
A Coordination-based Brokerage Architecture

for Multi-Cloud Resource Markets

Sarah Aldawood, Frank Fowley

IC4 & School of Computing

Dublin City University

Dublin 9, Ireland

Claus Pahl, Davide Taibi

Faculty of Computer Science

Free University of Bozen-Bolzano

Bolzano, Italy

Xiaodong Liu

Inst for Informatics & Digital Innovation

Edinburgh Napier University

Edinburgh, U.K.

Abstract—With an increasing number of service providers in

the cloud market, the competition between these is also

increasing. Each provider attempts to attract customers by

providing a high quality service with lowest possible cost and at

the same time trying to make profit. Often, cloud resources are

advertised and brokered in a spot market style, i.e., traded for

immediate delivery. This paper proposes an architecture for a

brokerage model specifically for multi-cloud resource spot

markets that integrates the resource brokerage function across

several cloud providers. We use a tuple space architecture to

facilitate coordination. This architecture supports specifically

multiple cloud providers selling unused resources in the spot

market. To support the matching process by finding the best

match between customer requirements and providers, offers are

matched with regard the lowest possible cost available for the

customer in the market at the time of the request. The key role of

this architecture is to provide the coordination techniques built

on a tuple space, adapted to the cloud spot market.

Index Terms—Cloud Resources Market, Tuple Space, Resource

Brokerage, Spot Market, Cloud Brokerage Architecture

I. INTRODUCTION

In the cloud, computing resources such as hardware,
network, storage, software, business service are available when
needed and charges are based the rate of usage [1,3]. Many
companies provide the same cloud services to customers,
which increases the competition between the companies in the
cloud. A trend in this market place in recent years is trading
computing resources in a stock market style. Dynamic spot
markets emerge trading resources for immediate delivery.
These can be supported ‘as-a-service’ that is delivered
immediately or within a short period of time. Our contribution
in this context is twofold:

 Firstly, we analyse cloud resource market aspects and
determine principles and features of a multi-provider cloud
resource spot market.

 Secondly, we present a coordinated broker architecture for
a resource spot market that allows different providers and
consumers to participate in a brokering process.

Cloud spot markets require coordinated brokerage [2]. This
has to consider multiple providers with a range of resources
offered to a number of potential consumers. We explore a
model that prioritises consumer benefits, to address a limitation
of current single-provider markets that favour the provider. The

focus of the paper, however, is on architectural requirements
for such a market mechanism.

This requires different providers of resources and different
potential consumers to be integrated in an easy way. We also
need a mechanism to map the resource brokering with offers
and requests easily. We propose a tuple space architecture as
the coordination backbone of a spot market brokerage solution,
which aims to solve the communication overhead problem to
achieve scalability and can be used and tailored to support fine-
grained coordination activities. A tuple space is a coordination
model for parallel processing and data sharing proposed in the
Linda model. Its architecture is suitable for communication for
cloud service computing [1,5]. Cloud-specific is a need for
coordination by 3rd-party service, with specific type of
auctions (spot market). This results in an efficiency/scalability
requirement for short responses. In our case, qualified
coordination meets the 3rd-party brokering automation.

Our tuple space architecture extents common tuple space
implementations, such as the Javaspace package, in order to
deal with the brokerage features required. Particularly the
matching process in fine-grained spot market models needs to
be addressed, where resources differ in their technical
properties, but also availability, location and pricing properties.
We developed an additional feature for the tuple space. We
evaluate the effectiveness of the proposed architecture through
an experimental analysis. Tuple spaces are provide the required
scalability [1,5].

Section 2 analyses how cloud services are brokered and
discusses principles of cloud resource spot markets. The
architectural framework is described with its matching support
in Sect. 3. Sect. 4 covers the evaluation. Related work is
covered in Sect. 5, before ending with conclusions.

II. BACKGROUND &ANALYSIS

For cloud resource markets, like spot markets, we analyse
market solutions and determine broker architecture principles.

A. Market-related Properties of Cloud Computing Resources

Cloud computing can be defined as a large-scale distributed
computing driven by economies of scale, in which a pool of
abstracted, virtualized, dynamically scalable and managed
resources such as computing power, storage, platforms, and
services are delivered on demand to external customers [3]. A
public cloud comprises of hardware and software services

made available a pay-as-you-go manner as Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS) [7].

Quality of service (QoS) is an important factor [7].
Therefore, the decision associated with choosing service
providers are based on the price, the QoS guarantees it provides
to customers, and the satisfaction of the promised guarantees.
QoS means the ability to provide different priorities to different
applications, users, or data flows or to guarantee a defined level
of performance to a data flow. Setting the costs of the services
at a high price could potentially led to an increase in the cloud
providers profits while at the same time might decrease the
number of consumers, whereas setting low prices might attract
more consumers and reduce provider profits. Similarly,
satisfying high QoS levels would increase demand for services.
Therefore, price and QoS level set by providers are playing an
important apart in a cloud resources market. Architecture for
cloud market with a negotiation mechanism (more general than
auction mechanism) have been presented [28,29].

