adversaries. Options included in the table include the
final word mover’s distance (WMD) [22] of each document, the
percentage of original words remaining and the average and mini-
mum semantic scores of word swaps using the language model. A
summary score can be defined to combine metrics in order to help
users prioritize edits. In this instance it is the product of the original
words remaining and the average and minimum swap scores. A
higher percentage is desirable for each category so a smaller product
indicates a text with more potential corrections to be made. The user
chooses the example with the smallest summary score which opens
the document in the interactive dashboard (Figure 1).

With a specific record now chosen the user will begin to examine
the text and improve the semantics. The adversarial text chosen had
successfully switched classes from negative to positive. The user
now wants to confirm that the example is truly similar semantically
to the original. To quickly check for poor word substitutes that
have been made, the user selects the language model encoding in

the document view. As seen in Figure 4C the user sees that the
word ‘abysmal’ which replaced ‘awful’ has been identified as a
word with a poor language model score. The user also sees another
replacement they wish to fix: ‘disappointment’ has been replaced by
‘surprise’. The user feels that there are more appropriate substitutes
for these words. As discussed in Section 4.2, the user selects both of
these words within the document view and the results can be seen
in Figure 5. The user chooses replacement words and repeats the
process for each word they wish to correct. When the user does
not wish to use any of the suggested replacements they insert their
own word manually via the text field. In instances where the user
is unsatisfied with the change in scores, they can revert back to the
previous snapshot using the event log.

The user continues to search for other words in the adversary to
replace until all the poor semantic words have been fixed. The user
has noticed that the classifier score has dropped beyond the threshold
needed. They could launch another evolutionary attack or make
changes themselves. Since the score only needs a slight upgrade
they decide to fix it themselves. They search for the best opportunity
for score changes by enabling the performance encoding to find
words that have replacements that can improve the score. They also
add the word selection probability encoding to find words that are
likely to have replacements. This can be seen in Figure 7. They find
the word ‘movie’ has a good opportunity to increase the classifier
score (high opacity) and has many suitable replacements (bright
colour). They then repeat the process of looking for replacements
in the scatterplots. When the adversary has been fixed they can
continue to search through other adversaries, returning to the data
table in Figure 6 and prioritize based on the summary scores.

5.2 Attack Algorithm Adjustments
The dashboard can also be used as a way to review the attack process
of the evolutionary algorithm. If used in this way the dashboard
can be used as a troubleshooting tool to help debug errors or better
optimize the attack results. To do this the user can change the encod-
ing option in the document view to the word selection probability.
This will visualize the influence of each word during the attack to
provide the user a better understanding of how the attack chooses
which words to perturb. The development of the attack example
can be reviewed after each evolution by looking at each generation
of the attack using the event log. By stepping through each stage
the user can see which words are being replaced at any time in the



Figure 6: A data table lists each of the adversarial texts generated. Users can choose which text to edit based on metrics such as word mover’s
distance, the number of words swapped and the language model scores of the word swaps.

Figure 7: Adversarial document view with multiple encodings.
Background brightness is word selection probability and
text opacity is classifier score importance.

attack. The user can jump to a snapshot in the event log and bring
up the document view.

In this example the user wants to troubleshoot the attack algorithm.
Specifically they want to know why the word ‘It’ has a high selection
chance. As seen in Figure 7 line 2, the user observes that the
selection probability for the word ‘It’ is very high which they find
strange as they thought it was added to the list of stop words to ignore.
The stop list is used for words in which there are no conceivable
replacements as the word is uncommon or has no synonyms of any
form. The user notices that other instances of the word ‘it’ in this
document were scored much lower, but then realizes that this one
was at the start of the sentence so it was capitalized. This capitalized
version of the word was not part of the stop list. To fix this issue
the user now adds this specific version of the word to the stop list.
Alternatively they could make the stop list case insensitive.

