
HAL Id: hal-02528705
https://hal.science/hal-02528705

Submitted on 1 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning And Data Mining Classification Through
the Intelligent Agent Reasoning

Amine Chemchem, Francois Alin, Michaël Krajecki

To cite this version:
Amine Chemchem, Francois Alin, Michaël Krajecki. Deep Learning And Data Mining Classification
Through the Intelligent Agent Reasoning. International Conference on Future Internet of Things
and Cloud Workshops (FiCloudW), 2018, Barcelone, Spain. �10.1109/W-FiCloud.2018.00009�. �hal-
02528705�

https://hal.science/hal-02528705
https://hal.archives-ouvertes.fr

Deep Learning And Data Mining Classification
Through the Intelligent Agent Reasoning

1st Amine Chemchem
CReSTIC Center, University of

Reims Champagne-Ardenne
Campus Moulin de la Housse BP 1039,

51687 Reims cedex 2, France

mohamed-lamine.chemchem@univ-reims.fr

2nd François Alin
CReSTIC Center, University of

Reims Champagne-Ardenne
Campus Moulin de la Housse BP 1039,

51687 Reims cedex 2, France

francois.alin@univ-reims.fr

3rd Michael Krajecki
CReSTIC Center, University of

Reims Champagne-Ardenne
Campus Moulin de la Housse BP 1039,

51687 Reims cedex 2, France

michael.krajecki@univ-reims.fr

Abstract—Over the last few years, machine learning and data
mining methods (MLDM) are constantly evolving, in order to
accelerate the process of knowledge discovery from data (KDD).
Today’s challenge is to select only the most relevant knowledge
from those extracted. The present paper is directed to these
purposes, by developing a new concept of knowledge mining
for meta-knowledge extraction, and extending the most popular
machine learning methods to extract meta-models. This new
concept of knowledge classification is integrated on the cognitive
agent architecture, so as to speed-up its inference process. With
this new architecture, the agent will be able to select only the
actionable rule class, instead of trying to infer its whole rule base
exhaustively.

Index Terms—data mining, machine learning, intelligent agent,
knowledge mining.

I. INTRODUCTION

Currently, the induction rules have become indivisible pat-

tern of artificial intelligence thanks to their existence as the

basis for many disciplines, such as the agent technology, data

mining and knowledge discovery. This paper describes how to

extend MLDM methods to induction rules.

In this work, we are interested in supervised learning, which

is used on many applications, such as patterns recognition and

intrusion detection.

The classification of a collection consists of dividing the

items that comprise the collection into categories or classes

[1]. In the context of data mining, classification is done using

a model that is built on historical data. The goal of predictive

classification is to accurately predict the target class for each

record in new data, i.e. data that are not in the historical set.

A classification will start with the definition of training set,

for which target values (or class assignments) are known. Clas-

sification algorithms use various techniques to find relations

between input data and target values in the training data.

This paper is organized as follows: The next section intro-

duces the concept of knowledge mining. Section III describes

the algorithms of induction rules mining. Then, experimental

results are shown in section IV, which resumes a comparative

study carried out on the MLDM performance approaches for

rules classification. After that, the new architecture of the

intelligent agent is presented. Finally, we conclude by making

some remarks and talking about future perspectives.

II. KNOWLEDGE MINING

The web features huge amounts of data from different fields.

By applying data mining, and KDD process to these data,

many large knowledge bases are extracted. Our study explores

the issue to analyze these knowledge bases in order to discover

a new hidden pattern.

According to the authors in [2], the different representations

of knowledge can be classified into two approaches.

1) The procedural approach invokes simplicity and ease

of understanding, represented by algorithms simulating real

behaviors. In addition, the procedural representation allows

to handle problems with algorithmic style, which is fully

analyzable and understandable.

2) The declarative approach is more flexible because it

provides heuristic expressions using statements. The declara-

tive representation allows specify constraints and learns in-

dependently from methods of use. The control structure is

separated from the knowledge entered as rules on bulk data.

A. Induction Rules Representation

The procedural form is imposed by a limited grammar;

therefore, it is more interesting to deal with the most declar-

ative representation. Induction rules are the closest repre-

sentation form to natural language phrases. In addition, the

results of KDD process with some data mining methods, such

as decision trees or association rules mining, are declarative

knowledge as induction rules, shown on figure 1.