The pricing policies determine resource allocation types,
resource rates and other costs. Also, each provider has different
ways of allocating resources to a machine. Architecture for
cloud market with a negotiation mechanism (more general than
auction mechanism) have been presented [28,29].For example,
Amazon and GoGrid have many machine types, so a customer
can choose a resource set, not necessarily allowed to customize
a machine. Other providers, e.g., CloudSigma, allow
consumers to customize the resource of a machine by selecting
the number of cores and the size of RAM as they need [8].

B. Principles of Cloud Spot Markets

A market is an environment that supports buyers and
sellers with rules of interaction between them, which are set
through the market mechanism. The market place should offer
a set of different services to attract customer to the market and
making the market service convenient, secure and low-risk. For
example, pay-as-you-go is the most popular pricing schemes
offered by public cloud providers. This scheme involves
customers purchasing units of computing time and being
charged hourly at a fixed price set, which might result in
unused resources. Thus, a provider can sell unused resources at
a reduced price rather than letting them go to waste.

This can be achieved through a spot market with an
auction mechanism designed by the cloud provider [10]. The
spot market is a securities market, on which goods are sold for
cash and delivered immediately or within a short period of time
with immediately effective contracts.

For computing resources, a spot market trades computing
resources with a 'bid or ask' mechanism. All parties publicly
announce the maximum price they are willing to pay for the
product or service, which is usually set by the customer, and
the minimum price they are willing to sell for is set by the
providers of the resource. The spot bids are sorted in
decreasing order of price in the spot bid queue, while the spot
asks are sorted in increasing order of price in the spot ask
queue [10]. The idea of the cloud spot market is that providers
sell their unused resources during some specific low-demand
times (weekends or at night time). Generally, this allows
customers to bid in an auction system that is designed/managed

by cloud providers. The customer who bids the higher price
wins the bid. Usually, the auction system updates the price
regularly, for example every five or ten minutes. Some
providers remove the resource from the customer when the
price becomes higher than the customer's bid, while others do
not, unless the time they guarantee the resource allocated to the
customer has ended.

The spot market is suitable for applications that have no
real-time availability constraints, such as large data analysis,
scientific computing and financial modelling, because usually
the resources allocated in this market are not reliable [11].
Auction systems facilitate providers by setting a price for some
resource types at a specific time and the provider who offer the
lowest price during the time of customer's demand win the
competition. A sample auction mechanism is the Amazon EC2
spot market, which lets customers bid for IaaS instance hours
[12]. However, Amazon does not reveal information about
their auction mechanism and the calculation of the spot price.

There are two points to be considered relating to resource
pricing that providers should concentrate on: (i) the actual cost
of resource and (ii) the profit maximization. There are many
factors that influence pricing in the cloud. The most common
influencing factor is the initial cost, i.e., the amount of money
that a service provider spends to buy resources. The second
consideration is the lease period, which is the period for which
customers will lease resources from providers. Also, the better
the QoS that is offered, the higher the price will be. Further
influencing factors are the age of resources and the cost of
maintenance that the service provider spends over a long time
on maintaining and securing the cloud. There are other factors
affecting the total cost: computing resources allocated to the
instance (such as RAM, CPU, Disk, etc.), geographical
location as different locations will be subject to different prices
even by the same provider, operating systems, minimum
commitments, reliability of service and data traffic [8].

C. Sample Spot Market Mechanisms

We now review some concrete offerings to illustrate the
market factors for cloud resources. More comprehensive
surveys, in particular concerning pricing models, have been
carried out, e.g. in [13]. We select two widely used to extract
architectural requirements, which is the key concern here.

1) Amazon Web Service EC2

Amazon Elastic Compute Cloud (Amazon EC2) is a
resizable compute capacity. Amazon EC2 has 18 types of pre-
defined 'customized' machines. These instances differ based on
the number of cores, size of memory and other performance
parameters. These types are priced differently depending on
the location of the datacentre and the operating systems on the
server. There are three different options for EC2 instance
purchasing: on-demand, reserved instance and spot instance,
which differ on the reservation period, availability and
reliability [10,13]. There are further costs for data transfer and
IP addresses. The different options for instance purchasing are:

1. On-Demand instance: Customers pay for compute
capacity by the hour with no long-term commitments. The
total price depends on how long the customer runs the
machines. The benefit here is that the customer is relieved

from the complexities of planning, purchasing, and
maintaining hardware. The resources are allocated once the
datacentre contains enough own resources to run it.