To improve the attack performance the user can look for words
that have large discrepancies between the classifier score influence
and the word selection probability. That is, the user can look for
words that have selection probabilities that do not properly reflect
their importance to the classification. As an example in Figure
7 bright, bold words are important to the score and likely to be
changed. Faded dark words are unimportant and unlikely to be
chosen. These are optimal conditions for the attack. However
the word ‘acting’ (line 3) is not important due to the low opacity
but is likely to be modified due to the bright colouring. The user
therefore might want to prevent this word from being modified and
instead give greater emphasis to words such as ‘boring’ (line 4) that
are important (high opacity) but are not likely to be chosen (dark
colour). This re-weighting of the evolutionary process can help the
attack more quickly converge to better results.

5.3 Robustness Testing

Another use of the framework is to compare the robustness of differ-
ent classifiers. In this example the user tests three different classifiers
by running the attack algorithm for each one and comparing the dif-
ferences. The attack algorithm runs 10 generations for each record.
The user is assessing how feasible it is for our attack to generate
adversaries and to what extent each document is changed.

The data we use to demonstrate the attacks is the IMDB sentiment
analysis dataset [26]. This dataset has 50,000 movie reviews that
are evenly split between negative and positive classes. Each review

is scored out of 10 by a human reviewer. The review is negative if
the score is less than or equal to 4 and positive if the score is greater
than or equal to 7. Neutral reviews are not available in the dataset.
We test three different classifiers: VADER, a LSTM and ULMFiT.

VADER [19] is a sentiment analysis classifier that uses a rules
based approach built with a human curated lexicon of words. Each
word placed on a spectrum from negative to positive. The LSTM is
our implementation of an average performing deep learning classifier.
The ULMFiT classifier [18] is a transfer learning method which was
trained on the IMDB dataset [26]. As a baseline comparison between
the models, we run the classifiers through the entire dataset without
any adversarial testing. VADER scores 59%, the LSTM scores 84%
and ULMFiT scores 95.4% (the highest accuracy of all existing
works published on the dataset [3]).

As see in Figure 8, for the results of the attack we measure word
mover’s distance, word swaps and sentiment improvement. The
word mover’s distance is the difference between the final adversary
at generation 10 and the original document. The word swap is the
percentage of words replaced between the final adversary and the
original. The sentiment improvement is the difference in classifier
score between the original and final adversary. Scores from all
classifiers are normalized in a range from -1.0 (100% negative) to
1.0 (100% positive) with a score of 0 considered a neutral score. As
an example a change from negative sentiment (-0.50) to positive
(+0.25) would be a change of 75%. All the scores presented are the
averages across all the records attacked. A more robust model will
require a larger word mover’s distance and more swapped words to
reach the same classifier score as a weaker model. A more robust
model would also have a smaller classifier score improvement.

The ULMFiT classifier is the most robust because it had the
largest word mover’s distance and highest word swap percentage.
VADER had the least robust performance as very little perturbation
needs to be done in order to trick the classifier. As little as 5% of
the words can be swapped with VADER compared to over 20%
for ULMFiT, the word mover’s distance is also more than triple
for ULMFiT (0.289) compared to VADER (0.091). These results
exemplify the importance of human edits for more robust models.
Since a more robust model changes the documents more, there is
a greater number of potential edits in need of fixing. These tests
also demonstrate that new attack strategies are needed to effectively
attack the more complex models. In addition to these robustness
tests, another type of model assessment can be to compare different
attack strategies against the same classifier in order to choose the
best attack for further evaluation.

6 DISCUSSION AND FUTURE WORK

In this work we have presented a visual analytics framework that
helps users build adversarial text examples. While we have demon-
strated that the framework can craft adversaries, there are many
possible extensions and directions for future work. Most importantly
the system will undergo a more formal evaluation in which both
quantitative and qualitative aspects of the work can be assessed.



Figure 8: Robustness evaluation between classifiers on the IMDB dataset [26] each attacked for 10 generations. Left: Average word mover’s
distance between original and adversarial documents. Center: Average percentage of word swapped between original and adversary.
Right: Average improvement in classifier score between original and adversary.

In this section we discuss some limitations and extensions of our
approach as well as evaluation and other potential future work.