Fig. 1. Knowledge Discovery Process [3]

For these reasons, this work is designed for induction rules

processing.

An induction rule is a boolean formula of the form:

13

2018 6th International Conference on Future Internet of Things and Cloud Workshops

978-1-5386-7810-7/18/$31.00 ©2018 IEEE
DOI 10.1109/W-FiCloud.2018.00009

R : X → Y , where X and Y are sets of clauses. X is called

the premise part of the rule and Y its consequence [4].

The clause is a comparison between two elements as the

form: a operator b; where (a, b) ⊂ (A, V) i.e A is a set of

variables, V is a set of values.

B. Induction Rules Preliminaries

Defining the mathematical preliminaries of induction rules

is a necessary step before the mining process. In the previous

works [5] [6], we proposed a new similarity measure and

new gravity center computation formulas. In this study, the

induction rules are considered as text. Therefore, this work

summarizes solving the well-known problem of text classifi-

cation.

Like the document classification problem [7] [8], we define

intuitively the induction rules classification (IRC) problem

as the task of classifying rules under a predefined category.

More formally, if ri is a rule from the rule base RB and

{c1, c2, ..., cn} is the set of all the categories, then IRC assigns

one category cj to an induction rule ri .

As in each supervised machine learning task, a rule may be

assigned to more than one category (Ranking Classification),

but in this paper only researches on Hard Categorization

(assigning a single category to each rule) are taken into

consideration.

III. INDUCTION RULES CLASSIFICATION ALGORITHMS

The main contribution of this study is to extend popular

MLDM approaches for induction rules classification, in order

to extract meta-models.

Afterwards, this set of algorithms is incorporated as a

new package through the intelligent agent knowledge base.

Finally, the inference engine reasoning of the cognitive agent is

improved. It is enough to classify the new knowledge in order

to infer only the corresponding rules class, instead of inferring

the entire rule based at each arrival of a new acquaintance.

In this part, we show the extension of the most popular text

classification approaches for dealing with induction rules.

A. Naive Bayes Classification Approaches

The Naive Bayes classifier is a simple probabilistic ap-

proach, which is based on Bayes theorem with strong and

naive independence assumptions [9]. It is one of the most basic

text classification techniques with various applications, such

as email spam detection, personal email sorting, document

categorization and sentiments detection. Despite the naı̈ve

design and oversimplified assumptions that this technique

uses, Naive Bayes performs well in many complex real-world

problems.

Even though it is often outperformed by other techniques,

such as boosted trees, random forests and support vector

machines. Naive Bayes classifier is very efficient since it is

less computationally intensive (in both CPU and memory)

and it requires a small amount of training data. Moreover,

the training time with Naive Bayes is significantly smaller as

opposed to alternative methods [10].

There are several Naive Bayes variations. Here we will

discuss about two of them: (1) the multinomial naive Bayes

and (2) the Bernoulli naive Bayes. Note that each can deliver

completely different results since they use different models.

In a text classification problem, we use the words of the

document (in our case, the items of clauses attributes/values

of the rule) in order to classify it on the appropriate class.

By using the maximum a posteriori (MAP) decision rule, we

come up with the following classifier:

Cmap = argmax
c∈C

(P (c|d)) = argmax
c∈C

[P (c)
∏

1�k�nd

P (tk|c)]

Where tk are the tokens (attribute or value) of the rule. C

is the set of classes that are used in the classification. P (c|d)
is the conditional probability of class c given rule d. P (c) is

the prior probability of class c, and P (tk|c) is the conditional

probability of token tk given class c.

Due to the fact that computers can handle numbers with

specific decimal point accuracy, calculating the product of the

above probabilities will lead to float point underflow. This

means that we will end up with a number so small, that it will

not be able to fit in memory and thus it will be rounded to zero,

rendering our analysis useless. To avoid this problem, we will

maximize the sum of their logarithms instead of maximizing

the product of the probabilities.

Cmap = argmax
c∈C

[logP (c) +
∑

1�k�nd

logP (tk|c)]

Thus, instead of choosing the class with the highest prob-

ability, we choose the one with the highest log score. Given

that the logarithm function is monotonic, the decision of MAP

remains the same.