2. Reserved Instances: This type of pricing is 75 percent less
than on-demand instance pricing, because it is subject to a
long term commitment. The customer has to pay the
reserved instance fee upfront for the contract period, plus
an hourly fixed rate. The minimum charge is the upfront
fee, even if the customer never runs the machine. In
addition, the marketplace for reserved instances is available
to the customer to sell reserved instances when their need
changes, or sell capacity for projects that end before their
reserved instance term expires.

3. Spot Instances: Customers bid on unused capacity.
Resources are allocated to customers when their bid
exceeds the current spot price. The spot instances price
changes periodically (e.g., every 5 min) based on supply
and demand. The guarantee of the resource allocated to the
customer depends on the bidding price. Therefore, when the
spot price rises beyond the bidding price, resources would
not be available and machines terminate (customers are not
charged for that period). The drawbacks of spot instances
are unreliability and lack of suitability for applications with
real-time availability needs.

2) CloudSigma

CloudSigma is an IaaS provider. It differs in the pricing
flexibility and resource allocation policy. Customers can
customize their machine – minimum and maximum resource
configuration like number of cores, size of memory and
storage. It has two pricing schemes depending on commitment:
subscription pricing and burst pricing. The total price for both
schemes is calculated by the amount of resources selected by
the customer [8]:

 Subscription pricing: customers choose resources and pay
for a certain period before the service starts, with a
minimum contract length.

 Burst pricing: a pay-as-you-run plan like Amazon on-
demand pricing. The price is updated every five minutes,
but without machine termination, even if the price is raised.
Thus, these features make this scheme reliable.

D. Spot Market Architecture Requirements

Many public cloud providers provide services at fixed
prices for longer periods of time. We need to design an auction
and brokerage mechanism that uses a spot market to sell
unused resources with reduced prices rather than letting them
sit idle. We need to monitor cloud markets to attract customer
by setting lowest possible prices for the resources.

This brokerage service could be provided by each cloud
service provider individually, but would only pay off at scale.
On the other hand, customers who need cloud resources to run
applications without real-time constraints benefit from cloud
resources ‘spot markets', particularly if many provider offers
are available in the market and the cost for each of them is
comparable. We will therefore target an independent multi-
cloud brokerage model:

 Multiple providers can sell unused resources without
designing and managing their own auction mechanisms,
while at the same time maximize their profit without
spending on monitoring and operating a resources market.

 Customers can rent cloud service with specific
requirements at the lowest cost available in the market,
without the need to search and compare providers and find
best offers manually.

We implemented a generic architecture for a brokerage
model based on tuple spaces. We will demonstrate the
suitability of this architecture for cloud resource spot markets.

III. MARKET ARCHITECTURE

A. Market Implementation Principles

We have analysed architectural and functional requirements
to implement sport market strategies for cloud resources [27].
Based on this, the market principles realised in the
implementation of our brokerage model for cloud resources
market are:

1) Provider Resource Details. Cloud providers using this
brokerage model can sell their already unused resources, for
which they set their price at offer insertion time into the
cloud resource market. The resource offers need to be
specified before sending the request to the broker. The offer
has to contain at least these details:

 name of the provider,

 machine configuration (RAM in GB, CPU cores,
Storage capacity in GB),

 time that resources will be available,

 price per hour for using these resources,

 validation time in minutes for that offer.

2) Customer Requirements and Matching. Customers can
customize requested resources, but there is no guarantee
that available resources will exactly match their
requirements. The result from the matching process is:

 the best matching offers found from single or multiple
providers for the same needed time with the same or
larger resources configuration than the customer's
requirements. Also, the cost will be less or the same
as the customer request.

Customers specify their requirements before sending their
request to the broker service. The request has to contain:

 minimum size of the resource configuration (RAM in
GB, CPU cores, Storage in GB),

 time needed to use the resources,

 max. acceptable resource price per hour.

3) Auction Mechanism. The auction mechanism ‘ask queue'
that is followed in this model is that the matching offers are
arranged by whether they have the same or larger resources
configuration than customers required and whether they
increase the order in an array and start with a less requested
price. Those with the same or less requested price than a
customer request are auctioned off first.

4) Market Goal. The goal of this model is to find offers that
match the customer request most closely and that reduce the
cost of using resources as much as possible. Because of
this, in some demand cases, the mechanism can combine
offers from multiple providers that will reduce the cost for
the customer. Furthermore, it creates the opportunity to find
the required time for using the resources from multiple
providers when a resource is not available from a single
one. Therefore, an algorithm to compare prices and check
availability times for resources is used after the step that
matches the resources with customer requirements.

B. Architecture Requirements

What emerges are a number of technical requirements that
a brokerage architecture needs to satisfy:

 Easy addition / removal of both providers and requesters:
these can be added as agents accessing the space.

 Suitable functionality to implement offering and requesting
activities: tuple space provide a communication paradigm
around operations depositing, detecting and retrieving
descriptive data.

 Backbone support for matching: through the associative
approach, offers and requests can easily be matched.

 Scalability for the cloud: although not an intrinsic property,
we can experimentally demonstrate scalability.