6.1 Limitations
The framework assumes we have unlimited access to the NLP classi-
fier we are attacking. This may not always be the case if for example,
an online service has a maximum attempt lockout precaution or in-
terprets our repeated queries as a denial of service attack. Mitigation
techniques could include rate limiting our requests over time, a dis-
tributed attack, or slowly building a surrogate model that emulates
the online system. With a surrogate model made the attack can
continue indefinitely in an offline setting.

The visual encodings used for the words are done by querying the
classifier with each word to measure the influence of swapping each
word. When attacking a non-linear model, if any word is changed it
can influence the results of any other subsequent changes. Therefore
each word must be reevaluated after any modification. This becomes
increasingly computationally expensive as we increase the number
of words in the text. Some methods to mitigate this issue could
include filtering unimportant words, intelligent prefetching, or only
encoding words upon user request.

6.2 Evaluation
The robustness testing use case was a quantitative way of assess-
ing our proposed framework. However such calculations cannot be
made as easily for more subjective matters such as text quality or
model interpretability. This means that qualitative assessments in
the form of user studies would also have to be done. Methods of
quantifying machine learning explanations have been considered
in the evaluation of the XAI framework [5]. Methods have been
suggested for developing a “goodness scale” using a 7-point Likert
scale to assess factors such as plausibility, usefulness, clarity, causal-
ity, completeness, applicability, contrast and local as well as global
observability.

For our future work we plan on conducting user studies through
a method such as Amazon Mechanical Turk [2]. Subjects would
be provided samples of output from the attack algorithm after a
set number of generations or the attack algorithm results plus edits
made by a human reviewer. The subjects would be asked to rate the
semantic quality of the texts. With ratings for both automation alone
and human combined with machine we can compare the difference in
ratings to assess the impact of human involvement in the generation
process.

6.3 Framework Extensions
An extension to the views could include a filter to remove options
such as different parts of speech, word tenses, or proper nouns.
This could let a user more quickly find a suitable word replacement.
Another area for future work is the use of contextual word embed-
dings [32] that could provide more appropriate nearest neighbour

by considering the local context of the word within the text. An
extension to the current evolutionary algorithm can include a user-
steerable stage of speculative execution [12]. This extension would
track the quality of the text and will interrupt the process if a quality
metric degrades past a certain threshold. At that point the system
could present to the user various previews of new generations to
allow the user to select the best path forward.

Other potential future work involves defensive measures for adver-
sarial texts. The framework can be extended to test various defense
strategies to help strengthen the models against adversarial examples.
Most research on adversarial defense has been for computer vision
and as discussed previously computer vision techniques do not often
transition well to the discrete space of NLP. Some recent works
however have evaluated methods for adversaries using sequential
data [36]. These techniques were tested for cybersecurity and not
NLP but their use of sequential methods could prove promising for
NLP defense. As future work our system could test methods such
as these and incorporate some auto machine learning techniques
to search for optimal parameter settings. These suggestions can
be added to the system for directing the user in choosing the best
defensive measures against the attacks crafted by the user.

7 CONCLUSION

In this work we propose a framework that extends existing evolu-
tionary attack strategies to be used with a visual analytics dashboard.
As automated attack systems often degrade document semantics, the
dashboard helps users make corrections to the texts. The framework
is a black box and model-agnostic system so that it can work with
any classifier that provides an output score. To start the user chooses
an attack algorithm that perturbs each text over a set of generations
which can be viewed in real time. Once a set of adversaries has
been built the user can make corrections manually or via sugges-
tions by the system. The suggestions are made by visually encoding
the documents and providing replacement options in the scatter-
plot. The scatterplot displays choices based on a similarity score
using word embeddings, semantic scores with a language model and
the change to the classifer score. We demonstrate an implementa-
tion of the framework using a word swapping attack for sentiment
analysis. Use cases describe the process of making corrections to
text semantics, troubleshooting an attack algorithm and evaluating
the robustness of various classifiers. This work is a first step to-
wards further research integrating visual analytics with adversarial
machine learning to encourage the exploration of robustness and
interpretability techniques.
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