The last problem that we address is if a particular at-

tribute/value does not appear in a particular class, then its

conditional probability is equal to 0. If we use the first decision

method (product of probabilities) the product becomes 0;

however, if we use the second (sum of their logarithms) the

log(0) is undefined. To avoid this, we will use add-one or

Laplace smoothing by adding 1 to each count:

P (t|c) = Tct + 1∑
t′∈V (Tct′ + 1)

=
Tct + 1∑

t′∈V (Tct′) +B′

Where B′ is equal to the number of terms contained in the

vocabulary V.

Now we examine two common Naive Bayes variations

which differ on the way that they calculate the conditional

probabilities of each feature and on the scoring of each

category.

14

Fig. 2. The General Framework

1) Bernoulli Naive Bayes: The Bernoulli variation, as de-

scribed by [11], generates a boolean indicator about each

token of the vocabulary equal to 1 if the token belongs to the

examining rule and 0 if it does not. This variation is different

from the multinomial model because it takes into account

the non-occurring clauses within a rule. While in multinomial

variation, only the number of token occurrences is enumerated.

Both the training and the testing algorithms are presented in

algorithm1.

2) Multinomial Naive Bayes Algorithm : This variation, as

explained by [11], estimates the conditional probability of a

particular clause (attribute / value) given a class as the relative

frequency of term t in rules belonging to class c.

p(t|c) = Tct∑
t′∈V Tct′

Thus, this variation takes into account the number of oc-

currences of a term t in training documents from class c,
including multiple occurrences. Both the training and the

testing algorithms are presented in algorithm2.

B. Support Vector Machine Approach

Support vector machines (SVM) have exhibited superb

performance in binary classification tasks. Intuitively, SVM

aims at searching for a hyperplane that separates the two

classes of data with the largest margin (the margin is the

distance between the hyperplane and the point closest to it)

[12] [13].

Algorithm 1 Bernoulli Naive Bayes Algorithm

Train BernoulliNB(C,D)

1- V ← Extract V ocabulary(D).
2- N ← Count Docs(D) .

3- For each (c ∈ C) do
4- Nc ← Count Docs In Class(D, c)
5- prior[c]← Nc/N
6- For each (t ∈ V) do
7- Nct ← CountDocsInClassContainingTerm(D, c, t)
8- condprob[t][c]← (Nct + 1)/(Nc + 2)
9- return V, prior, condprob
ApplyBernoulliNB(C, V, prior, condprob, d)
1- Vd ← ExtractTermsFromDoc(V, d)
2- For each (c ∈ C) do
3- score[c]← logprior[c]
4- For each (t ∈ V) do
5- IF (t ∈ Vd) Then
6- score[c]+ = logcondprob[t][c]
7- else
8- score[c]+ = log(1− condprob[t][c])
return argmaxc∈Cscore[c]

For example, suppose we are given a vector space repre-

sentation of n documents (in our case of rules). In the bag-

of-words model, each vector di has a component for each

term feature, which is proportional to its importance (term

15

Algorithm 2 Multinomial Naive Bayes Algorithm

Train MultinomialNB(C,D)

1- V ← Extract V ocabulary(D).
2- N ← Count Docs(D) .

3- For each (c ∈ C) do
4- Nc ← Count Docs In Class(D, c)
5- prior[c]← Nc/N
6- textc ← ConcatenatTextOfAllDocsInClass(D, c)
7- For each (t ∈ V) do
8- Tct ← CountTokensOfTerm(textc, t)
9- For each (t ∈ V) do
10- condprob[t][c]← Tct + 1∑

t′(Tct′ + 1)
11- return V, prior, condprob
ApplyMultinomialNB(C, V, prior, condprob, d)
1- W ← ExtractTokensFromDoc(V, d)
2- For each (c ∈ C) do
3- score[c]← logprior[c]
4- For each (t ∈W) do
5- score[c]+ = logcondprob[t][c]
return argmaxc∈Cscore[c]

frequency or TFIDF are commonly used). Each rule vector

is normalized and associated with one of the two labels, +1
or −1. The training data is thus {(dj , ci), j = 1, ..., n}, ci ∈
{−1,+1}.

A linear SVM finds a vector w and a scalar constant b, such

as: ∀i, ci(wci.dj + b) ≥ 1, and ||w|| is minimized.

Most discriminative classifiers, including SVMs, are essen-

tially two-class classifiers. A standard method of dealing with

multi-class problems is to create an ensemble of yes/no binary

classifiers, one for each label. This method is called ”one-

vs-others” [14]. For each label li, the positive class includes

all documents which have li as one of their labels and the

negative side includes all other documents. During application,

the set of labels associated with a document dj is {k}, such

as: wk.dj + bk > 0. This is the basic SVM method that serves

as a baseline against which we compare other methods.