We have indicate the main reasons for choosing tuple
spaces [30]. Other options would have included other forms of
associative memory, e.g. building on query languages.
Semantic matching would have been an option for the
matching support, but would have had to be combined with
other coordination tools. Tuple spaces provide the best
coverage of the features needed – we will see that only a
ranking mechanism is not directly supported (but can be
seamlessly added, as we will demonstrate). We will now detail
the tuple space features.

C. Tuple Space Principles

This section will overview coordination and tuple space
architectures and introduce a sample Java tuple space
implementation called LighTS.

A tuple space is an implementation of an associative
memory paradigm, which is used to store and retrieve objects
(data) and which logically works like a shared memory. The
object is shared between various processes, but there is no
physical memory shared. Furthermore, it can be accessed
through pattern matching as an associative access form. The
object in the tuple space does not belong to any process and it
remains inside the tuple space until it is retrieved by some other
process. There are several features of the tuple space
coordination that makes it a suitable model for parallel and
mobile applications. It facilitates the implementation of a cloud
brokerage market to advertise services and match consumer
requests. One of these features is that processes do not need to
be available at the time of communication and anyone, be that
provider or customer, can access the data.

The primary objects are tuples, which are constructs
consisting of a collection of ordered lists of elements. In a
tuple, elements are composed of field and value pairs:

[field1,value1; field2,value2; ... ; fieldn,valuen]

It can have any number of field and value pairs. However,
there may not be any NULL values. There are two types of
tuples: active and passive. Passive tuples are stored in the tuple
space until they are retrieved by some process, whereas tuples
that can spawn other processes or perform some functions are
called active. The active tuples turn into passive tuples when
they have finished their task.

Templates are tuples used for matching and retrieving
tuples. The format of a template is:

[field1,value1;..; fieldi,NULL; .. ;fieldn,valuen]

 This format is similar to tuple format, but NULL values are
allowed for specific fields i in the template and represent
placeholders. The values that templates can have are actual or
formal, or a mixture of both. In the matching process, the
formal values will be replaced and the actual values will be
compared. Null values would be replaced also by actual values
when the template is matched against a tuple. The main
difference between tuple and template is their usage. Tuples are
used to insert tuples (group of data) into the tuple space, while
the template is used to search for a data tuple.

The first application of tuple spaces in a programming
language was Linda, an abstract parallel programming
language used for parallel processing between objects. Linda
provides four basic operations:

OUT, IN, RD, EVAL

OUT is used to store a single tuple in the tuple space; it
does not return anything. The argument passed to OUT is a
tuple. IN is used by a process to retrieve and remove a tuple
from tuple space, while RD is used to read a tuple that is
already stored in the tuple space without removing the tuple
from the tuple space, it gets a copy of the tuple and returns it
back to the calling process. Both IN and RD get a template as
an argument. EVAL is used to carry out functions inside the
tuple space, which turns an active tuple into a passive tuple
when all the performing functions are terminated.

The Java implementation of tuple spaces is called LighTS,
which was designed as an open-source, customizable tuple
space framework. It provides Java support for basic Linda
operations in a local implementation of a tuple space [6].

D. Coordination Implementation

An architecture for a multi-cloud resource market for an
independent brokerage model is based on the following
principles:

 The tuple space holds information relating to provider
offers for the cloud resource market. Providers who want to
sell their resources submit details of their offers.

 These details provided in the application are filled into the
tuple fields and inserted it into the tuple space using the
OUT() operation.

 Each tuple field describes one piece of information related
to the resources that will be offered by the cloud providers.

 This tuple 'offer' remains in the tuple space 'spot market'
until it is bought by a customer or the validation time of this
'offer' tuple has expired.

 The service removes the offer from the resource market
through passing the offer details in the template fields and
use the IN() operation.

 Customers submit request details, then all 'offer' tuples in
the tuple space are matches using the RD() operation to find
suitable matching offers.

To facilitate this, the core operations of LighTS proved not to
be sufficient and needed extension. We added a MULTI-RD
operation, which allows retrieving an array of matching tuples:

 MULTI-RD extracts all matching tuples for a request
template. This is provided as a wrapper function on top of
the LighTS implementation.

Generally, through three Linda operations (OUT, IN and
RD) that LighTS supports and our extension (MULTI-RD), the
cloud resource spot market can be established. The providers
can sell their resources and customers can check and buy the
cloud resource through the application that connects them to
the cloud resource market.

E. Resource Request Matching

The matching is done after a customer submits a request to
the broker service and the service reads all relevant offers are
available in the spot market. The matching algorithm is
defined as follows:

1. All offers are selected that have the same or larger resource
configurations than the requirements of the customer.

2. The list of matching offers is rearranged in the ask queue in
increasing order, starting with the lowest asked price by
providers. In some cases (a) there may be no matching
offers available for the time requested or (b) all available
offers do not meet the customer's resource requirements.

3. The customer requested price and required time for
resources are compared with asked price and resource
availability for each matching offer in the ask queue.

At the core is a multi-objective optimisation problem

min(CPU, STRG, RAM, Time, Price)

based on an objective vector that defines upper and lower
bounds for the objective function values of Pareto optimal
solutions. The feasible set of decision vectors is defined by a
constraint function on the five selection criteria above:

 Linear scalarisation is here based on an equal weighting w
on the five criteria f1 to f5 as above.
 The goal of this matching algorithm is to find the lowest
technically matching cost offer. The algorithm used a pattern-
matching technique for the identification of matching
requester-provider pairs. The solution relies on the associative
matching of the tuple space. We added an intermediate step to
allow for sorting to take place.

F. Composite Matches

The matching notion is extended here to composite
matches, i.e., combining two or more provided resources to

satisfy a single request [23]. The algorithm can combine two
offers as a result of the matching process for the customer
request if this combination reduces the cost of using the
resources, possibly using resources from multiple providers as
needed. The result of this matching is the most suitable low
cost offer available from possibly multiple providers.

Total composite cost across all offers is the ranking factor.
The resource requirement matching is decided as follows:

 Time required: the individual times need to add up.

 Resource configuration: the total required configuration
need to be achieved as a combination of individual offers.

Our solution assumes here that the VM load to be deployed can
be split as required. The algorithm iteratively starts with the
closest matching offer (below the request) and tries recursively
fill the gap with further offers.

G. Illustration and Application of Principles

A sample use case for both provider and customer shall
illustrate the brokerage model. Firstly, a provider plans to sell
their resources (e.g. VMs) in the spot market. They have to
provide the information details relating to the offer and then
send it to the spot market service, which will insert this offer
into the cloud resource market place. An architecture for this
process is presented in Figure 1.

Spot Market
Broker

[tuple space]

Client

Client

Provider

Provider

Fig. 1 Provider and Client Interaction with Broker Service

START Customer

Tuple
Space

Broker

Select offers that match
requirements (CPU, RAM, Strg)

Offers
found?

Rearrange the offers in the ask
queue (auction mechanism)

Compare customer time and price
request matches offers

Offers
found?

Return matching results

END

No

Yes

Yes

No

Fig. 2 Customer Submit Request Flow Process

Then, assume a customer needs to buy computing resources
from spot market at a low cost. They submit their requirements
to the spot market service. The service will search through the
spot market, then apply the matching process to find the most
suitable offer compared to the customer request. A process for
this is presented in Figure 2.

Overall, the service is a broker that connects both customer
and provider through the spot market. The advantage of the
tuple space architecture is no need for extra coordination
between spot market and broker, or between broker and
providers/customers.

This implements the spot market principles presented in
Section II.B. Offers are managed in terms of sorted spot ask
queues. It considers (i) the actual cost of resources and (ii)
profit maximization, specifically for the customer.

IV. EVALUATION

For the evaluation of the implemented broker-based spot
market service, different test scenarios were carried out to
evaluate the effectiveness of the cloud resource market based
on the extended tuple space architecture. The matching process
is validated through the application of different request use
cases and then analysing the results of the matching in relation
to customer requirements.

A. Evaluation Criteria

Four concerns have been addressed to evaluate design and
implementation of this market brokerage model. These criteria
were considered as important points in respect of the cloud
resource 'spot market':

 Firstly, the tuple space architecture for the cloud resource
market is adequate for brokerage.

 Secondly, the auction mechanism followed in the matching
(ask queue) is effective.

 Thirdly, the selection of best matching offers for customer
requests succeeds in reducing the cost as much as possible.

 Finally, scalability is also looked at by monitoring
performance for varying loads.

B. Evaluation Method

Various factors cause the actual price for cloud resources in
the spot market to vary significantly: (i) the dissimilarity of the
pricing policy cross the cloud providers services, (ii) the rapid
change in resource price depending on the time and the day, as
well as (iii) the location of the datacentre. The data used to test
this model was generated randomly for this case within some
set min/max boundaries, but reflects actual figures in the cloud
resource market. Details for this data are displayed in Table 1.

Table 1. Validation Data.

Field Min Max

CPU (Cores) 1 20

RAM (GB) 1 32

Storage (GB) 50 1000

Machine Availability Time (Hour) 2 9

Price/Hour ($) 0.02 1.50

Offer Validation Time (Minutes) 10 80

In order to validate matching, different request cases were
generated and submitted. Some requests were sent to the broker
twice, once to search for the matching offer from single
providers and the other to do the same for multiple providers.
The details of a sample request are displayed in Table 2.

Table 2. First Sample Request.