C. K-Neighbors Approach

One of the simplest, and rather trivial classifiers is the rote

classifier, which memorizes all training data and performs

classification only if the attributes of the test object match one

of the training examples exactly [15]. A more sophisticated

approach, k-nearest neighbor (KNN) classification [16], finds a

group of k objects in the training set that are closest to the test

object and bases the assignment of a label on the predominance

of a particular class in this neighborhood. There are three key

elements of this approach: a set of labeled objects, a distance

or similarity metric to compute distance between objects and

the value of parameter k, which represents the number of

nearest neighbors.

To classify an unlabeled object, the distance of this object

to the labeled objects is computed, its k-nearest neighbors are

identified, and the class labels of these nearest neighbors are

then used to determine the class label of the object.

Algorithm3 provides a high-level summary of the nearest

neighbor classification method. Given a training set DR and a

test object z = (x′, y′) the algorithm computes the distance (or

similarity) between z and all the training objects (x, y) ∈ DR
to determine its nearest-neighbor list: Dz . (xi is the training

data of objecti, while yi is its class. Likewise, x′ the data of

the test object and y′ is its class.) Once the nearest-neighbors

list is obtained, the test object is classified based on the

majority class of its nearest neighbors:

Majority V oting y′ = argmaxv

∑

xi,yi∈Dz

I(v = yi).

where v is a class label, yi is the class label for the ith

nearest neighbors and I() is an indicator function that returns

the value 1 if its argument is true and 0 otherwise.

Algorithm 3 KNN for induction Rules Classification [5]

input: - a training rule set DR
- a parameter k : an integer between 1 and the number of

rules already classified DR.

- z : the test rule to classify.

For (each classified rule in DRi) do
Calculate the distance Dist(z, DRi).

end for
- Dz ← Select the k nearest neighbors (z);

For (each class) do

Majority V oting : y′ = argmaxv

∑

xi,yi∈Dz

I(v = yi).

end for
- Attribute to z the class (y′).

The basic nearest neighbors classification uses uniform

weights. Namely, the value assigned to a query point is com-

puted from a simple majority vote of the nearest neighbors.

Under some circumstances, it is better to weight the neighbors,

such as nearer neighbors contribute more to the fit. This is

why we implemented these two variants, and we name them

respectively ”Uniform knn” and ”Distant knn”.

D. Neural Networks Classifiers

The basic unit in a neural network is called ”neuron” or

”unit”. Each neuron receives a set of inputs, denoted by

the vector Xi [17] [18], which in this case, corresponds to

the token frequencies in the ith rule. Each neuron is also

associated with a set of weights A, which are used for

computing a function f() of its inputs. A typical function

which is often used in the neural network is the linear function

as follows: pi = A.Xi. We assume that the class label is

denoted by yi. The goal of this approach is to learn the set

of weights A with the use of the training set. The idea is

to start off with random weights, and gradually update them

when a mistake is done by applying the current function on the

training example. The magnitude of the update is regulated by

16

a learning rate μ. This forms the core idea of the perceptron

algorithm.

Algorithm 4 Perceptron Algorithm [18]

inputs: Learning Rate: μ
Training rules (Xi, yi)∀i ∈ {1...n} .

Initialize weight vectors in A to 0 or small random numbers.

Repeat
– Apply each training rule to the neural network

– if ((A.Xi) does not matches yi) then
update weigts A based on learning rate μ.

until weights in A converge.

E. Convolutional Neural network Classifier

A Convolutional Neural Network (CNN) is comprised of

one or more convolutional layers, and then followed by one or

more fully connected layers as in a standard multilayer neural

network. The neurons of a convolutional layer are grouped in

feature maps sharing the same weights, so the entire procedure

becomes equivalent to convolution [19] [20]. Convolutional

layers are usually followed by a nonlinear activation-layer, in

order to capture more complex properties of the input data.

Pooling layers are used to subsample the previous layer, by

aggregating small rectangular subsets of values. Maximum or

average pooling is often applied by replacing the input values

with the maximum or the average value, respectively. Finally,

one or more dense layers are put in place, each followed by

an activation-layer, which produce the classification result.