Field Value

Min. CPU (Cores) 16

Min. RAM (GB) 20

Min. Storage (GB) 800

Machine Needed Time (Hour) 8

Max. Price / Hour ($) 1.1

In all auction activities, the first step of the matching
process follows the same methodology, the selection offers
from the tuple space has to have the same as or a larger
resources configuration as determined by the request. Then,
selected offers are sorted in increasing order of price to apply
the auction mechanism to the ask queue. The lowest asked
price offered is more likely to be sold first. Where two selected
offers have the same ask price, the offer that is available for the
greatest amount of time for resources is inserted first in the ask
queue. A sample request is displayed in Table 3.

Table 3. Second Sample Request.

Field Value

Min. CPU (Cores) 20

Min. RAM (GB) 32

Min. Storage (GB) 1000

Machine Needed Time (Hhour) 7

Max. Price / Hour ($) 1.5

Search Type (Single/Multi Provider) Multi

C. Results

This evaluation focuses on the effectiveness of the
(extended) tuple space architecture for the cloud resources
market brokerage model. The main role of the cloud resources
market to effectively coordinate participants (both buyer and
seller) is confirmed through the results related to the data that
has been generated and tested in this model – see below. The
application connects easily and interacts directly through our
extended tuple space architecture.

Architecture. The architecture of the cloud resource market
is based on the tuple space architecture. The spot market,
which is the place that resources are sold at the price set by the
market or seller (cloud service providers here), is implemented
using coordination actions. The flexibility of this architecture,
by coordinating any number of tuples and accessing processes
in the tuple space, allows cloud providers to insert offers when
they wish to sell unused resources, to determine the price they
would like to sell their resources at and the duration that the
offer is valid for to buy, before it is removed from the spot
market. Customers can view offers at any time and can submit
requests to find best matching offers. Offer details, represented
by a tuple, can by be edited (e.g., increased) or removed easily
by associative access. The coordination application acts as a
broker between provider and customer. This makes the
architecture adequate supporting the market functions.

Auction Mechanism. Various generated requests were
tested in this model, including for instance when the resources
configuration that the customer requested was too high (cf.
Table 3). The process laid out in Section 4.2 was tested with
the test data, confirming the auction mechanism is effective.

Cost Optimisation. The solution is effective in terms of
optimising the outcome. For the first request, the result of the
first step in the matching process was 15 matching offers from
54 offers available in the tuple space for both cases. Then the
suggested result after the comparison was applied, which was
different in both cases. In the first case, the matching offer was
from a single provider with a price approximately equal to the
required price, while the second case was from two providers
with a cost less than required (0.78$). In addition, if the same
previous request case entered offers after 30 minutes and 60
minutes, the number of matching offers changes depending on
the number of offers that are available at that time. The service
updates the tuple space every few minutes to remove expired
offers from the spot market.

The matching offer details for the two sample cases are
described in Tables 4 and 5. Our linear optimisation solution is
in line with other cost optimisation solutions and linear
programming approaches, such as [19].

Table 4. Result for First Case.

Prov CPU RAM Strg Val Time Avail Time Price/Hour

P44 16 20 1000 80 8 1.08

Table 5. Result for Second Case.

Prov CPU RAM Strg Val Time Avail Time Price/Hour

P40 16 20 800 40 6 1.00

P41 16 20 800 60 2 1.01

In the second request, the results for the first step in the
matching process are just 3 matching offers. Then the result of
the best matching offers for this request that was generated by
the matching process is from different providers. This
combination of offers can reduce the total cost of using
resources. In this generated case for example, the cost will
reduce from 10.5 $ to 9.65$ for the 7 hours requested. The
suggested offers are described in Table 6. Thus, we conclude
that the solution does optimise the costs.

Table 6. Ranking of Suggested Offers.

Prov CPU RAM Strg Val Time Avail Time Price/Hour

P52 20 32 1000 40 3 1.35

P53 20 32 1000 60 5 1.40

Scalability. Scalability and other aspects were already
addressed elsewhere [1,5]. We varied between tuple sizes to
cover 100, 1000 and 10000 bytes. Tests were run with 100,
1000 and 10000 requesters and providers, then doubling and
tripling their respective numbers separately to deal with
imbalances. Each test was run 10 times in a networked
environment. The results demonstrate acceptable performance
even for very high loads (although the increase is not linear).

As noted early, we opted for a linear scalarisation approach
that performs comparably with other approaches [19], but a
greater concern in the market setting is scalability for larger

numbers of participants, which is less well experimentally
demonstrated. Here we can demonstrate success.

D. Discussion and Threats to Validity

We can conclude is the cloud resource market can be
operated based on a tuple space architecture. In addition, the
service that was implemented in this spot market model works
in the same way as any online broker services that connect
companies and customers through listing the company's
products to the customers and indicating them the best product
that matches their requirements. The tuple space acts as the
datacentre to store all relevant information.

However, the architecture of this model can be enhanced by
adding more brokers between buyers and customers or between
them and allowing the spot market to provide more services in
the cloud resources market. Moreover, the matching process
can be extended in both steps easily to increase the details
included in the resources request and also to specify more
restrictions in the selling template of the resources as per the
cloud providers' wishes.

We present a solution that focuses on the customer as the
beneficiary. This can be seen as a limitation, as the providers’
needs to optimise their revenue is ignored. However, current
single provider solutions ignore the customer, and in a scenario
of a broker provided by a third party, better customer prospects
need to be considered. However, further investigations into
how to jointly facilitate customers and providers are required.

V. RELATED WORK

We have already reviewed related work on cloud resource
markets. Here, we only look at architectural aspects. For
instance, Mong Sim covers what is done at each resource
provider for VM spot instances provisioning [25].

There is work using a tuple space architecture in the cloud
as a coordination model for cloud service and also as a service,
which matches the requests with providers. Some of these
prove the scalability of the architecture being able to perform
well with significantly large numbers of providers and
requesters [9,5].

In addition, there is research that proposes different
approaches to finding the best cloud providers for the
customers as requested. The aim in the most of these is to
perform the matching between customers' request and cloud
providers automatically [14]. Such spot markets are being
operated by some cloud service providers.

Some investigate the rules of market and auction
mechanisms that have different methodologies and architecture
design from one provider to another. Auction mechanisms have
been implemented [20] as a market place for computing
resources, using for instance a queuing approach. A recent
commercial solution is Deutsche Börse Cloud Exchange
(https://cloud.exchange), though this venture signals the
teething problems of an early stage of acceptance, here not
promoting business value for users well enough.

VI. CONCLUSIONS

In this paper, a brokerage model for a cloud resources spot
market has been discussed in terms of market principles and
the architecture to operate this spot market. The matching

process between customer request and offers from the cloud
resources provider was examined and discussed. The
evaluation showed that the suggested architecture, based on an
extended tuple space, with this brokerage model works
effectively for a cloud resources market. In addition, the
performance of the matching process that uses the request
queue technique in the auction mechanism and combines
multiple cloud resource providers, increases the chance of
matching between demand and supply and decreases costs of
using resources for the customer, if this process works properly
in the matching requests with cloud providers as illustrated.

Please note that our objective here was not to provide a
fully optimal brokerage solution (although our composite
matches is non-trivial), but to demonstrate the suitability of the
tuple space architecture to provide a multi-cloud broker
solution for cloud resource spot markets that goes beyond
current single-provider solutions. We expect multi-cloud
brokerage to play a more significant role in the future [18,24],
beyond the current single-provider markets offered by some.
We expect these to emerge similar to last minute brokering
services in non-technical domains. Marketplace for cloud
resources, particularly at the SaaS layer have already appeared.

 For future work, the architecture of this independent
brokerage model can be extended to allow for resources to be
automatically allocated to the customer instead of transferring
the customer to the cloud providers for service deployment
[26]. Also, the resource information schema can be extended
towards an ontology [4,21] offers to improve the selection of
the offers in the first step of the matching process, e.g.
reliability or reputation. Matching can be improved to find the
best providers from multiple aspects, not just considering price
and availability [15]. Another direction is to use containers [31]
for implementation.

ACKNOWLEDGMENTS

This work has received funding from IC4 (an Irish National Cloud
Computing Technology Centre funded by EI and the IDA).

REFERENCES

[1] Hari, H., "Tuple Space in the Cloud," Master’s Thesis. University of
Uppsala. 2012.

[2] Fowley, F., Pahl, C., and Zhang, L., "A comparison framework and review
of service brokerage solutions for cloud architectures," International
Conference on Service-Oriented Computing ICSOC’2013 Workshops, pp.
137-149. 2014.

[3] Sharma, B., Thulasirm, R., Thulasirman, P. and Grag, S., "Pricing Cloud
Compute Commodities: A Novel Financial Economic Model,"
IEEE/ACM Intl Symp on Cluster, Cloud and Grid Computing (CCGrid).
2012.

[4] Pahl, C., "An ontology for software component matching," International
Journal on Software Tools for Technology Transfer, 9(2). pp. 169-178.
2007.

[5] Creaner, G. and Pahl, C., "Flexible Coordination Techniques for Dynamic
Cloud Service Collaboration," Adaptive Web Services for Modular and
Reusable Software Development - Tactics and Solutions. 2007.

[6] Picco, G.P., "LighTS," Available from: http://lights.sourceforge.net/
[Accessed 25 April 2016]. 2001.

[7] Pal, R. and Hui, P., "Economic Models for Cloud Service Market (Pricing
and Capacity Planning)," Telekom Innovation Laboratories. 2015.

[8] Son, J., "Automated Decision System for Efficient Resource Selection and
Allocation in Inter-Clouds," Department of Computing and Information
System. The University of Melbourne. 2013.