The training of CNNs is performed similarly to that of other

ANNs, by minimizing a loss function using gradient descent-

based methods and back-propagation of the error.

Our CNN model is inspired by the contribution of [21]

in text classification. Since this model demonstrated perfor-

mant results, we adapted it in our study for induction rules

classification. It is mainly composed of three convolutional

layers followed by a non-linearity, max pooling and a soft-

max classification layer.

1) The Convolution: CNNs are responsible for major break-

throughs in image classification and are the core of most

computer vision systems today. We can define convolution

operation as a sliding window function applied to a matrix.

In vision, the filters slide over local patches of an image,

but in Natural Language Processing, filters are typically used

to slide over full rows of the token matrix. Thus, the ”width”

of filters is usually the same as the width of the input matrix.

The height, or region size, may vary, but sliding windows in

general terms over two to five words at a time.

2) Pooling Layers: Pooling layers are typically applied

after the convolutional layers. Pooling layers subsample their

input. The most common way to do pooling it to apply a max

operation to the result of each filter. It is not necessarily to

pool over the complete matrix. In our case, pooling is applied

over the complete output, yielding just a single number for

each filter.

IV. EVALUATION AND EXPERIMENTATION

The collection of our rule bases is done from public

benchmarks. We should have taken the results of data mining

approaches (like: decision tree algorithms, or association rules

mining) such as the input of our process. But given the

slowness of the procedure, we directly adapt our rule bases

from public datasets as follows:

IF (attribute1 = value1) and (attribute2 = value2) and

. . . Then (attributen−1 = valuen−1)
where n is the columns number of the dataset.

The last attribute value represents the class column.

A. Public Datasets Collection

TABLE I
BENCHMARK CONSTRUCTION

Benchmark Attributes Rows Classes
SMS Balanced DataSet 03 12, 000 12

SMS Unblanaced DataSet 03 42, 000 15
San Francisco Crime

09 33, 028 12
Classification Dataset (a subset)

News Aggregator Data Set 09 422, 937 04
Amazon Fine Food Reviews 10 568, 454 06

We have implemented our approaches on four public

datasets, where the first dataset is divided into two variants

rule bases: Balanced & Unbalanced SMS Datasets.

1) The first dataset known as data sms1, contains a

total of 42,000 instances, distributed unequally over 15

categories: info, spam, ham, pickup, payment, bus, reser-

vation, delivery, train, Cab, Hotel, Expiry, Appointment,

Movie, Flight.

We have created a variant of this dataset, by removing

the first three categories and taking exactly 1, 000 in-

stances from each of the remaining 12 categories. We

call this variant the SMS Balanced Dataset.

2) The second one is a subset of San Francisco Crime
Classification2. This dataset is brought by SF Open

Data, the central clearing-house for data published by

the City and County of San Francisco. The benchmark

contains incidents derived from San Francisco Police

Department Crime Incident Reporting system. The data

ranges from 1/1/2003 to 5/13/2015. The chosen subset

includes 33,028 rows with 9 attributes which are:

• Dates: timestamp of the crime incident.

• Category: category of the crime incident (only in

training file), it includes 39 different categories. This

is the target variable we are going to predict.

• Descript: detailed description of the crime incident

(only in training file).

• DayOfWeek: the day of the week.

• PdDistrict: name of the Police Department District.

• Resolution: how the crime incident was resolved

(only in training file).

1https://www.kaggle.com/moose9200/data-sms/data
2https://www.kaggle.com/c/sf-crime/data

17

• Address: the approximate street address of the crime

incident.

• X: Longitude.

• Y: Latitude.

3) The third dataset which is called News Aggregator
Dataset3 is provided by Artificial Intelligence Lab at the

Faculty of Engineering, Roma Tre University - Italy, and

it is published on UCI Website [23].

In this dataset, the news are grouped into clusters that

represent pages discussing the same news story. The

dataset includes also references to web pages.

• 422,937 news pages and divided up into four

classes.

• 152,746 news of entertainment category.

• 108,465 news of science and technology category.

• 115,920 news of business category.

• 45,615 news of health category.

• Each class is represented by the news category

(b = business, t = science and technology, e =

entertainment, m = health)

4) The fourth benchmark is known as: Amazon Fine Food
Reviews4 and it consists of reviews of fine foods from

Amazon. The data span a period of more than 10

years, including all 568,454 reviews up to October 2012.

Reviews include product and user information, ratings

and a plain text review. It also includes reviews from all

other Amazon categories [22]. Data includes:

• Reviews from Oct 1999 - Oct 2012.

• 568,454 reviews.

• 256,059 users.

• 74,258 products.

• 260 users with > 50 reviews.

• 6 classes: from 0 to 5 stars. which represents the

satisfaction degree of the reviewer.

B. Evaluation Pattern

All the implemented algorithms take 80% of dataset for

training and the remaining 20% for test, in which they are

evaluated on the two criteria: execution time and classification

accuracy.

The classification accuracy Acci of an individual algorithm

i depends on the number of samples correctly classified (true

positives plus true negatives) and is evaluated by the formula1.

Acci =
t

n
∗ 100 (1)

where t is the number of sample cases correctly classified

and n is the total number of sample cases.

C. Experimental Results

In this study, we use NVIDIA devices and Python lan-

guage with Jupyter Notebook programming model. All the

algorithms are executed and compared using one CPU of

3https://archive.ics.uci.edu/ml/datasets/News+Aggregator
4https://www.kaggle.com/snap/amazon-fine-food-reviews

The ROMEO NVIDIA DGX-15 AI supercomputer. The

results of all the adapted MLDM approaches for induction

rules classification are summarized on tableII.

From TableII we can report many remarks:

• The KNN algorithm cannot handle large rule bases

(crashes when dealing with over then 300,000: out of

memory error).

• There is a big difference in algorithms performances

when processing balanced datasets and the others that

are not.

• In terms of execution time, the Multinomial Naive Bayes

approach gives the best results, followed by the Bernoulli

variant.

• The classification accuracy varies radically depending on

the type of processed rule base.

Fig. 3. Classification Accuracy on Balanced SMS Rules

Figure 3 shows the classification accuracy comparison of the

MLDM classification approaches applied on the balanced SMS

dataset. According to this figure, we remark that in general,

all approaches give very good results. Nevertheless, if we

want details, Linear SVM and Multilayer Neural Networks

are more efficient than the other algorithms, so when SVM

and Multilayer NN reach 100% of accuracy, the two variants

of KNN algorithm do not exceed 95.5% of accuracy.

In figure 4, the classification accuracy comparison of the

MLDM classification approaches applied on the aggregator

news dataset is shown. From this figure, we remark that Linear

SVM is more efficient than the other algorithms, so when SVM

reaches 87.26% of accuracy, the CNN gives only 77.19% of

accuracy on the test set. Moreover, KNN algorithms get an

out of memory error,

Figure 5 resumes the quality of the MLDM classification

approaches applied on three large unbalanced rule bases. We

remark that the CNN algorithm clearly outperforms the other

approaches on all sets of rules. So, when CNN algorithm

does not fall below 88.10% accuracy, the best of the other

algorithms does not exceed 79.57%.

5https://www.nvidia.fr/data-center/dgx-1/

18

TABLE II
DMLM CLASSIFICATION APPROACHES RESULTS

Dataset Bernoulli Multinomial Linear SVM KNN uniform KNN distant Multi Layer CNNNaive Bayes Naive Bayes NN

Balanced SMS
Time(sec) = 0.028 sec 0.022sec 0.20 sec 1.59 sec 1.46 sec 2/epoch 43/epoch

Accuracy (%)= 95.65% 98.98% 100% 95.31% 96.30% 100% 98.73%

Unbalanced SMS
Time(sec) = 0.114 sec 0.058sec 1.04 sec 13.35 sec 12.17 sec 39/epoch 107/epoch

Accuracy (%)= 59.85% 67.70% 64.56% 63.91% 61.38% 67.94% 95.23%
San Francisco Crimes Time(sec) = 0.096 sec 0.086sec 1.27 sec 14.02 sec 14.21 sec 67/epoch 544/epoch

(subset of 12 categories) Accuracy (%)= 54.84% 46.03% 57.27% 42.02% 42.72% 53.13% 92.18%

News Aggregator
Time(sec) = 0.47 sec 0.24sec 5.74 sec −− −− 831/epoch 7261/epoch

Accuracy (%)= 86.24% 84.67% 87.26% −− −− 84.41% 76.19%
Amazon Fine Food Time(sec) = 0.62 sec 0.52sec 27.20 sec −− −− 430/epoch 4060/epoch

Reviews Accuracy (%)= 69.58% 63.39% 76.24% −− −− 79.57% 88.10%

Fig. 4. Classification Accuracy on Aggregator News Rules

Fig. 5. Classification Accuracy on Large Unbalanced Rule Bases

D. Discussion

According to the obtained results, we remark that, the two

variants of the KNN algorithm cannot handle large rule sets;

in fact, the program crashes with an out of memory error when

dealing with a rule base of more than 300, 000. This is due

to the fact that KNN algorithm computes all the distances

between the test set and the whole instances of training set,

contrary to the other algorithms.