[9] Pahl, C. and Xiong, H., "Migration to PaaS Clouds - Migration Process
and Architectural Concerns," International Symposium on the
Maintenance and Evolution of Service-Oriented and Cloud-Based
Systems MESOCA’13, 2013.

[10] Abhishek, V. Kash, I. and Key, P. "Fixed and Market Pricing for Cloud
Services," NetEcon. 2012.

[11] Zafer, M., Song, Y. and Lee, K., "Optimal Bids for Spot VMs in a Cloud
for Deadline Constrained Jobs," IEEE Intl Conf on Cloud Computing.
2012.

[12] Toosi, A., Van Mechelen, K., and Buyya, R., "An Auction Mechanism for
a Cloud Spot Market," Cloud Computing and Distributed Systems
Laboratory. 2014.

[13] Al Roomi, M., Al Ebrahim, S., Buqrais, S., and Ahmad, I., "Cloud
Computing Pricing Models: A Survey, " Intl Jrnl of Grid and Distr
Computing 6(5), pp.93-106. 2013.

[14] Gilia, P. and Sood, S., 2013. "Automatic Selection and Ranking of Cloud
Providers using Service Level Agreements," Intl Journal of Computer
Applications, 72(11). 2013.

[15] Redl, C., Breskovic, I., Brandic, I., and Dustdar, S. 2012. "Automatic SLA
Matching and Provider Selection in Grid and Cloud Computing Markets,"
In ACM/IEEE Intl Conference on Grid Computing (GRID '12). 2012.

[16] Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., and Tsafrir, D., 2011.
"Deconstructing Amazon EC2 Spot Instance Pricing," In IEEE Third Intl
Conference on Cloud Computing Technology and Science. 2011.

[17] Shang, R., Huang, J., Yang, Y., and Kauffman, R.J., "Analyzing the
Impact of Cloud Services Brokers on Cloud Computing Markets," Pacific
Asia Conference on Information Systems. 2013.

[18] Fowley, F., Pahl, C., Jamshidi, P., Fang, D., and Liu, X., "A Classification
and Comparison Framework for Cloud Service Brokerage Architectures,"
IEEE Transactions on Cloud Computing. 2016.

[19] Bessa, R.J. and Matos, M.A., "Optimization models for EV aggregator
participation in a manual reserve market," Power Systems, IEEE
Transactions on, 28(3), 3085-3095. 2013.

[20] Henzinger, T.A., Singh, A.V., Singh, V., Wies, T. and Zufferey, D., "A
marketplace for cloud resources," In ACM international conference on
Embedded software (EMSOFT '10). 2010.

[21] Greenwell, R., Liu, X., Chalmers, K., and Pahl, C., "A Task Orientated
Requirements Ontology for Cloud Computing Services," 6th Intl Conf on
Cloud Computing and Services Science Closer. 2016.

[22] Maamar, Z., Dorion, E., and Daigle, C., "Toward Virtual Marketplaces for
E-Commerce Support," Commun. ACM 44(12): 35-38. 2001.

[23] Wang, M.X., Bandara, K.Y., and Pahl, C., "Integrated constraint violation
handling for dynamic service composition," IEEE International
Conference on Services Computing SCC’09, 2009.

[24] Li, Z., Tärneberg, W., Kihl, M., and Robertsson, A., "Using a Predator-
Prey Model to Explain Variations of Cloud Spot Price," 6th Intl Conf on
Cloud Computing and Services Science Closer. 2016.

[25] Mong Sim, K., "A Price and Time Slot Negotiation Mechanism for Cloud
Service Reservations," IEEE Transactions on Systems, Man, and
Cybernetics, vol. 42, no. 3, 2012.

[26] Jamshidi, P., Ghafari, M., Ahmad, A., and Pahl, C., "A framework for
classifying and comparing architecture-centric software evolution
research," European Conference on Software Maintenance and
Reengineering, 2013.

[27] Pahl, C. and Giesecke, S. and Hasselbring, W., "Ontology-based
modelling of architectural styles," Information and Software Technology,
1 (12). pp. 1739-1749. 2009.

[28] Comuzzi, M. and Pernici, B., "An architecture for flexible web service
QoS negotiation". In EDOC Conference, pp. 70-82. IEEE, 2005.

[29] Prodan, R., Wieczorek, M., and Fard, H., "Double Auction-based
Scheduling of Scientific Applications in Distributed Grid and Cloud
Environments," Journal of Grid Computing, Vol. 9, pp. 531-548, 2011.

[30] Doberkat, E.-E., Franke, W., Gutenbeil, U., Hasselbring, W., Lammers, U.,
and Pahl, C., 1992. "PROSET - a Language for Prototyping with Sets,"
International Workshop on Rapid System Prototyping, pp. 235-248. 1992.

[31] Pahl, C., "Containerisation and the PaaS Cloud, " IEEE Cloud Computing,
2(3). pp. 24-31, 2015.