In terms of execution time, the Naive Bayes approach gives

the best results. We explain that by the fact that the parameters

of Naive Bayes classifier model, a-priori and conditional prob-

abilities are determined using a deterministic set of steps, and

this involves two very trivial operations that can be blindingly

fast on modern day computers: counting and dividing. In

addition, there is no iterations, no epochs or no error back-

propagation. All these reasons make the Naive Bayes classifier

perform very fast.

Moreover, we can report that the classification accuracy

depends strongly on the type of the processed rule bases,

i.e. there is a big difference between algorithms performances

when processing balanced and unbalanced datasets. We ob-

serve the same when processing datasets with only four classes

and more than six classes.

With numbers for the balanced rule bases that do not exceed

100,000 rules, the SVM and multilayer NN give very good

results. In addition, the SVM gives good results for unbalanced

rule bases that do not exceed five classes. Otherwise, the best

results are obtained using the CNN algorithm for unbalanced

rule bases with more than five categories.

Algorithm 5 Knowledge Mining Module-Selection

inputs: Agent Rule Base Rb
If (Balanced (Rb) = true) then

meta model← Apply Linear SVM Classifier(Rb);
else

if (nbr classes < 5) then
meta model← Apply Linear SVM Classifier(Rb);

else
meta model← Apply CNN Classifier(Rb);.

E. The New Intelligent Agent Architecture

As a result of this study, we introduce the new architecture

of the intelligent agent, by adding to the classical architecture

the two new packages, knowledge mining and meta-models.

• Knowledge Mining Package: composed of all the pre-

sented knowledge mining algorithms.

• Meta-models Package: represents the output of the train-

ing step of the agent rule base, using a selected classifi-

cation algorithm from the knowledge mining package.

Contrary to the classical agent that infers all the rules

sequentially and exhaustively, the new intelligent agent is able

19

Fig. 6. The Architecture of Knowledge Classification Based Agent

to deduct only the class of rules of the new knowledge using

its new packages. Module-selection from knowledge mining

package is guided by the Algorithm 5.

V. CONCLUSION & PERSPECTIVES

In this paper, we presented a new concept of knowledge

mining and meta-models extraction. Our work focused on the

study of the supervised learning approaches for classification

task. From this research, we have developed an extension of

popular MLDM algorithms to deal with induction rules. After-

wards, we have tested and compared these adapted algorithms

on large rule bases. The results are very satisfactory and variate

depending to the kind of processed rule base.

Furthermore, we integrated the proposal support on the

concept of intelligent agent. Hence, the emergence of a new

architecture of the intelligent agent which allows to infer and

discover new knowledge very quickly.

As future perspectives, we expect the implementation of a

new hyper-heuristic that will automatically update the knowl-

edge mining package and choose the learning method to apply

according to the kind of the intelligent agent rule base. In

addition, we plan to perform this study on very large scale,

using in a first time, a multi GPU architecture, and thereafter,

the deployment on the Hybrid Romeo cluster.

ACKNOWLEDGMENT

The authors would like to thank Julien.L, Arnaud.R &

Fabien.B: our colleagues and administrators of the supercom-

puter DGX 1 in ROMEO HPC Center6 for their helps and

suggestions.

REFERENCES

[1] AMATRIAIN, Xavier et PUJOL, Josep M. Data mining methods for
recommender systems. In: Recommender systems handbook. Springer,
Boston, MA, 2015. p. 227-262.

[2] Ilkka Tuomi, 1999, Data is More Than Knowledge Implications of
the Reversed Knowledge Hierarchy for Knowledge Management and
Organizational Memory, Journal of Management Information Systems
Fall 1999, Vol. 16, No. 3., pp 107-121, 1999

6https://romeo.univ-reims.fr/pages/aboutUs

[3] RUIZ, Paula Potes, FOGUEM, Bernard Kamsu, et GRABOT, Bernard.
Generating knowledge in maintenance from Experience Feedback.
Knowledge-Based Systems, 2014, vol. 68, p. 4-20.

[4] GRZYMALA-BUSSE, Jerzy W. A new version of the rule induction
system LERS. Fundamenta Informaticae, 1997, vol. 31, no 1, p. 27-39.

[5] CHEMCHEM, Amine et DRIAS, Habiba. From data mining to knowl-
edge mining: Application to intelligent agents. Expert Systems with
Applications, 2015, vol. 42, no 3, p. 1436-1445.

[6] CHEMCHEM, Amine, DRIAS, Habiba, et DJENOURI, Youcef. Multi-
level Clustering of Induction Rules: Application on Scalable Cognitive
Agent. International Journal of Systems and Service-Oriented Engineer-
ing (IJSSOE), 2014, vol. 4, no 3, p. 1-25.

[7] KORDE, Vandana et MAHENDER, C. Namrata. Text classification and
classifiers: A survey. International Journal of Artificial Intelligence &
Applications, 2012, vol. 3, no 2, p. 85.

[8] IKONOMAKIS, M., KOTSIANTIS, Sotiris, et TAMPAKAS, V. Text
classification using machine learning techniques. WSEAS transactions
on computers, 2005, vol. 4, no 8, p. 966-974.

[9] JAIN, Aaditya et MANDOWARA, Jyoti. Text classification by combin-
ing text classifiers to improve the efficiency of classification. Interna-
tional Journal of Computer Application (2250-1797), 2016, vol. 6, no
2.

[10] HUANG, Jin, LU, Jingjing, et LING, Charles X. Comparing naive
Bayes, decision trees, and SVM with AUC and accuracy. In: Data
Mining, 2003. ICDM 2003. Third IEEE International Conference on.
IEEE, 2003. p. 553-556.

[11] MANNING, Christopher D., RAGHAVAN, Prabhakar, SCHTZE, Hin-
rich, et al. Introduction to information retrieval. Cambridge: Cambridge
university press, 2008.

[12] GUYON, Isabelle, WESTON, Jason, BARNHILL, Stephen, et al. Gene
selection for cancer classification using support vector machines. Ma-
chine learning, 2002, vol. 46, no 1-3, p. 389-422.

[13] VAPNIK, Vladimir. The nature of statistical learning theory. Springer
science and business media, 2013.

[14] HSU, Chih-Wei et LIN, Chih-Jen. A comparison of methods for multi-
class support vector machines. IEEE transactions on Neural Networks,
2002, vol. 13, no 2, p. 415-425.

[15] ADENIYI, D. A., WEI, Z., et YONGQUAN, Y. Automated web usage
data mining and recommendation system using K-Nearest Neighbor
(KNN) classification method. Applied Computing and Informatics, 2016,
vol. 12, no 1, p. 90-108.

[16] WU, Xindong, KUMAR, Vipin, QUINLAN, J. Ross, et al. Top 10
algorithms in data mining. Knowledge and information systems, 2008,
vol. 14, no 1, p. 1-37.

[17] AGGARWAL, Charu C. et ZHAI, ChengXiang (ed.). Mining text data.
Springer Science & Business Media, 2012.

[18] AGGARWAL, Charu C. (ed.). Data classification: algorithms and appli-
cations. CRC Press, 2014.

[19] ANTHIMOPOULOS, Marios, CHRISTODOULIDIS, Stergios, EBNER,
Lukas, et al. Lung pattern classification for interstitial lung diseases
using a deep convolutional neural network. IEEE transactions on medical
imaging, 2016, vol. 35, no 5, p. 1207-1216.

[20] ABDEL-HAMID, Ossama, MOHAMED, Abdel-rahman, JIANG, Hui,
et al. Convolutional neural networks for speech recognition. IEEE/ACM
Transactions on audio, speech, and language processing, 2014, vol. 22,
no 10, p. 1533-1545.

[21] KIM, Yoon. Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882, 2014.

[22] MCAULEY, Julian John et LESKOVEC, Jure. From amateurs to con-
noisseurs: modeling the evolution of user expertise through online
reviews. In: Proceedings of the 22nd international conference on World
Wide Web. ACM, 2013. p. 897-908.

[23] Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repos-
itory [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

20

